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We study warped product semi-invariant submanifolds of nearly cosymplectic manifolds. We
prove that the warped product of the type M⊥×fMT is a usual Riemannian product of M⊥ and
MT , where M⊥ and MT are anti-invariant and invariant submanifolds of a nearly cosymplectic
manifold M, respectively. Thus we consider the warped product of the typeMT×fM⊥ and obtain
a characterization for such type of warped product.

1. Introduction

The notion of warped product manifolds was introduced by Bishop and O’Neill in 1969
as a natural generalization of the Riemannian product manifolds. Later on, the geometrical
aspect of these manifolds has been studied by many researchers (cf., [1–3]). Recently, Chen
[1] (see also [4]) studied warped product CR-submanifolds and showed that there exists
no warped product CR-submanifolds of the form M = M⊥× fMT such that M⊥ is a totally
real submanifold andMT is a holomorphic submanifold of a Kaehler manifoldM. Therefore
he considered warped product CR-submanifold in the form M = MT× fM⊥ which is called
CR-warped product, where MT and M⊥ are holomorphic and totally real submanifolds of
a Kaehler manifold M. Motivated by Chen’s papers, many geometers studied CR-warped
product submanifolds in almost complex as well as contact setting (see [3, 5, 6]).

Almost contact manifolds with Killing structure tensors were defined in [7] as nearly
cosymplectic manifolds, and it was shown that normal nearly cosymplectic manifolds are
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cosymplectic (see also [8]). Later on, Blair and Showers [9] studied nearly cosymplectic
structure (φ, ξ, η, g) on a manifold M with η closed from the topological viewpoint.

In this paper, we have generalized the results of Chen’ [1] in this more general setting
of nearly cosymplectic manifolds and have shown that the warped product in the form
M = M⊥× fMT is simply Riemannian product of M⊥ and MT where M⊥ is an anti-invariant
submanifold andMT is an invariant submanifold of a nearly cosymplectic manifoldM. Thus
we consider the warped product submanifold of the type M = MT× fM⊥ by reversing the
two factors M⊥ and MT and simply will be called warped product semi-invariant submanifold.
Thus, we derive the integrability of the involved distributions in the warped product and
obtain a characterization result.

2. Preliminaries

A (2n+ 1)-dimensional C∞ manifoldM is said to have an almost contact structure if there exist
on M a tensor field φ of type (1, 1), a vector field ξ, and a 1-form η satisfying [9]

φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1. (2.1)

There always exists a Riemannian metric g on an almost contact manifold M satisfying the
following compatibility condition:

η(X) = g(X, ξ), g
(
φX, φY

)
= g(X, Y) − η(X)η(Y), (2.2)

where X and Y are vector fields onM [9].
An almost contact structure (φ, ξ, η) is said to be normal if the almost complex structure

J on the product manifold M × � given by

J

(
X, f

d

dt

)
=
(

φX − fξ, η(X)
d

dt

)
, (2.3)

where f is a C∞-function on M × �, has no torsion, that is, J is integrable, and the condition
for normality in terms of φ, ξ and η is [φ, φ] + 2dη ⊗ ξ = 0 onM, where [φ, φ] is the Nijenhuis
tensor of φ. Finally the fundamental 2-form Φ is defined by Φ(X, Y) = g(X, φY).

An almost contact metric structure (φ, ξ, η, g) is said to be cosymplectic, if it is normal
and both Φ and η are closed [9]. The structure is said to be nearly cosymplectic if φ is Killing,
that is, if

(
∇Xφ

)
Y +

(
∇Yφ

)
X = 0, (2.4)

for any X, Y ∈ TM, where TM is the tangent bundle of M and ∇ denotes the Riemannian
connection of the metric g. Equation (2.4) is equivalent to (∇Xφ)X = 0, for eachX ∈ TM. The
structure is said to be closely cosymplectic if φ is Killing and η is closed. It is well known that
an almost contact metric manifold is cosymplectic if and only if ∇φ vanishes identically, that
is, (∇Xφ)Y = 0 and ∇Xξ = 0.
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Proposition 2.1 (see [9]). On a nearly cosymplectic manifold, the vector field ξ is Killing.

