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The inverse fundamental operator marching method (IFOMM) is suggested to solve Cauchy
problems associated with the Helmholtz equation in stratified waveguides. It is observed that
the method for large-scale Cauchy problems is computationally efficient, highly accurate, and
stable with respect to the noise in the data for the propagating part of a starting field. In further,
the application scope of the IFOMM is discussed through providing an error estimation for the
method. The estimation indicates that the IFOMM particularly suits to compute wave propagation
in long-range and slowly varying stratified waveguides.

1. Introduction

In many engineering applications, efficient mathematical methods are often required for
the computing of propagation phenomena and transitions in complex systems. Recently,
many interesting works on this issue are proposed to improve efficiencies in many different
scientific areas, for example, the wavelet-related method for the integrodifferential and
integral equations [1, 2], the exact solution of impulse response to a class of fractional
oscillators [3], the representation of a stochastic bound in stochastic modeling [4], the
mathematical transform of traveling-wave equations [5] and the dynamics generated by
coherent functions [6], the numerical transform for the Helmholtz equation [7]. As one of
propagation phenomena and transitions, wave propagation problems associated with the
Helmholtz equation are very common and important in many areas, for example, ocean
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acoustics, wave propagation and scattering, and electromagnetic field. Many works have
been done to improve the computing efficiency in this area.

Some mathematical problems with their boundary conditions not completely known
due to some technical difficulties often happen in many scientific and engineering areas
described by the Helmholtz equation, such as ocean acoustics, wave propagation and
scattering, and electromagnetic field. With the assistance of additionally supplied data, to
determine the boundary conditions on the inaccessible part of the boundary or the source
condition constitutes the inverse boundary value problem or the Cauchy problem, which is
ill posed in the sense that small perturbations in the data may result in an enormous deviation
in the solution. Here, the purpose of this study is to improve the efficiency for the computing
of the Cauchy problems.

Some numerical methods for medium-scale problems have been proposed for the
Cauchy problem [7–22]. However they are not practical for large-scale wave propagation
problems, for example, wave propagation in optics and ocean acoustics [23]. Large-scale
wave propagation problems in acoustics, electromagnetism, seismic migration, and other
applications often require solving the Helmholtz equation in a very large-scale domain with
curved interfaces or boundaries. For example, waves are allowed to travel large distances
in the horizontal direction in ocean acoustics. For large-scale wave propagation problems,
indirect methods, for example, parabolic equation (PE) method [24–26], are widely used,
since direct methods like finite element method (FEM) result in very large indefinite linear
systems which are hard to be solved. The PE method gives useful approximations to the
outgoing component of the wave-field in the case of weak range dependence. However,
its accuracy in weakly range-dependent waveguides over large range distances has not
been rigorously established [27]. Then, the exact one-way reformulation method [28, 29]
which reformulates the Helmholtz equation in terms of the DtN (Dirichlet-to-Neumann)
map Q and the fundamental solution operator Y is proposed to solve the wave propagation
problem exactly. When the range length scale is much larger than the transverse length
scale of the waveguide, such exact reformulation is useful, and numerical methods based
on this reformulation feature range-independent memory requirements and linear scaling of
computing time.

Based on the exact one-way reformulation, the “inverse fundamental operator
marching method” (IFOMM) [23] is developed to reconstruct the propagating parts of
incident waves exactly from the received waves in one-layered medium waveguides with
curved bottom. While, in many practical applications, the computed waveguides are often
multilayered and composed by different mediums with varied densities, and, thus, this study
tries to solve the Cauchy problems associated with the Helmholtz equation in multilayered
waveguides. Firstly, whether the IFOMM is applicable in multilayered waveguides is
the primary question need to be answered. As numerical examples demonstrate, the
illnesses caused by the discontinuities between different layers, such as the density and
the wavenumber, can also be remedied by the IFOMM successfully and the linear systems
arising in the marching process can be treated by the truncated singular value decomposition.
Secondly, an error estimation for the numerical marching scheme is provided to discuss the
proper scope of the IFOMM’s application. The IFOMM is important for inverse problems
in many applications in stratified waveguides, for example, source localization and remote
sensing in ocean acoustics [30]. For instance, the location of a point source can be determined
from the reconstructed propagating part of the incident field.

