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Hydromagnetic flow between two horizontal plates in a rotating system, where the lower plate is
a stretching sheet and the upper is a porous solid plate, is analyzed. Heat transfer in an electrically
conducting fluid bonded by two parallel plates is studied in the presence of viscous dissipation.
The equations of conservation of mass and momentum and energy are reduced to a nonlinear
ordinary differential equations system. Homotopy perturbation method is used to get complete
analytic solution for velocity and temperature profiles. Results show an acceptable agreement
between this method results and numerical solution. Also the effects of different parameters are
discussed through graphs.

1. Introduction

Flow of a viscose fluid over a stretching surface has important applications in polymer
industries. For instance, a number of technical processes concerning polymers involve the
cooling of continuous strips extruded from a die by drawing them through a quiescent fluid
with controlled cooling system, and in the process of drawing, these strips are sometimes
stretched.

Glass blowing, continuous casting of metals, and spinning of fibers also involve the
flow over a stretching surface. In all these cases, the quality of the final product depends on
the rate of heat transfer on the stretching surface.

Dutta et al. [1] studied the temperature field in the flow over a stretching
surface subjected to uniform heat flux. Andersson et al. [2] investigated the unsteady
two-dimensional non-Newtonian flow of a power-law fluid past a stretching surface.
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Bujurke et al. [3] and Dandapat and Gupta [4] examined the temperature distribution in
the steady boundary layers of a second-grade fluid near a stretching surface. P. S. Gupta and
A. S. Gupta [5] investigated the heat and mass transfer on a stretching sheet with suction or
blowing. Sakiadis [6] firstly studied the boundary layer flow over a stretched surface moving
with constant velocity. Erickson et al. [7] extended the work of Sakiadis to include blowing
or suction at the stretched sheet surface on a continuous moving surface with constant speed
and investigated its effects on the heat and mass transfer in the boundary layer.

In recent years, the effect of magnetic field in different engineering applications such
as the cooling of reactors and many metallurgical processes involve the cooling of continuous
tiles has been under more considerable attention. Several engineering processes, such as
materials manufactured by extrusion processes and heat-treated materials traveling between
a feed roll and a wind-up roll on convey belts possess the characteristics of a moving
continuous surface, are just some examples of applications which involve the problem
discussed above.

Chakrabarti and Gupta [8] studied the MHD flow of Newtonian fluids initially at rest,
over a stretching sheet at a different uniform temperature. Vajravelu and Hadjinicolaou [9]
made analysis to flows and heat transfer characteristics in an electrically conducting fluid
near an isothermal sheet. Heat transfer analysis of MHD fluid over a uniformly stretching
sheet was investigated by Chakrabarti and Gupta [10]; In 1983, Borkakoti and Bharali [11]
studied the two-dimensional channel flow with heat transfer analysis of a hydromagnetic
fluid where the lower plate was a stretching sheet. The flow between two rotating disks has
important technical applications such as lubrication. Keeping this fact in mind, Vajravelu
and Kumar [12] studied the effect of rotation on the two-dimensional channel flow. They
solved the governing equations analytically and numerically. Most of engineering problems,
especially some of heat transfer equations, are nonlinear; therefore, some of them are solved
using numerical solution, and some are solved using the different analytic method, such
as perturbation method, homotopy perturbation method, and variational iteration method
introduced by He [13, 14].

Perturbation techniques are based on the existence of small or large parameters, the
so-called perturbation quantity. Unfortunately, many nonlinear problems in science and
engineering do not contain those kinds of perturbation quantities. Therefore, many different
methods have recently introduced some ways to eliminate the small parameter. One of the
semiexact methods which does not need small parameters is the homotopy perturbation
method.

