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This paper presents and analyzes a strongly convergent approximate proximal point algorithm
for finding zeros of maximal monotone operators in Hilbert spaces. The proposed method
combines the proximal subproblem with a more general correction step which takes advantage
of more information on the existing iterations. As applications, convex programming problems
and generalized variational inequalities are considered. Some preliminary computational results
are reported.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖ =
√
〈·, ·〉. A

set-valued operator T : H → 2H is maximal monotone. A canonical problem associated with
T is the maximal monotone inclusion problem, that is, to find a vector z ∈ H such that

0 ∈ T(z). (1.1)

The maximal monotone inclusion problem provides a powerful general framework for the
study of many important optimization problems, such as convex programming problems
and variational inequalities, see [1, 2], for example. Nowadays, it has received considerable
attention. The interested readers may consult the monographs by Facchinei and Pang [3] and
the survey papers [4–14].

Many methods have been proposed to solve the maximal monotone inclusion
problem. One of the classical methods is the proximal point algorithm (PPA) which was



2 Mathematical Problems in Engineering

originally proposed by Martinet [5]. Let uk ∈ H be the current iteration, PPA generates the
next iteration by solving the following proximal subproblem:

uk ∈ u + βkT(u). (1.2)

If the sequence {βk} is chosen bounded from above zero, then the sequence {uk} generated by
(1.2) converges weakly to a solution of (1.1). However, since (1.2) is a nonsmooth equation
and an implicit scheme, solving (1.2) exactly is either impossible or as difficult as solving the
original problem (1.1), see [6]. This makes straightforward applications of PPA impractical in
many cases. To overcome this drawback, Rockafellar [7] generalized PPA and presented the
following approximate proximal point algorithm:

uk + ek ∈ u + βkT(u), (1.3)

where the error sequence {ek} satisfies a summable error criterion. Because of the relaxed
accuracy requirement, the approximate proximal point algorithm is more practical than the
exact one. Furthermore, Rockafellar posed an open question: the sequence generated by (1.3)
converges strongly or not. In 1992, by exhibiting a proper closed convex function in a infinite-
dimensional Hilbert space l2, Güler [8] showed that it does not converge strongly in general.
Naturally, the question arises whether PPA can be modified preferably in a simple way, so
that strong convergence is guaranteed.

There is one point deserving to be paid attention to. Theweak and strong convergences
are only conceptions in the infinite dimensional spaces. Many real-world problems in
economics and engineering are modeled in the infinite dimensional spaces, such as
the optimal control and structural design problems. However, when we solve infinite-
dimensional problems, numerical implementations of algorithms are certainly applied to
finite dimensional approximations of these problems. Nevertheless, as is pointed out in [9],
it is important to develop convergence theory for the infinite-dimensional case, because it
guarantees the robustness and stability with respect to discretization schemes employed for
obtaining finite dimensional approximations of infinite dimensional problems.

Recently, a number of researchers have concentrated on the developments of the
approximate proximal point algorithms on theoretical analysises, algorithm designs, and
practical applications. To find the solution of the desired problem in a restricted area C ⊂ H,
many authors used an additional projection or extragradient step to correct the approximate
solution and thus presented the prediction-correction proximal point algorithms. Recent
developments on the approximate proximal point algorithms also focus on replacing the
correction step with more general steps, see, for example, [10–13]. To mention a few, for any
fixed vector u ∈ C, Zhou et al. [12] presented the following correction step:

uk+1 = αku + (1 − αk)PC

(
ũk − ek

)
, (1.4)

where ũk ∈ C is generated by (1.3). For suitably chosen parameter sequence {αk} and under
certain assumptions on the error term ek, they proved the method converges strongly. Later,
Qin et al. [13] developed a more general iterative scheme:

uk+1 = αku + βkPC

(
ũk − ek

)
+ γkPCf

k, (1.5)
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where ũk ∈ C is generated by (1.3) and {fk} is a bounded sequence. For suitably chosen
parameter sequences {αk}, {βk}, and {γk} and under certain assumptions on the error term
ek, they got the strong convergence of the method too.

In this paper, we propose a strongly convergent approximate proximal point algorithm
for the maximal monotone inclusion problems by combining the proximal subproblem (1.3)
with a more general correction step. Compared with methods [10–13], the proposed method
takes advantage of more information on the existing iterations. For practical implementation,
we give two applications of the proposed method to convex programming problems
and generalized variational inequalities. Preliminary numerical experiments, reported in
Section 5, demonstrate that the efficiency of the method is in practice.

This paper is organized as follows. Section 2 introduces some useful preliminaries.
Section 3 describes the proposed method formally and presents the convergence analysis.
Section 4 discusses some applications of the proposed method. Section 5 presents some
numerical experiments, and some final conclusions are given in the last section.

Throughout this paper, we assume that the solution set of (1.1), denoted by T−10, is
nonempty.

2. Preliminaries

This section summarizes some fundamental concepts and lemmas that are useful in the
consequent analysis.