This paper is arranged as follows. The basic mathematical formulations are described
in Section 2. In Section 3, we reorganize the inverse operator marching scheme firstly,
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then give the error estimation for the IFOMM and discuss its application scope; interface
conditions and matrix approximation are briefly introduced in the end of this section.
Section 4 presents some numerical results obtained by IFOMM. We conclude our work with
some discussions in Section 5.

2. Mathematical Formulation

Consider the two-dimensional Helmholtz equation in a typical ocean and seabed environ-
ment with two curved interfaces

uxx + uzz + κ2(x, z)u = 0 −∞ < x < +∞, 0 < z < D1, (2.1)

where the first layer with density ρ1 is located in 0 < z < h1(x), the second layer with density
ρ2 is located in h1(x) < z < h2(x), the third layer with density ρ3 is located in h2(x) < z < D1;
the interfaces are two curves z = h1(x) and z = h2(x), with D1 > 1, L � D1 � 1/k,
u represents the Fourier transform of acoustic pressure, and κ is called wavenumber. We
also assume that the problem is range independent (i.e., wavenumber and interfaces are
independent of x) for x � 0 and x � L, that is,

h1(x) =

⎧
⎨

⎩

h1,0, x � 0,

h1,∞, x � L,

h2(x) =

⎧
⎨

⎩

h2,0, x � 0,

h2,∞, x � L,

κ(x, z) =

⎧
⎨

⎩

κ0(z), x � 0,

κ∞(z), x � L.

(2.2)

The boundary conditions on the top and the bottom are supposed as u|z=0 = 0 and u|z=D1 = 0.
The interface conditions mean that

lim
z→h1(x)−

u(x, z) = lim
z→h1(x)+

u(x, z),

1
ρ1

lim
z→h1(x)−

∂u(x, z)
∂n

=
1
ρ2

lim
z→h1(x)+

∂u(x, z)
∂n

,

lim
z→h2(x)−

u(x, z) = lim
z→h2(x)+

u(x, z),

1
ρ2

lim
z→h2(x)−

∂u(x, z)
∂n

=
1
ρ3

lim
z→h2(x)+

∂u(x, z)
∂n

,

(2.3)

where n is a normal vector of the interface z = h1(x) or z = h2(x) (Figure 1). If there is
no wave coming from +∞, the exact boundary condition (radiation condition) at x = L is

ux = i
√

∂2z + κ2∞(z)u, where i =
√−1 and the square root operator is defined in [28].
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Figure 1: Sketch map of a waveguide in ocean acoustics.

We will concentrate on solving the equation for 0 � x � L since the Helmholtz
equation can be easily solved by separable variable method for x � 0 or x � L. If there
are no waves coming from +∞, the exact boundary condition (radiation condition) at x = L

is ux = i
√

∂2z + κ2∞(z)u, where i =
√−1 and the square root operator is defined in [28].

The simplest boundary condition at x = 0 is u = u0(z) for a given function u0(z). Here,
the dividable assumption is also imposed although it is not necessary [7], there exists one
horizontal straight line z = D0 between the interfaces h1(x) and h2(x). We suppose that there
is an unique solution for (2.1)with the boundary conditions and interface conditions.

The forward problem of (2.1) is to find received wave at x = L from the incident wave
at x = 0. Whereas, in the inverse boundary value problem or the Cauchy problem presented,
the incident wave at x = 0 needs to be computed from the received wave at x = L. Here,
except the radiation condition

∂u

∂x
|x=L = i

√

∂2z + κ2∞(z)u, (2.4)

dirichlet type boundary condition

u = uL(z) (2.5)

is imposed. Together with the top, bottom, and interfaces conditions, we seek the solution
u(0, z) at x = 0 from the imposed boundary conditions at x = L.