The homotopy perturbation method was proposed first by He in 1998 and was further
developed and improved by He [15]. The method yields a very rapid convergence of the
solution series in the most of cases. The HPM proved its capability to solve a large class
of nonlinear problems efficiently, accurately, and easily with approximations convergency
very rapidly to solution. Usually, few iterations lead to high-accuracy solution. Recently,
this method is employed for many researches in engineering sciences. He’s homotopy
perturbation method is applied to obtain approximate analytical solutions for the motion of
a spherical particle in a plane couette flow Jalaal et al. [16]. Then Jalaal et al. [17] showed the
effectiveness of HPM for unsteady motion of a spherical particle falling in a Newtonian fluid.
Ghotbi et al. [18] used HPM to approximate the solution of the ratio-dependent predator-
prey system with constant effort prey harvesting. Also homotopy perturbation method was
used for solving nonlinear MHD Jeffery Hamel problem by Moghimi et al. [19]. Recently,
Ganji et al. studied the steady-state flow of a Hagen-Poiseuille model in a circular pipe and
entropy generation due to fluid friction and heat transfer using HPM [20].
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Figure 1: Geometry of the problem.

In this study, the purpose is to solve nonlinear equations through the HPM. It can be
seen that this method is strongly capable of solving a large class of coupled and nonlinear
differential equations without tangible restriction of sensitivity to the degree of the nonlinear
term.

2. Flow Analysis

2.1. Governing Equations

Consider the steady flow of an electrically conducting fluid between two horizontal parallel
plates when the fluid and the plates rotate together around the y-axis which is normal to the
plates with an angular velocity.

A Cartesian coordinate system is considered as followes: the x-axis is along the plate,
the y-axis is perpendicular to it, and the z-axis is normal to the xy plane (see Figure 1). The
origin is located on the lower plate, and the plates are located at y = 0 and y = h. The lower
plate is being stretched by two equal and opposite forces, so that the position of the point
(0, 0, 0) remains unchanged. A uniform magnetic flux with density B0 is acting along y-axis
about which the system is rotating. The upper plate is subjected to a constant flow injection
with a velocity v0. The governing equations of motion in a rotating frame of reference are

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.1)

u
∂u

∂x
+ ν

∂u

∂y
+ 2 Ω w = −1

ρ

∂p∗

∂x
+ υ

[
∂2u

∂x2
+
∂2u

∂y2

]
− σB2

0

ρ
u, (2.2)

u
∂v

∂y
= −1

ρ

∂p∗

∂y
+ υ

[
∂2v

∂x2
+
∂2v

∂y2

]
, (2.3)

u
∂w

∂x
+ ν

∂w

∂y
− 2 Ω w = υ

[
∂2w

∂x2
+
∂2w

∂y2

]
− σB2

0

ρ
w, (2.4)

where u, v, and w denote the fluid velocity components along the x,y, and z directions, υ
is the kinematic coefficient of viscosity, ρ is the fluid density, and p∗ is the modified fluid
pressure. The absence of ∂p∗/∂z in (2.4) implies that there is a net cross-flow along the z-axis.
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The boundary conditions are

u = ax, v = 0, w = 0 at y = 0,

u = 0, v = −v0, w = 0 at y = +h.
(2.5)

The following nondimensional variables are introduced:

η =
y

h
, u = axf ′(η), ν = −ahf(η), w = axg

(
η
)
, (2.6)

where a prime denotes differentiation with respect to η.
Substituting (2.6) in (2.1)–(2.4), we have

− 1
ρh

∂p∗

∂η
= a2x

[
f ′ − ff ′′ − f ′′′

R
+
M

R
+
2Kr

R
g

]
, (2.7)

− 1
ρh

∂p∗

∂η
= a2h

[
ff ′ +

1
R
f ′′

]
, (2.8)

g ′′ − R
(
f ′g − fg ′) + 2Krf

′ −Mg = 0, (2.9)

and the nondimensional quantities are defined, in which R is the viscosity parameter, M is
the magnetic parameter, and Kr is the rotation parameter

R =
ah2

υ
, M =

σB2
0h

2

ρυ
, Kr =

Ωh2

υ
. (2.10)

Equation (2.7)with the help of (2.8) can be written as follows:

f ′′′ − R
[
f ′2 − ff ′′

]
− 2K2

r g −M2f ′ = A. (2.11)

Differentiation of (2.11)with respect to η gives

fiv − R
(
f ′f ′′ − ff ′′

)
− 2 Krg

′ −Mf ′′ = 0. (2.12)

Therefore, the governing equations and boundary conditions for this case in
nondimensional form are given by

fiv − R
(
f ′f ′′ − ff ′′

)
− 2 Krg

′ −Mf ′′ = 0,

g ′′ − R
(
f ′g − fg ′) + 2Krf

′ −Mg = 0,
(2.13)
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subject to the following boundary conditions:

f = 0, f ′ = 1, g = 0 at η = 0,

f = λ, f ′ = 0, g = 0 at η = 1,

λ =
v0

ah
.