From the above proposition we have ∇Xξ = 0, for any vector field X tangent to M,
where M is a nearly cosymplectic manifold.

Let M be submanifold of an almost contact metric manifold M with induced metric
g, and if ∇ and ∇⊥ are the induced connections on the tangent bundle TM and the normal
bundle T⊥M of M, respectively, then, Gauss and Weingarten formulae are given by

∇XY = ∇XY + h(X, Y), (2.5)

∇XN = −ANX +∇⊥
XN, (2.6)

for eachX, Y ∈ TM andN ∈ T⊥M, where h andAN are the second fundamental form and the
shape operator (corresponding to the normal vector fieldN), respectively, for the immersion
of M into M. They are related as

g(h(X, Y),N) = g(ANX, Y), (2.7)

where g denotes the Riemannian metric on M as well as being induced on M.
For any X ∈ TM, we write

φX = TX + FX, (2.8)

where TX is the tangential component and FX is the normal component of φX.
Similarly for any N ∈ T⊥M, we write

φN = BN + CN, (2.9)

where BN is the tangential component and CN is the normal component of φN. The
covariant derivatives of the tensor fields P and F are defined as

(∇XT)Y = ∇XTY − T∇XY, (2.10)
(
∇XF

)
Y = ∇⊥

XFY − F∇XY (2.11)

for all X, Y ∈ TM.
Let M be a Riemannian manifold isometrically immersed in an almost contact metric

manifold M. then for every x ∈ M there exists a maximal invariant subspace denoted by Dx

of the tangent space TxM of M. If the dimension of Dx is the same for all values of x ∈ M,
then Dx gives an invariant distribution D onM.

A submanifold M of an almost contact metric manifold M is called semi-invariant
submanifold if there exists on M a differentiable invariant distribution D whose orthogonal
complementary distribution D⊥ is anti-invariant, that is,

(i) TM = D ⊕ D⊥ ⊕ 〈ξ〉,
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(ii) φ(Dx) ⊆ Dx,

(iii) φ(D⊥
x) ⊂ T⊥

xM

for any x ∈ M, where T⊥
xM denotes the orthogonal space of TxM in TxM. A semi-invariant

submanifold is called anti-invariant if Dx = {0} and invariant if D⊥
x = {0}, respectively, for any

x ∈ M. It is called the proper semi-invariant submanifold if neither Dx = {0} nor D⊥
x = {0}, for

every x ∈ M.
LetM be a semi-invariant submanifold of an almost contact metric manifoldM. Then,

F(TxM) is a subspace of T⊥
xM. Then for every x ∈ M, there exists an invariant subspace νx of

TxM such that

T⊥
xM = F(TxM) ⊕ νx. (2.12)

A semi-invariant submanifold M of an almost contact metric manifold M is called
Riemannian product if the invariant distribution D and anti-invariant distribution D⊥ are
totally geodesic distributions in M.

Let (M1, g1) and (M2, g2) be two Riemannian manifolds, and let f be a positive
differentiable function on M1. The warped product of M1 and M2 is the product manifold
M1×fM2 = (M1 ×M2, g), where

g = g1 + f2g2, (2.13)

where f is called the warping function of the warped product. The warped product N1× fN2

is said to be trivial or simply Riemannian product if the warping function f is constant. This
means that the Riemannian product is a special case of warped product.

We recall the following general results obtained by Bishop and O’Neill [10] for warped
product manifolds.

Lemma 2.2. Let M = M1×fM2 be a warped product manifold with the warping function f . Then

(i) ∇XY ∈ TM1, for each X, Y ∈ TM1,

(ii) ∇XZ = ∇ZX = (X ln f)Z, for each X ∈ TM1 and Z ∈ TM2,

(iii) ∇ZW = ∇M2
Z W − (g(Z,W)/f) gradf ,

where ∇ and ∇M2 denote the Levi-Civita connections onM andM2, respectively.

In the above lemma gradf is the gradient of the function f defined by g(gradf,U) =
Uf , for each U ∈ TM. From the Lemma 2.2, we have that on a warped product manifold
M = M1× fM2

(i) M1 is totally geodesic in M;

(ii) M2 is totally umbilical inM.