Since the Helmholtz equation under consideration is in a range-dependent stratified
waveguide with some curved interfaces, to flatten the curved interfaces of the dependent
waveguide, we perform an analytic local orthogonal transform [31–35] in this study, and the
numerical transform [7] is another possible option.
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By flattening the stratified waveguide with two curved interfaces through coordinate
transformation, (2.6) is expected to be transformed as

Vx̂x̂ + α(x̂, ẑ)Vẑẑ + β(x̂, ẑ)Vẑ + γ(x̂, ẑ)V = 0, (2.6)

and details can be referred in [34].

3. Numerical Algorithm

This section reorganizes the operator form of the IFOMM for inverse boundary value
problems in multilayered waveguide firstly. An error estimation for the IFOMM is then
provided to discuss its properties. In the end, the forward fundamental operator marching
method [28, 29, 31–33] (FFOMM) for forward problems is also briefly reviewed for the sake
of the comparison with IFOMM.

Let {sj} be a partition of the interval [0, L], that is, 0 = s0 < s1 < s2 < · · · < sp = L,
where the solutions are required. Consider also the refined partition x̂ : 0 = x̂0 < x̂1 < x̂2 <
· · · x̂s−1 < x̂s < x̂s+1 < · · · < x̂m = L, with {sj} � {x̂s}, p � m, j = 0, 1, 2, . . . , p, s = 0, 1, 2, . . . , m.
Let Qs and Ys be the approximations of Q and Y at x̂s, respectively, denote range step size
τ = x̂s+1 − x̂s. The forward problem computes the solutions required in {sj} from the incident
wave at x̂ = 0 to x̂ = L. On the contrary, the Cauchy problem computes the solutions at
required places from received wave at x̂ = L to the incident wave at x̂ = 0.

3.1. IFOMM

The DtN operator Q and the fundamental operator Y are defined by

Vx̂ = Q(x̂)V, (3.1)

V (L, ·) = Y (x̂;L)V (x̂, ·). (3.2)

By substituting (3.1) into (2.6) and differentiating (3.2)with respect to x̂, the equations for Q
and Y are obtained as

dQ

dx̂
= −Q2 −

(
α∂2ẑ + β∂ẑ + γ

)
, (3.3)

dY

dx̂
= −YQ(x̂). (3.4)

The DtN operator Q in range-independent region, that is, x � L, satisfies the analytic
“initial” conditions

Q(L) = i
√

α(L, ẑ)∂2
ẑ
+ γ(L, ẑ) (3.5)

if there are no waves coming from +∞, and Y satisfies Y (L, L) = I.
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Equation (2.6) on the interval (x̂s−1, x̂s) is approximated by their midpoint values at
x̂s−1/2 = (x̂s−1 + x̂s)/2. We have the following operator marching scheme in [sj−1, sj](sj−1 <
x̂s � sj)

B =
√

α(x̂, ẑ)∂2z + β(x̂, ẑ)∂z + γ(x̂, ẑ)|x̂=x̂s−1/2 ,

P = (Q + iB)−1(−Q + iB),

R = eiτBPeiτB,

Qs−1 = iB(I − R)(I + R)−1,

Ys−1 = Ys(I + P)eiτB(I + R)−1.

(3.6)

For derivation details, we refer to [29, 31]. For simplicity, the shorthand notation

OperatorMarching (Qs, Ys;Qs−1, Ys−1) (3.7)

is used to represent the operator marching process (3.6).
The inverse fundamental operator marching method can be described as follows.

Algorithm 1 (IFOMM).

Step 1. OperatorMarching (Qs+1, Ys+1;Qs, Ys), where s = m,m − 1, . . . , 0.

Step 2. If x̂s = si(i = p, . . . , 1, 2), solve YsVs = V (L, ·) by TSVD, i = i − 1.

Step 3. Let u(x̂s, ·) = W(x̂s, ·)Vs.

Step 4. If [x̂s+1, x̂s]=[x̂1, x̂0], end the program, else let s = s − 1 and repeat Step 1.

Generally, the L-curve method [36] is used to determine the regularization parameter
with which the TSVD can work smoothly. In fact, the L-curve criterion is not really used
in the marching computing since only propagating modes can determine the waves after
a long-range propagating, which gives rise to choose the number of propagating modes
as the regularization parameter for the TSVD. And it has been verified that the parameter
determined by the L-curvemethod is just the number of propagatingmodes in thewaveguide
[23].