(2.14)

3. Heat Transfer Analysis

3.1. Energy Equation

The energy equation for the present problem with viscous dissipation in nondimensional
form is given by

u
∂T

∂x
+ v

∂T

∂y
+w

∂T

∂z
=

k

ρ cp

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
+ μϕ,

φ = 2

[(
∂u

∂x

)2

+
(
∂v

∂y

)2

+
(
∂w

∂z

)2
]
+
(
∂v

∂x
+
∂u

∂y

)2

+
(
∂w

∂y
+
∂v

∂z

)2

+
(
∂w

∂x
+
∂u

∂z

)2

− 2
3

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)2

.

(3.1)

With replacing nondimensional variables and using similarity solution method, by
neglecting the last term of viscous dissipation in the energy equation, we have the following
energy equation:

θ′′ + Pr
[
Rfθ′ + Ec

(
4f

′2 + g2
)
+ Ecx

(
f ′′2 + g

′2
)]

= 0, (3.2)

subject to the boundary conditions

θ(0) = 1, θ(1) = 0, (3.3)

where Pr = μCp/k is the Prandtl number, Ec = a2h2/Cp(θ0 − θh) is the Eckert number,
Ecx = a2x2/Cp (θ0 − θh) is the local Eckert number, and the nondimensional temperature is
defined as

θ
(
η
)
=

T − Th
T0 − Th

, (3.4)

where T0 and Th are temperature at the lower and upper plates.
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Figure 2: Velocity components profile (a) f , (b) f ′, and (c) g for variable M at R = 2, Kr = 0.5, Pr = 1,
λ = 0.5, and Ec = Ecx = 0.5.

4. Analysis of the Homotopy Perturbation Method

To illustrate the basic ideas of this method, we consider the following equation:

A(u) − f(r) = 0 r ∈ Ω, (4.1)

with the boundary condition of

B

(
u,

∂u

∂n

)
= 0 r ∈ Γ, (4.2)
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Figure 3: Velocity components profile (a) f , (b) f ′, and (c) g for variable λ at R = 2,Kr = 0.5,M = 1, Pr = 1,
and Ec = Ecx = 0.5.

whereA is a general differential operator, B is a boundary operator, f(r) is a known analytical
function, and Γ is the boundary of the domain Ω.

A can be divided into two parts which are L and N, where L is linear and N is
nonlinear. Equation (4.1) can therefore be rewritten as follows:

L(u) +N(u) − f(r) = 0 r ∈ Ω. (4.3)

Homotopy perturbation structure is shown as follows:

H
(
ν, p

)
=
(
1 − p

)
[L(ν) − L(u0)] + p

[
A(ν) − f(r)

]
= 0, (4.4)

where
ν
(
r, p

)
:Ω × [0, 1] −→ R. (4.5)
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Figure 4:Velocity components profile (g) for variablesKr and R at (a) R = 2,M = 1, λ = 0.5 and (b)Kr = 4,
M = 1, λ = 0.5, and Ec = Ecx = 0.5.

In (2.5), p ∈ [0, 1] is an embedding parameter, and u0 is the first approximation that
satisfies the boundary condition. We can assume that the solution of (4.5) can be written as a
power series in p, as follows:

ν = ν0 + pν1 + p2ν2 + · · ·, (4.6)

and the best approximation for solution is

u = lim
p→ 1

ν = ν0 + ν1 + ν2 + · · · . (4.7)

5. Implementation of the Method

According to the so-called homotopy perturbation method (HPM), we construct a homotopy.
Suppose the solution of (4.1) has the following form:

H
(
f, p

)
=
(
1 − p

)(
fiv − fiv

0

)
+ p

(
fiv − R

(
f ′f ′′ − ff ′′) − 2 Krg

′ −Mf ′′
)
= 0,

H
(
g, p

)
=
(
1 − p

)(
g ′′ − g ′′

0
)
+ p

(
g ′′ − R

(
f ′g − fg ′) + 2Krf

′ −Mg
)
= 0,

H
(
θ, p

)
=

(
1 − p

)(
θ′′ − θ0

′′) + p
(
θ′′ + Pr

[
R f θ′ + Ec

(
4f ′2 + g2

)
+ Ecx

(
f ′′2 + g ′2

)])
= 0.