Now, we denote by PXY and QXY the tangential and normal parts of (∇Xφ)Y , that is,

(
∇Xφ

)
Y = PXY +QXY (2.14)
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for all X, Y ∈ TM. Making use of (2.5), (2.6), and (2.8)–(2.11), the following relations may
easily be obtained

PXY = (∇XT)Y −AFYX − Bh(X, Y), (2.15)

QXY =
(
∇XF

)
Y + h(X, TY) − Ch(X, Y). (2.16)

It is straightforward to verify the following properties of P and Q, which we enlist
here for later use:

(p1) (i) PX+YW = PXW + PYW , (ii) QX+YW = QXW +QYW ,

(p2) (i) PX(Y +W) = PXY + PXW , (ii) QX(Y +W) = QXY +QXW ,

(p3) g(PXY,W) = −g(Y,PXW)

for all X, Y,W ∈ TM.
On a submanifold M of a nearly cosymplectic manifold M, we obtain from (2.4) and

(2.14) that

(i) PXY +PYX = 0, (ii) QXY +QYX = 0 (2.17)

for any X, Y ∈ TM.

3. Warped Product Semi-Invariant Submanifolds

Throughout the section we consider the submanifold M of a nearly cosymplectic manifold
M such that the structure vector field ξ is tangent to M. First, we prove that the warped
product M = M1× fM2 is trivial when ξ is tangent to M2, where M1 and M2 are
Riemannian submanifolds of a nearly cosymplectic manifold M. Thus, we consider the
warped product M = M1× fM2, when ξ is tangent to the submanifold M1. We have the
following nonexistence theorem.

Theorem 3.1. A warped product submanifold M = M1× fM2 of a nearly cosymplectic manifold M
is a usual Riemannian product if the structure vector field ξ is tangent toM2, whereM1 and M2 are
the Riemannian submanifolds of M.

Proof. For any X ∈ TM1 and ξ tangent toM2, we have

∇Xξ = ∇Xξ + h(X, ξ). (3.1)

Using the fact that ξ is Killing on a nearly cosymplectic manifold (see Proposition 2.1) and
Lemma 2.2(ii), we get

0 =
(
X ln f

)
ξ + h(X, ξ). (3.2)

Equating the tangential component of (3.2), we obtain X ln f = 0, for all X ∈ TM1, that is, f
is constant function onM1. Thus, M is Riemannian product. This proves the theorem.
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Now, the other case of warped productM = M1×fM2 when ξ ∈ TM1, where M1 and
M2 are the Riemannian submanifolds ofM. For any X ∈ TM2, we have

∇Xξ = ∇Xξ + h(X, ξ). (3.3)

By Proposition 2.1, and Lemma 2.2(ii), we obtain

(i)ξ ln f = 0, (ii)h(X, ξ) = 0. (3.4)

Thus, we consider the warped product semi-invariant submanifolds of a nearly cosymplectic
manifold M of the types:

(i) M = M⊥× fMT ,

(ii) M = MT× fM⊥,

where MT and M⊥ are invariant and anti-invariant submanifolds of M, respectively. In the
following theoremwe prove that the warped product semi-invariant submanifold of the type
(i) is CR-product.

Theorem 3.2. The warped product semi-invariant submanifold M = M⊥× fMT of a nearly cosym-
plectic manifold M is a usual Riemannian product of M⊥ and MT , where M⊥ and MT are anti-
invariant and invariant submanifolds ofM, respectively.

Proof. When ξ ∈ TMT , then by Theorem 3.1, M is a Riemannian product. Thus, we consider
ξ ∈ TM⊥. For any X ∈ TMT and Z ∈ TM⊥, we have

g
(
h
(
X, φX

)
, FZ

)
= g

(
h
(
X, φX

)
, φZ

)
= g

(
∇XφX, φZ

)

= g
(
φ∇XX, φZ

)
+ g

((
∇Xφ

)
X, φZ

)
.

(3.5)

From the structure equation of nearly cosymplectic, the second term of right hand side van-
ishes identically. Thus from (2.2), we derive

g
(
h
(
X, φX

)
, FZ

)
= g

(
∇XX,Z

)
− η(Z)g

(
∇XX, ξ

)

= −g
(
X,∇XZ

)
+ η(Z)g

(
X,∇Xξ

)
.