3.2. Error Estimation

The error estimation for the IFOMM is provided firstly. Based on the estimation, the
utilization scope of the method in stratified waveguides is analyzed.

From the operator marching process (3.6), we have

‖Ys−1‖ � ‖Ys‖ · ‖(I + Ps)‖ ·
∥
∥
∥eiτBs

∥
∥
∥ ·

∥
∥
∥(I + Rs)−1

∥
∥
∥, (3.8)
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where Ps, Rs, Bs, and so forth represent the corresponding operators in interval [x̂s−1, x̂s],
‖ · ‖ = ‖ · ‖2.

Then, recurse the formula (3.8) and notice that Ym = I, ‖I‖2 = 1

‖Ys−1‖ �
m∏

j=s

‖(I + Pj

)‖‖(I + Rj

)−1‖ ·
m∏

j=s

‖eiτBj‖. (3.9)

In the same way, there is also

‖Y−1
s−1‖ �

m∏

j=s

‖(I + Pj

)−1‖‖(I + Rj

)‖ ·
m∏

j=s

‖e−iτBj‖. (3.10)

According to (3.2), there are

Ys−1 · Vs−1 = Vm, (3.11)

Vs−1 = Y−1
s−1 · Vm. (3.12)

By taking norm to (3.12) and utilizing(3.10)

‖Vs−1‖ � ‖Y−1
s−1‖ · ‖Vm‖ =

m∏

j=s

‖(I + Pj

)−1‖‖(I + Rs)‖ ·
m∏

j=s

‖e−iτBj‖ · ‖Vm‖. (3.13)

Suppose that Ṽm be polluted and Ṽs−1 be obtained by (3.12), we have

Vs−1 − Ṽs−1 = Y−1
s−1 ·

(
Vm − Ṽm

)
(3.14)

from (3.12) and

‖Vs−1 − Ṽs−1‖ �
m∏

j=s

‖(I + Pj

)−1‖‖(I + Rj

)‖ ·
m∏

j=s

‖e−iτBj‖ · ‖Vm − Ṽm‖ (3.15)

according to (3.10). If es−1 = Vs−1 − Ṽs−1, em = Vm − Ṽm, we have the following theorem.

Theorem 3.1. Let em = Vm − Ṽm be the initial measurement error, then, the resulting errors of the
IFOMM solution Vs−1 at x̂ = sj−1, es−1 = Vs−1 − Ṽs−1 will satisfy

‖es−1‖ �
m∏

j=s

‖(I + Pj

)−1‖‖(I + Rj

)‖ ·
m∏

j=s

‖e−iτBj‖ · ‖εm‖. (3.16)

Corollary 3.2. For weakly range-dependent stratified waveguides, if there exist a constant C, subject
to

∏m
j=s‖(I + Pj)

−1‖‖(I + Rj)‖ � C, with s = 1, 2, . . . , m, the IFOMM is stable.
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Proof. In weakly range-dependent waveguides, the reflection waves are very weak which
leads to ‖Ps‖ ≈ 0 and ‖Rs‖ ≈ 0. For a grid which approximates the computed
domain and the PDE model enough accurately, there exists a positive constant C =
maxs=1,2,...,m

∏m
j=s‖(I + Pj)

−1‖‖(I + Rj)‖ satisfies that
∏m

j=s‖(I + Pj)
−1‖‖(I + Rj)‖ � C, with

s = 1, 2, . . . , m. For an m + 1 points discretization along range direction, we have

‖es−1‖ � C
m∏

j=s

‖e−iτBj‖ · ‖em‖ (3.17)

from (3.16).
The operators Bj(j = m,m − 1, . . . , 1) are truncated by the number of propagating

modes, the eigenvalues left for the truncated system are positive real which gives rise to
‖e−iτBj‖2 = 1. Thus,

‖es−1‖ � C‖em‖. (3.18)

When the reflections for every mode are weak in the waveguide, the constant C will be small
for a enough slim grid. Thus, the IFOMM is stable.