(5.1)
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Figure 5: Temperature profile (θ) for variables R, Pr and λ at Kr = 0.5, M = 1, and Ec = Ecx = 0.5 and (a)
λ = 0.5 and Pr = 1, (b) R = 2 and λ = 0.5, and (c) R = 2, Pr = 1.

We consider f, g, θ as follows:

f
(
η
)
= f0

(
η
)
+ pf1

(
η
)
+ · · · =

n∑
i=0

pifi
(
η
)
,

g
(
η
)
= g0

(
η
)
+ pg1

(
η
)
+ · · · =

n∑
i=0

pigi
(
η
)
,

θ
(
η
)
= θ0

(
η
)
+ pθ1

(
η
)
+ · · · =

n∑
i=0
piθi

(
η
)
.

(5.2)
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with substituting f, g, θ from (5.2) into (5.1) and some simplification and rearranging based
on powers of p-terms, it can be obtained that

p0:

fiv
0 = 0,

g ′′
0 = 0,

θ′′
0 = 0.

And boundary conditions are

f(0) = 0, f ′(0) = 1, f(1) = λ, f ′(1) = 0,

g(0) = 1, g ′(1) = 0,

θ(0) = 1, θ(1) = 0,

(5.3)

p1:

− g ′
0 − 0.5f ′′

0 + 0.5f0f ′′
0 − 0.5f ′

0f
′′
0 + fiv

1 = 0,

−0.5f ′
0g0 − 0.5g0 + g ′′

1 + 0.5 f0g
′
0 + f ′

0 = 0,

0.25
(
f ′′
0
)2 + 0.25

(
g ′
0
)2 + 0.25

(
g0
)2 + θ′′

1 + 0.25f0θ′
1 +

(
f ′
0
)2 = 0.

And boundary conditions are

f(0) = 0, f ′(0) = 0, f(1) = 0, f ′(1) = 0,

g(0) = 0, g ′(1) = 0,

θ(0) = 0, θ(1) = 0,

(5.4)

p2:

+0.5f0f ′′
1 − g ′

0 + 0.5f1f ′′
0 + 0.5f1

′f ′′
0 − 0.5f ′′

1 + fiv
2 = 0,

0.5 f1g
′
0 + 0.5 f0g

′
1 + f ′

0 − 0.5g1 − 0.5f ′
0g1 + g ′′

2 − 0.5f ′
1g0 = 0,

0.25f0θ′
1 + 0.25f1θ′

0 + 0.25
(
f ′′
0
)2 + θ′′

2 + 2f ′
0f

′
1 + 0.5f ′′

0f
′′
1 + 0.5g0g1 + 0.5g ′

0g
′
1 = 0.

And boundary conditions are

f(0) = 0, f ′(0) = 0, f(1) = 0, f ′(1) = 0,

g(0) = 0, g ′(1) = 0,

θ(0) = 0, θ(1) = 0.

(5.5)
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By solving (5.3)–(5.5) with boundary conditions for R = 0.5, Kr = 0.5, M = 0.5, Pr =
0.5, λ = 0.5, and Ec = Ecx = 0.5, it can be obtained that

f0
(
η
)
= −0.5η2 + η,

g0
(
η
)
= 0,

θ0
(
η
)
= −η + 1,

f1
(
η
)
= −0.0007η6 + 0.0083η5 − 0.0416η4 + 0.0611η3 − 0.0270η2,

g1
(
η
)
= 0.1667η3 − 0.5η2 + 0.3333x,

θ1
(
η
)
= −0.0937η4 + 0.3750η3 − 0.6250η2 + 0.3437η,

f2
(
η
)
= 0.0002η8 + 0.0010η7 − 0.0116η6 − 0.0046η5 + 0.0116η4 − 0.0081η3 + 0.0016η2,

g2
(
η
)
= 0.0041η5 − 0.0222η4 + 0.0368η3 − 0.0188η,

θ2
(
η
)
= −0.0001η8 + 0.0011η7 − 0.0067η6 + 0.0180η5 − 0.0313η4 + 0.0342η3

− 0.0135η2 − 0.0016η.
(5.6)