(3.6)

Then from (2.5), Lemma 2.2(ii), and Proposition 2.1, we obtain

g
(
h
(
X, φX

)
, FZ

)
= −(Z ln f

)‖X‖2. (3.7)

Interchanging X by φX in (3.7) and using the fact that ξ ∈ TM⊥, we obtain

g
(
h
(
X, φX

)
, FZ

)
=
(
Z ln f

)‖X‖2. (3.8)
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It follows from (3.7) and (3.8) that Z ln f = 0, for all Z ∈ TM⊥. Also, from (3.4) we have
ξ ln f = 0. Thus, the warping function f is constant. This completes the proof of the theorem.

From the above theorem we have seen that the warped product of the type M =
M⊥× fMT is a usual Riemannian product of an anti-invariant submanifold M⊥ and an
invariant submanifold MT of a nearly cosymplectic manifold M. Since both M⊥ and MT

are totally geodesic in M, then M is CR-product. Now, we study the warped product semi-
invariant submanifold M = MT× fM⊥ of a nearly cosymplectic manifold M.

Theorem 3.3. Let M = MT× fM⊥ be a warped product semi-invariant submanifold of a nearly
cosymplectic manifold M. Then the invariant distribution D and the anti-invariant distribution D⊥

are always integrable.

Proof. For any X, Y ∈ D, we have

F[X, Y] = F∇XY − F∇YX. (3.9)

Using (2.11), we obtain

F[X, Y] =
(
∇XF

)
Y −

(
∇YF

)
X. (3.10)

Then by (2.16), we derive

F[X, Y] = QXY − h(X, TY) +Ch(X, Y) − QYX + h(Y, TX) − Ch(X, Y). (3.11)

Thus from (2.17)(ii), we get

F[X, Y] = 2QXY + h(Y, TX) − h(X, TY). (3.12)

Now, for any X, Y ∈ D, we have

h(X, TY) +∇XTY = ∇XTY = ∇XφY. (3.13)

Using the covariant derivative property of ∇φ, we obtain

h(X, TY) +∇XTY =
(
∇Xφ

)
Y + φ∇XY. (3.14)

Then by (2.5) and (2.14), we get

h(X, TY) +∇XTY = PXY +QXY + φ(∇XY + h(X, Y)). (3.15)
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Since MT is totally geodesic in M (see Lemma 2.2(i)), then using (2.8) and (2.9), we obtain

h(X, TY) +∇XTY = PXY +QXY + T∇XY + Bh(X, Y) + Ch(X, Y). (3.16)

Equating the normal components of (3.16), we get

h(X, TY) = QXY +Ch(X, Y). (3.17)

Similarly, we obtain

h(Y, TX) = QYX + Ch(X, Y). (3.18)

Then from (3.17) and (3.18), we arrive at

h(Y, TX) − h(X, TY) = QYX − QXY. (3.19)

Hence, using (2.17)(ii), we get

h(Y, TX) − h(X, TY) = −2QXY. (3.20)

Thus, it follows from (3.12) and (3.20) that F[X, Y] = 0, for all X, Y ∈ D. This proves the
integrability of D. Now, for the integrability of D⊥, we consider any X ∈ D and Z,W ∈ D⊥,
and we have

g([Z,W], X) = g
(
∇ZW − ∇WZ,X

)
.

= −g(∇ZX,W) + g(∇WX,Z).
(3.21)

Using Lemma 2.2(ii), we obtain

g([Z,W], X) = −(X ln f
)
g(Z,W) +

(
X ln f

)
g(Z,W) = 0. (3.22)

Thus from (3.22), we conclude that [Z,W] ∈ D⊥, for each Z,W ∈ D⊥. Hence, the theorem is
proved completely.