A more slim grid may approximate the original problem certainly, while in the
same time, it may also amplify the initial errors if the number of discrete points in range
direction tend to the infinite. Since large-range stepmethod is used to discretize the computed
domain for slowly varied waveguides and overdense grid is of no need for obtaining
required accuracy, the IFOMM is stable in weakly range-dependent waveguides without
much reflections according to the corollary.

The theorem gives twomajor factors which affect the IFOMM solutions of (2.6) greatly.
One is to choose correct number for truncating the linear systems, the other is that the
reflection in the waveguide can not be very strong. Strong reflection may lead to a very large
C = maxs=1,2,...,m

∏m
j=s‖(I + Pj)

−1‖‖(I +Rj)‖ in (3.18), since every ‖(I + Pj)
−1‖ can be very large.

3.3. Interface Conditions and Matrix Approximation

The formulas in (3.6) have to be further discretized with matrices replacing the operators
[29, 32]. The interface and boundary conditions are important in the discretization.
Corresponding to the interface and boundary conditions of (2.1), we need to consider the
interface and boundary conditions for the improved Helmholtz equation (2.6). Details can be
referred in [34].

Furthermore, we approximate the operator

B(x̂, ẑ) = α(x̂, ẑ)∂2ẑ + β(x̂, ẑ)∂ẑ + γ(x̂, ẑ) (3.19)

by an N ×N tridiagonal matrix A(x̂). Details can be referred in [32].
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3.4. FFOMM

Let the DtN operator Q and the fundamental operator Y satisfy

Vx̂ = Q(x̂)V, V
(
x̂′, ·) = Y

(
x̂; x̂′)V (x̂, ·). (3.20)

By substituting (3.20) into (2.6), formulas for Q and Y can be derived analogously. Using
the operator marching scheme (3.6) for the FFOMM from x̂ = L to x̂ = 0, its fundamental
operator Y (sj ; sj+1) can be determined. For more details, we refer to [28]. The FFOMM can be
written as the following algorithm.

Algorithm 2 (FFOMM).

Step 1. OperatorMarching(Qs+1, Ys+1;Qs, Ys), where s = m,m − 1, . . . , 0.

Step 2. If x̂s = si(i = p, . . . 2, 1) Save Ys, i = i − 1 and reset Ys = I.

Step 3. If [x̂s+1, x̂s]/= [x̂1, x̂0], s = s − 1 repeat Step 1, else go to Step 4.

Step 4. Load Ysi , V (si, ·) = YsiVsi−1 .

Step 5. Load u(x̂s, ·) = W(x̂s, ·)Vs.

Step 6. If [x̂s+1, x̂s]=[x̂m, L], end the program, else let s = s + 1 repeat Step 1.

If similar error analysis of the IFOMM is applied to the FFOMM, similar result can
be obtained. The conditions on which the Helmholtz equation can be exactly solved by the
FFOMMalso demand that the reflection of the propagatingmodes be small in the waveguide.

4. Numerical Example

A typical numerical example in ocean acoustics is provided here to examine the IFOMM for
solving Cauchy problems in stratified waveguides.

Example 4.1. Let

κ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

16, 0 < z < h1(x),

0.7 × 16, h1(x) < z < h2(x),

0.2 × 16, h2(x) < z < D1,

(4.1)

with L = 10, n = 30, D0 = 1.5, H = 2.5, D = 3, D1 = 4, N = 400, ρ1 = 1, ρ2 = 1.7, ρ3 =
2.7, δ = 0.025, h1(x) = 1−ε1e−σ1((x/L)−(1/2))2 , h2(x) = H−ε2e−σ2((x/L)−(1/2))2 , ε1 = ε2 = 0.1, σ1 =
σ2 = 10, 0 � z � 4, 0 � x � 10, where N is the number of points to discretize the ẑ variable,
n is the number to truncate theN ×N matrices that approximate the operators arising in the
marching process [32].
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Figure 2: The received wave u(L, ẑ) of Case 1.