The solution of this equation, when p → 1, will be as follows:

f
(
η
)
= f0

(
η
)
+ f1

(
η
)
+ · · · + f7

(
η
)
+ f8

(
η
)
,

g
(
η
)
= g0

(
η
)
+ g1

(
η
)
+ · · · + g7

(
η
)
+ g8

(
η
)
,

θ
(
η
)
= θ0

(
η
)
+ θ1

(
η
)
+ · · · + θ7

(
η
)
+ θ8

(
η
)
.

(5.7)

where for R = 0.5, Kr = 0.5, M = 0.5, Pr = 0.5, λ = 0.5, and Ec = Ecx = 0.5, the following
functions are obtained:

f
(
η
)
= −0.0001η8 + 0.0007η7 − 0.0012η6 + 0.0033η5 − 0.0306η4 + 0.0537η3 − 0.5256η2 + η,

g
(
η
)
= −0.0001η8 + 0.0002η7 + 0.0009η6 + 0.0019η5 − 0.0203η4 + 0.2015η3 − 0.5η2 + 0.3158η,

θ
(
η
)
= 0.0001η9 − 0.0005η8 + 0.0015η7 − 0.0093η6 + 0.0293η5 − 0.1481η4 + 0.4322η3

− 0.6506η2 − 0.6546η + 1.
(5.8)

6. Results and Discussion

The objective of the present study was to apply homotopy perturbation method to obtain
an explicit analytic solution of rotating MHD flow and heat transfer of viscous fluid over
stretching and porous surface (Figure 1). As can be seen in Table 1, homotopy perturbation
method is converged in step 8, and error has been minimized. There is an acceptable
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Table 1: θ(η) values in different steps of HPM solution at R = 0.5, Kr = 0.5, M = 0.5, Pr = 0.5, λ = 0.5, and
Ec = Ecx = 0.5.

η NM n = 2 % Error n = 4 % Error n = 6 % Error n = 8 % Error
0 1 1 0 1 0 1 0 1 0
0.1 0.928387 0.928223 0.017678 0.928444 0.006163 0.928449 0.006698635 0.928449 0.00670429
0.2 0.846138 0.84596 0.021041 0.846272 0.01581 0.84628 0.016736093 0.84628 0.016746103
0.3 0.755385 0.755242 0.018984 0.755583 0.026195 0.755592 0.027417617 0.755592 0.027431147
0.4 0.657944 0.657829 0.017493 0.658177 0.035331 0.658186 0.036816201 0.658187 0.036832934
0.5 0.555344 0.555229 0.020556 0.555575 0.041731 0.555585 0.043510198 0.555585 0.043530456
0.6 0.44884 0.448702 0.030858 0.449039 0.044167 0.449048 0.046342095 0.449048 0.046367093
0.7 0.339433 0.339262 0.050375 0.339574 0.041441 0.339583 0.044186822 0.339583 0.044218728
0.8 0.227869 0.227685 0.080907 0.227943 0.03217 0.227951 0.035722981 0.227951 0.035765242
0.9 0.114645 0.114502 0.124586 0.114662 0.014558 0.114667 0.019207699 0.114667 0.019265704
1 0 0 0 0 0 0 0 0 0

Table 2: Comparison between numerical results and HPM solution for f , g, θ at R = 0.5,Kr = 0.5,M = 0.5,
Pr = 0.5, λ = 0.5, and Ec = Ecx = 0.5.