Lemma 3.4. LetM = MT× fM⊥ be a warped product submanifold of a nearly cosymplectic manifold
M. If X, Y ∈ TMT and Z,W ∈ TM⊥, then

(i) g(PXY, Z) = g(h(X, Y), FZ) = 0,

(ii) g(PXZ,W) = g(h(X,Z), FW) − g(h(X,W), FZ) = −(φX ln f)g(Z,W) − g(h(X,Z),
FW),

(iii) g(h(φX,Z), FZ) = (X ln f)‖Z‖2.
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Proof. For a warped product manifoldM = MT× fM⊥, we have thatMT is totally geodesic in
M; then by (2.10), (∇XT)Y ∈ TMT , for any X, Y ∈ TMT , and therefore from (2.15), we get

g(PXY, Z) = −g(Bh(X, Y), Z) = g(h(X, Y), FZ). (3.23)

The left-hand side of (3.23) is skew symmetric in X and Y whereas the right hand side is
symmetric in X and Y , which proves (i). Now, from (2.10) and (2.15), we have

PXZ = −T∇XZ −AFZX − Bh(X,Z) (3.24)

for any X ∈ TMT and Z ∈ TM⊥. Using Lemma 2.2 (ii), the first term of right-hand side is
zero. Thus, taking the product withW ∈ TM⊥, we obtain

g(PXZ,W) = −g(AFZX,W) − g(Bh(X,Z),W), (3.25)

Then by (2.2) and (2.7), we get

g(PXZ,W) = −g(h(X,W), FZ) + g(h(X,Z), FW). (3.26)

which proves the first equality of (ii). Again, from (2.10) and (2.15), we have

PZX = ∇ZTX − T∇ZX − Bh(X,Z). (3.27)

Thus using Lemma 2.2(ii), we derive

PZX =
(
TX ln f

)
Z − Bh(X,Z). (3.28)

Taking inner product withW ∈ TM⊥ and using (2.2), we obtain

g(PZX,W) =
(
φX ln f

)
g(Z,W) + g(h(X,Z), FW). (3.29)

Then from (2.17)(i), we get

g(PXZ,W) = −(φX ln f
)
g(Z,W) − g(h(X,Z), FW). (3.30)

This is the second equality of (ii). Now, from (3.24) and (3.28), we have

PXZ + PZX = −T∇XZ −AFZX +
(
TX ln f

)
Z − 2Bh(X,Z). (3.31)

Left-hand side and the first term of right-hand side are zero on using (2.17)(i) and
Lemma 2.2(i), respectively. Thus the above equation takes the form

(
TX ln f

)
Z = AFZX + 2Bh(X,Z). (3.32)
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Taking the product with Z and on using (2.2) and (2.7), we get

(
φX ln f

)‖Z‖2 = g(h(X,Z), FZ) − 2g(h(X,Z), FZ) = −g(h(X,Z), FZ). (3.33)

Interchanging X by φX and using (2.1), we obtain

{−X + η(X)ξ
}
ln f‖Z‖2 = −g(h(φX,Z

)
, FZ

)
. (3.34)

Thus by (3.4)(i), the above equation reduces to

(
X ln f

)‖Z‖2 = g
(
h
(
φX,Z

)
, FZ

)
. (3.35)

This proves the lemma completely.

Theorem 3.5. A proper semi-invariant submanifoldM of a nearly cosymplectic manifoldM is locally
a semi-invariant warped product if and only if the shape operator of M satisfies

AφZX = −(φXμ
)
Z, X ∈ D ⊕ 〈ξ〉, Z ∈ D⊥ (3.36)

for some function μ on M satisfying V (μ) = 0 for each V ∈ D⊥.

Proof. IfM = MT× fM⊥ is a warped product semi-invariant submanifold, then by Lemma 3.4
(iii), we obtain (3.36). In this case μ = ln f .

Conversely, suppose M is a semi-invariant submanifold of a nearly cosymplectic
manifold M satisfying (3.36). Then

g
(
h(X, Y), φZ

)
= g

(
AφZX, Y

)
= −(φXμ

)
g(Y,Z) = 0. (3.37)

Now, from (2.5) and the property of covariant derivative of ∇, we have

g
(
h(X, Y), φZ

)
= g

(
∇XY, φZ

)
= −g

(
φ∇XY, Z

)

= −g
(
∇XφY,Z

)
+ g

((
∇Xφ

)
Y,Z

)
.