Suppose incident wave u0 at x̂ = 0 is V
(L)
N−9 (Case 1: the tenth propagation mode at

x̂ = L) and V
(L)
N (Case 2: the first propagation mode at x̂ = L), respectively, reconstruct the

incident wave.
The numerical example takes the incident wave at x̂ = 0 as the reference solution

for the IFOMM solution. Although varied range step size considering the character of the
range-dependent waveguide is more reasonable, we will choose constant range step size for
simplicity. The solutions are computed with a large range step size τ = 1/8 (m = 80). As the
numerical test shows, the reasonably accurate reformulated solutions are already obtained
for τ = 1/8.

In practice, the available data is usually contaminated by measurement errors, and the
stability of the numerical method is of vital importance for obtaining physically meaningful
results. To this end, the simulated noisy data generated by

ũm = [v1, v2, . . . , vn0]Re
(
χm

)
(1 + εζ1) + i lm

(
χm

)
(1 + εζ2), j = 1, 2, . . . ,N, (4.2)

is used to impose on the received wave um = u(x̂m, ẑ), where [v1, v2, . . . , vn0] is the
eigenvectors corresponding to the propagating modes of the operator (3.19) at x̂ = L and
n0 is the number of propagating modes, um = [v1, v2, . . . , vn0] · χm, χm is an n0-dimensional
vector, ζ1 and ζ2 are normally distributed random variables with zeromean and unit standard
deviation, respectively, and ε dictates the level of data noise which represents the ratio of
noise energy to data energy in 2-norm. The random variable ζ1 and ζ2 are realized by using
the Fortran function of IMSL library DRNNOF().

Figures 2 and 5 denote the receivedwaves u(L, ẑ) of Case 1 and 2, respectively. Figures
3 and 6 give the reconstructed incident waves u(0, ẑ) which are computed by the IFOMM
with TSVD where regularization parameter is chosen as 10 (the number of the propagation
modes in the waveguide). As indicated by Figures 3 and 6, the regularization solution u(0, ẑ)
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Figure 3: Comparison with u(0, ẑ) of Case 1 for the exact incident wave and the solution obtained by
IFOMM.
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Figure 4: Comparison with u(0, ẑ) of Case 1 for the solution obtained by IFOMM with no noise and 5%
noise.

computed by the IFOMM is in good agreement with the exact incident wave u0. As shown by
the solutions obtained with noise level ε = 5% in Figures 4 and 7, the reconstruction remains
very stable despite the high noise level. The performance of the IFOMM for the two different
incident waves of Cases 1 and 2 verifies that the proposed algorithm is efficient, accurate,
and stable for the incident waves.
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Figure 5: The received wave u(L, ẑ) of Case 2.
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Figure 6: Comparison with u(0, ẑ) of Case 2 for the exact incident wave and the solution obtained by
IFOMM.

5. Conclusion

The IFOMM developed in one-layered waveguides is applied to solve inverse boundary
value problems associated with the Helmholtz equation in stratified waveguides. Numerical
example demonstrates that the IFOMM can be used to compute inverse boundary problems
in the stratified waveguides successfully. The scope of the IFOMM’s application is then
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Figure 7: Comparison with u(0, ẑ) of Case 2 for the solution obtained by IFOMM with no noise and 5%
noise.

discussed based on an error estimation for the marching scheme. The estimation gives a
quantitative estimate of error propagation and shows that IFOMM can only be applied
in waveguides where reflection is not strong. In further, the theorem also reveals that the
errors may be cumulated greatly in some special circumstances when the grid becomes
excessive fine. Numerical examples indicate that the IFOMM is computationally efficient,
highly accurate, and stable with respect to the noise in the data for the propagating part of a
starting field when the computing domain is long and complex.

There are several further studies related to the IFOMM for solving the Cauchy
problems. Firstly, although the IFOMM only considers two-dimensional problems in its
current form, the scheme is easily extended to problems in three-dimensional space under
cylindrical coordinates, and it can also be extended to solve wave propagation under three-
dimensional Cartesian coordinate system. Secondly, when the number of propagating modes
varies with the range direction frequently, which is corresponding to some of propagating
modes that are totally reflected, whether the IFOMM or FFOMM can be applied through
some improvements of them in such waveguides, and how to improve the methods? At least,
the parameters for truncating the systems are a little more difficult to be determined. Thirdly,
the estimation for error propagation may be improved through more detailed analysis.