η
f g θ

NM HPM % Error NM HPM % Error NM HPM % Error
0 0 0 0 0 0 0 1 1 0
0.1 0.094742 0.094794 0.054323 0.026758 0.026778 0.073964 0.928387 0.928449 0.006224175
0.2 0.179187 0.179354 0.093254 0.044707 0.044738 0.069201 0.846138 0.84628 0.014169522
0.3 0.253603 0.253898 0.116124 0.054988 0.055018 0.054436 0.755385 0.755592 0.020721081
0.4 0.318182 0.318574 0.123244 0.058698 0.058716 0.030566 0.657944 0.658187 0.024234016
0.5 0.373035 0.373467 0.115934 0.056892 0.056891 0.000929 0.555344 0.555585 0.02417436
0.6 0.418197 0.418601 0.096615 0.050587 0.050568 0.037868 0.44884 0.449048 0.020811422
0.7 0.453627 0.45394 0.068972 0.040777 0.040746 0.077163 0.339433 0.339583 0.015009305
0.8 0.479208 0.479391 0.038258 0.028434 0.028402 0.114496 0.227869 0.227951 0.008149803
0.9 0.494751 0.49481 0.011815 0.014521 0.0145 0.143769 0.114645 0.114667 0.002208717
1 0.5 0.5 0 0 0 0 0 0 0

agreement between the results of numerical solution obtained by four-order Rung-kutte
method and differential transformation method as shown in Tables 2 and 3. In those tables,
error is introduced as follows:

%Error =

∣∣∣∣∣f
(
η
)
NM − f

(
η
)
HPM

f
(
η
)
NM

∣∣∣∣∣ × 100. (6.1)

Figure 2 shows the magnetic field effect on nondimensional velocity component (f ,f ′,
and g). The decrease of f curve is observed by applying higher magnetic field intensity, and
f ′ values increase near stretching sheet and decrease under porous sheet, while at the middle
point, these values are constant.

At lowReynolds numbers, the velocity profile exhibits center line symmetry indicating
a Poiseuille flow for non-Newtonian fluids. At higher Reynolds numbers, the maximum
velocity point is shifted to the streiching wall where shear stress becomes larger as the
Reynolds number grows.
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Table 3: Comparison between numerical results and HPM solution for f , g, θ at R = 0.5, Kr = 0.5, M = 0,
Pr = 0.5, λ = 0.5, and Ec = Ecx = 0.5.

η
f g θ

NM HPM % Error NM HPM % Error NM HPM % Error
0 0 0 0 0 0 0 1 1 0
0.1 0.094908 0.094961 0.055277 0.027788 0.02781 0.076047 0.9286 0.928667 0.007196834
0.2 0.179709 0.179881 0.095531 0.046609 0.046643 0.071459 0.846601 0.846752 0.017836439
0.3 0.254498 0.254803 0.119875 0.057507 0.057539 0.056888 0.75604 0.756261 0.029298263
0.4 0.319345 0.319755 0.128301 0.061531 0.061552 0.033084 0.658692 0.658953 0.039612508
0.5 0.374292 0.374748 0.121774 0.059736 0.059736 0.001376 0.556078 0.556341 0.047236899
0.6 0.419351 0.419781 0.102421 0.05317 0.053151 0.036168 0.449468 0.449697 0.050848494
0.7 0.454508 0.454843 0.073797 0.04288 0.042847 0.076493 0.339887 0.340054 0.049140518
0.8 0.479718 0.479916 0.041304 0.029902 0.029868 0.11517 0.228122 0.228215 0.040617504
0.9 0.494912 0.494976 0.012863 0.015268 0.015246 0.14576 0.114722 0.114749 0.023395295
1 0.5 0.5 0 0 0 0 0 0 0
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Figure 6: Temperature profile for variables Ec and Ecx at R = 2, Kr = 0.5, M = 1, Pr = 1, and λ = 0.5 and
(a) Ecx = 0.5, (b) Ec = 0.5.

Blowing velocity parameter (λ) has a noticable effect of nondimensional velocity
component as shown in Figure 3, which by increasing λ profile of f and f ′ becomes nonlinear,
and the maximum amount of f and f ′ increases, and velocity component in x direction
increases severely.

Also it shows that increasing the blowing velocity parameter leads to g increase, which
shows that blowing velocity parameter and magnetic field effects on g are in opposite.