(3.38)

Then from (2.5), (2.14), and (3.37), the above equation takes the form

g(∇XTY,Z) = g(PXY,Z). (3.39)

Using (2.10) and (2.15), we obtain

g(∇XTY,Z) = g(∇XTY,Z) − g(T∇XY, Z) − g(Bh(X, Y), Z). (3.40)
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Thus by (2.2), the above equation reduces to

g(T∇XY, Z) = g
(
h(X, Y), φZ

)
. (3.41)

Hence using (2.7) and (3.36), we get

g(T∇XY, Z) = g
(
AφZX, Y

)
= 0, (3.42)

which implies ∇XY ∈ D ⊕ 〈ξ〉, that is, D ⊕ 〈ξ〉 is integrable and its leaves are totally geodesic
in M. Now, for any Z,W ∈ D⊥ and X ∈ D ⊕ 〈ξ〉, we have

g
(∇ZW, φX

)
= g

(
∇ZW, φX

)
= −g

(
φ∇ZW,X

)

= g
((

∇Zφ
)
W,X

)
− g

(
∇ZφW,X

)
.

(3.43)

Then, using (2.6) and (2.14), we obtain

g
(∇ZW, φX

)
= g(PZW,X) + g

(
AφWZ,X

)
. (3.44)

Thus from (2.7) and the property (p3), we arrive at

g
(∇ZW, φX

)
= −g(W,PZX) + g

(
h(Z,X), φW

)
. (3.45)

Again using (2.7) and (2.17)(i), we get

g
(∇ZW, φX

)
= g(PXZ,W) + g

(
AφWX,Z

)
. (3.46)

On the other hand, from (2.10) and (2.15), we have

PXZ = −T∇XZ −AFZX − Bh(X,Z). (3.47)

Taking the product with W ∈ D⊥ and using (3.36), we obtain

g(PXZ,W) = −g(T∇XZ,W) +
(
φXμ

)
g(Z,W) + g(h(X,Z), FW). (3.48)

The first term of right-hand side of above equation is zero using the fact that TW = 0, for any
W ∈ D⊥. Again using (2.7), we get

g(PXZ,W) =
(
φXμ

)
g(Z,W) + g

(
AφWX,Z

)
. (3.49)

Thus from (3.36), we derive

g(PXZ,W) =
(
φXμ

)
g(Z,W) − (

φXμ
)
g(Z,W) = 0. (3.50)
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Then from (3.36), (3.46), and (3.50), we obtain

g
(∇ZW, φX

)
= −(φXμ

)
g(Z,W). (3.51)

Let M⊥ be a leaf of D⊥, and let h⊥ be the second fundamental form of the immersion of M⊥
into M. Then for any Z,W ∈ D⊥, we have

g
(
h⊥(Z,W), φX

)
= g

(∇ZW, φX
)
. (3.52)

Hence, from (3.51) and (3.52), we conclude that

g
(
h⊥(Z,W), φX

)
= −(φXμ

)
g(Z,W). (3.53)

This means that integral manifoldM⊥ of D⊥ is totally umbilical inM. Since the anti-invariant
distribution D⊥ of a semi-invariant submanifold M is always integrable (Theorem 3.3) and
V (μ) = 0 for each V ∈ D⊥, which implies that the integral manifold of D⊥ is an extrinsic
sphere in M; that is, it is totally umbilical and its mean curvature vector field is nonzero and
parallel alongM⊥. Hence by virtue of results obtained in [11],M is locally a warped product
MT× fM⊥, whereMT and M⊥ denote the integral manifolds of the distributions D ⊕ 〈ξ〉 and
D⊥, respectively and f is the warping function. Thus the theorem is proved.
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[5] M. Atçeken, “Warped product semi-invariant submanifolds in almost paracontact Riemannian
manifolds,” Mathematical Problems in Engineering, vol. 2009, Article ID 621625, 16 pages, 2009.

[6] V. Bonanzinga and K. Matsumoto, “Warped product CR-submanifolds in locally conformal Kaehler
manifolds,” Periodica Mathematica Hungarica, vol. 48, no. 1-2, pp. 207–221, 2004.

[7] D. E. Blair, “Almost contact manifolds with Killing structure tensors,” Pacific Journal of Mathematics,
vol. 39, pp. 285–292, 1971.

[8] D. E. Blair and K. Yano, “Affine almost contact manifolds and f -manifolds with affine Killing structure
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