Acknowledgment

This research is supported by the NCET-08-0450 and the 985 II of Xi’an Jiaotong University.

References

[1] C. Cattani, “Shannonwavelets for the solution of integrodifferential equations,”Mathematical Problems
in Engineering, vol. 2010, Article ID 408418, 22 pages, 2010.

[2] C. Cattani and A. Kudreyko, “Harmonic wavelet method towards solution of the Fredholm type
integral equations of the second kind,” Applied Mathematics and Computation, vol. 215, no. 12, pp.
4164–4171, 2010.



14 Mathematical Problems in Engineering

[3] M. Li, S. C. Lim, and S. Y. Chen, “Exact solution of impulse response to a class of fractional oscillators
and its stability,” Mathematical Problems in Engineering, vol. 2011, Article ID 657839, 9 pages, 2011.

[4] M. Li and W. Zhao, “Representation of a stochastic traffic bound,” IEEE Transactions on Parallel and
Distributed Systems, vol. 21, no. 9, pp. 1368–1372, 2010.

[5] E. G. Bakhoum andC. Toma, “Mathematical transform of traveling-wave equations and phase aspects
of quantum interaction,” Mathematical Problems in Engineering, vol. 2010, Article ID 695208, 15 pages,
2010.

[6] E. G. Bakhoum and C. Toma, “Specific mathematical aspects of dynamics generated by coherence
functions,”Mathematical Problems in Engineering, vol. 2011, 10 pages, 2011.

[7] P. Li, W. Z. Zhong, G. S. Li, and Z. H. Chen, “A numerical local orthogonal transform method for
stratified waveguides,” Journal of Zhejiang University, vol. 11, no. 12, pp. 998–1008, 2010.

[8] M. R. Bai, “Application of BEM (boundary element method)-based acoustic holography to radiation
analysis of sound sources with arbitrarily shaped geometries,” Journal of the Acoustical Society of
America, vol. 92, pp. 533–549, 1992.

[9] Z. Wang and S. F. Wu, “Helmholtz equation least-squares method for reconstructing the acoustic
pressure field,” Journal of the Acoustical Society of America, vol. 102, no. 4, pp. 2020–2032, 1997.

[10] S. F. Wu and J. Yu, “Reconstructing interior acoustic pressure fields via Helmholtz equation least-
squares method,” Journal of the Acoustical Society of America, vol. 104, no. 4, pp. 2054–2060, 1998.

[11] T. Delillo, V. Isakov, N. Valdivia, and L. Wang, “The detection of the source of acoustical noise in two
dimensions,” SIAM Journal on Applied Mathematics, vol. 61, no. 6, pp. 2104–2121, 2001.

[12] T. DeLillo, V. Isakov, N. Valdivia, and L. Wang, “The detection of surface vibrations from interior
acoustical pressure,” Inverse Problems, vol. 19, no. 3, pp. 507–524, 2003.

[13] L. Marin, L. Elliott, P. J. Heggs, D. B. Ingham, D. Lesnic, and X. Wen, “Conjugate gradient-boundary
element solution to the Cauchy problem for Helmholtz-type equations,” Computational Mechanics, vol.
31, no. 3, pp. 367–372, 2003.

[14] L. Marin, L. Elliott, P. J. Heggs, D. B. Ingham, D. Lesnic, and X. Wen, “An alternating iterative
algorithm for the Cauchy problem associated to theHelmholtz equation,”ComputerMethods in Applied
Mechanics and Engineering, vol. 192, no. 5-6, pp. 709–722, 2003.

[15] L. Marin, L. Elliott, P. J. Heggs, D. B. Ingham, D. Lesnic, and X. Wen, “Comparison of regularization
methods for solving the Cauchy problem associated with the Helmholtz equation,” International
Journal for Numerical Methods in Engineering, vol. 60, no. 11, pp. 1933–1947, 2004.

[16] L. Marin, L. Elliott, P. J. Heggs, D. B. Ingham, D. Lesnic, and X. Wen, “BEM solution for the Cauchy
problem associated with Helmholtz-type equations by the Landweber method,” Engineering Analysis
with Boundary Elements, vol. 28, no. 9, pp. 1025–1034, 2004.