Figure 4 shows that by increasing rotating parameter (Kr), values of transverse
velocity component (g) between two sheets increase, and the location of maximum amount
of g approaches stretching sheet. Coriolis force has inverse effect on g in comparison with
Lorenz force which means that with increasing the rotating parameter transverse (Kr),
velocity component between two plates increases as shown in Figure 4. And it shows that
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Figure 7: The effect of active parameters on skin friction at Ec = Ecx = 0.5 and (a) R = 0.5, M = 0.5, and
λ = 1, (b) R = 0.5, Kr = 0.5, and M = 0.5, (c) Kr = 0.5, M = 0.5, and λ = 1, (d) R = 0.5, Kr = 0.5, and λ = 1.

the viscosity parameter (R) affects g profile similarly to magnetic field; however, with
less changes in intensity, also with increasing R, the location of maximum amount of g
approaching stretching sheet, hat indicates decreasing of boundary layer thickness near
stretching plate.

As can be seen in Figure 5, increasing viscosity parameter leads to increasing the curve
of temperature profile (θ) and the decreasing of θ values, and it can be shown that increasing
Pr in presence of viscous dissipation leads to increasing temperature between two plates.
Also increasing temperature between two plates observed, which is caused by increasing this
effect, is more sensible near the stretching plate.

The effects of viscous dissipation for which the Eckert number (Ec) and the local Eckert
number (Ecx) are responsible are shown in Figure 6. It is obvious from the graphs that by
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Figure 8: The effect of active parameters on Nusselt number (Nu = θ′(0)). (a) Kr = 0.5, Pr = 0.5, λ = 1.5
(b) R = 0.5, Pr = 0.5, λ = 1.5 (c) R = 0.5, Kr = 0.5, λ = 1.5 (d) R = 0.5, Kr = 0.5, Pr = 0.5 and M = 0.5,
Ec = Ecx = 0.5.

increasing Ec and Ecx, the temperature near the stretching wall increases. This is due to the
fact that heat energy is stored in the fluid due to the frictional heating.

In Figure 7, a coefficient of skin friction in stretching plate (f ′′(0)) and porous plate
(f ′′(1)) is discussed with hanging effective parameters. In stretching plate, with the increase
of viscosity parameter, skin friction increases, and increasing rotating parameter leads to a
similar effect on skin friction. Applying higher magnetic field intensity leads to skin friction
reduction. Increasing blowing velocity parameter leads to skin friction increasing. For porous
plate, with the increase of R, skin friction decreases, while with M and Kr increase, the
reduction in skin friction observed; is also with λ reduction, skin friction increases.

A coefficient of Nusselt number (θ′(0)) consulted changes of effective parameters.
Increasing the M or R leads to Nu decreasing, while by increasing Kr , Pr, and λ, the Nusselt
number increases, as shown in Figure 8.
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7. Conclusion

In this paper, hydromagnetic flow problem between two horizontal plates in a rotating
system, where the lower plat is a stretching sheet and the upper is a porous solid plate,
has been solved via a sort of analytical method, homotopy perturbation method. Also this
problem is solved by a numerical method (the Runge-Kutta method of order 4), and some of
the conclusions were summarized as follows:

(a) homotopy perturbation method is a powerful approach for solving nonlinear
differential equation such as the discussed problem, and it can be observed that
there is a good agreement between the present and numerical results;

(b) presence of magnetic field leads to creating a Lorentz force which causes transverse
velocity component reduction between two plates although this force does not have
a noticeable effect on temperature profile;

(c) increasing Pr in presence of viscous dissipation leads to temperature increasing
between two plates, while in absence of viscous dissipation, the changes are inverse;

(d) increasing temperature between two plates is due to increasing viscosity parameter
or increasing viscous dissipation, whose effect is more sensible near stretching
plate;

(e) increasingmagnetic parameter or viscosity parameter leads to decreasingNu, while
with increasing the rotation parameter, blowing velocity parameter, and Pr, the
Nusselt number increases.

Nomenclature

B0: Magnetic field (wb·m−2)
M: Magnetic parameter
Ci: Constant function
R: Viscosity parameter
Kr : Rotation parameter
p∗: Modified fluid (pressure)
Pr: Prandtl number
Ec: Eckert number
v0: Injection velocity
Umax: Maximum value of velocity
u,v,w: Velocity components along x, y, and z axes, respectively.

Greek Symbols

υ: Kinematic viscosity
α: Angle of the channel
θ: Any angle
η: Dimensionless angle
ρ: Fluid density.
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