[17] B. T. Jin and Y. Zheng, “Ameshless method for some inverse problems associated with the Helmholtz
equation,” Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 19–22, pp. 2270–2288,
2006.

[18] B. T. Jin and Y. Zheng, “Boundary knot method for some inverse problems associated with the
Helmholtz equation,” International Journal for Numerical Methods in Engineering, vol. 62, no. 12, pp.
1636–1651, 2005.

[19] B. T. Jin and Y. Zheng, “Boundary knot method for the Cauchy problem associated with the
inhomogeneous Helmholtz equation,” Engineering Analysis with Boundary Elements, vol. 29, no. 10,
pp. 925–935, 2005.

[20] L. Marin and D. Lesnic, “The method of fundamental solutions for the Cauchy problem associated
with 2D Helmholtz-type equations,” Computers & Structures, vol. 83, no. 4-5, pp. 267–278, 2005.

[21] L. Marin, “A meshless method for the numerical solution of the Cauchy problem associated with 3D
Helmholtz-type equations,” Applied Mathematics and Computation, vol. 165, no. 2, pp. 355–374, 2005.

[22] B. T. Jin and L. Marin, “The plane wave method for inverse problems associated with Helmholtz-type
equations,” Engineering Analysis with Boundary Elements, vol. 32, no. 3, pp. 223–240, 2008.

[23] P. Li, Z. H. Chen, and J. X. Zhu, “An operator marching method for inverse problems in range-
dependent waveguides,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 49-50,
pp. C4077–C4091, 2008.

[24] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics, American
Institute of Physics, New York, NY, USA, 1994.

[25] L. Fishman, “One-way wave propagation methods in direct and inverse scalar wave propagation
modeling,” Radio Science, vol. 28, no. 5, pp. 865–876, 1993.

[26] L. Fishman, A. K. Gautesen, and Z. Sun, “Uniform high-frequency approximations of the square root
Helmholtz operator symbol,”Wave Motion, vol. 26, no. 2, pp. 127–161, 1997.



Mathematical Problems in Engineering 15

[27] J. X. Zhu and Y. Y. Lu, “Validity of one-way models in the weak range dependence limit,” Journal of
Computational Physics, vol. 12, no. 1, pp. 55–66, 2004.

[28] Y. Y. Lu and J. R. McLaughlin, “The Riccati method for the Helmholtz equation,” Journal of the
Acoustical Society of America, vol. 100, no. 3, pp. 1432–1446, 1996.

[29] Y. Y. Lu, “One-way large range step methods for Helmholtz waveguides,” Journal of Computational
Physics, vol. 152, no. 1, pp. 231–250, 1999.

[30] M. D. Collins and W. A. Kuperman, “Inverse problems in ocean acoustics,” Inverse Problems, vol. 10,
no. 5, pp. 1023–1040, 1994.

[31] Y. Y. Lu, J. Huang, and J. R. McLaughlin, “Local orthogonal transformation and one-way methods for
acoustic waveguides,” Wave Motion, vol. 34, no. 2, pp. 193–207, 2001.

[32] J. X. Zhu and Y. Y. Lu, “Large range step method for acoustic waveguide with two layer media,”
Progress in Natural Science, vol. 12, no. 11, pp. 820–825, 2002.

[33] Y. Y. Lu and J. X. Zhu, “A local orthogonal transform for acoustic waveguides with an interval
interface,” Journal of Computational Physics, vol. 12, no. 1, pp. 37–53, 2004.

[34] J. X. Zhu and P. Li, “Local orthogonal transform for a class of acoustic waveguides,” Progress in Natural
Science, vol. 17, no. 10, pp. 18–28, 2007.

[35] J. X. Zhu and P. Li, “The mathematical treatment of wave propagation in the acoustical waveguides
with n curved interfaces,” Journals of Zhejiang University, vol. 9, no. 10, pp. 1463–1472, 2008.

[36] P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve,” SIAM Review, vol.
34, no. 4, pp. 561–580, 1992.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