Definition 2.1. Let H be a real Hilbert space and let T : H → 2H be a set-valued operator.
Then

(i) the effective domain of T , denoted by D(T), is

D(T) = {u : ∃v ∈ H, (u, v) ∈ T}; (2.1)

(ii) the range or image of T , denoted by R(T), is

R(T) = {v : u ∈ H, (u, v) ∈ T}; (2.2)

(iii) the graph of T , denoted by G(T), is

G(T) = {(u, v) ∈ H ×H : u ∈ D(T), v ∈ R(T)}; (2.3)

(iv) the inverse of T , denoted by T−1, is

T−1 = {(v, u) : (u, v) ∈ T}. (2.4)

Definition 2.2. Let H be a real Hilbert space and let T : H → 2H be a set-valued operator.
Then, T is called monotone on H if

〈
u − u′, v − v′〉 ≥ 0, ∀(u, v), (u′, v′) ∈ T. (2.5)
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Furthermore, a monotone operator T is called maximal monotone if its graph G(T) is not
properly contained in the graph of any other monotone operator onH.

Definition 2.3. LetH be a real Hilbert space, let C be a nonempty closed convex subset ofH,
and let T be an operator from C into C. Then,

(i) T is called firmly nonexpansive if

∥
∥v′ − v

∥
∥2 ≤ 〈

u′ − u, v′ − v
〉
, ∀(u, v), (u′, v′) ∈ T ; (2.6)

(ii) T is called nonexpansive if

∥
∥v′ − v

∥
∥ ≤ ∥

∥u′ − u
∥
∥, ∀(u, v), (u′, v′) ∈ T. (2.7)

Definition 2.4. Let H be a real Hilbert space and let C be a nonempty closed convex subset
ofH. Then, the orthogonal projection from H onto C, denoted by PC(·), is

PC(u) = argmin{‖u − v‖ : v ∈ C}, ∀u ∈ H. (2.8)

It is easy to verify that the orthogonal projection operator is nonexpansive.

Definition 2.5. Given any positive scalar β and operator T , define the resolvent of T by

Jβ =
(
I + βT

)−1
, (2.9)

where I denotes the identity operator on H. Also, define the Yosida approximation Tβ by

Tβ =
1
β

(
I − Jβ

)
. (2.10)

We know that Tβx ∈ TJβx for all x ∈ H, ‖Tβx‖ ≤ |Tx| for all x ∈ D(T), where |Tx| =
inf{‖y‖ : y ∈ Tx} and T−10 = F(Jβ) for all β > 0.

In the following, we list some useful lemmas.

Lemma 2.6 (see [14]). Let β be any positive scalar. An operator T is monotone if and only if its
resolvent Jβ is firmly nonexpansive. Furthermore, T is maximal monotone if and only if Jβ is firmly
nonexpansive and D(Jβ) = H.

Lemma 2.7 (see [15]). Let T be a maximal monotone operator and let β be a positive scalar, then

u ∈ J−1β (ũ) ⇐⇒ ũ = Jβ(u). (2.11)

Lemma 2.8 (see [16]). For all u ∈ H, limt→∞Jtu exists and it is the point of T−10 nearest to u.



Mathematical Problems in Engineering 5

Lemma 2.9 (see [17]). Let {ak}, {bk} and {ck} be sequences of positive numbers satisfying:

ak+1 ≤ (1 − tk)ak + bk + ck, k ≥ 0, (2.12)

where {tk} is a sequence in [0, 1]. Assume that the following conditions are satisfied

(i) tk → 0 as k → ∞ and
∑∞

k=0tk = ∞;

(ii) bk = o(tk);

(iii)
∑∞

k=0ck < ∞.

Then limk→∞ak = 0.

3. The Algorithm and Convergence Analysis

In this section, we analyze the proposed approximate proximal point algorithm formally.

Algorithm 3.1. Given u0 ∈ C, u ∈ C and {βk} ⊂ (0,∞) with βk → ∞ as k → ∞. Find ũk ∈
C satisfying

uk + ek ∈ ũk + βkT
(
ũk

)
, (3.1)

under the inexact error criterion:

∥∥∥ek
∥∥∥ ≤ ηk

∥∥∥uk − ũk
∥∥∥, sup

k≥0
ηk = v < 1. (3.2)

Generate the new iteration by

uk+1 = λku + δkPC

[
uk − αk

(
uk − ũk + ek

)]
+ γkũ

k, (3.3)

where the stepsize αk is defined by

αk =

〈
uk − ũk, uk − ũk + ek

〉

∥∥uk − ũk + ek
∥∥2

, (3.4)

and {λk},{δk}, and {γk} are real sequences in [0, 1] satisfying

(i) λk + δk + γk = 1;

(ii) limk→∞λk = 0 and
∑∞

k=0λk = ∞;

(iii)
∑∞

k=0δk < ∞.

The following remark gives the relationships between Algorithm 3.1 and some
existing algorithms.
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Remark 3.2. When λk = 0, δk = 1, γk = 0, αk = 1, Algorithm 3.1 reduces to the method
proposed by He et al. [10]; when λk = 0, δk = 1, γk = 0 without considering the error term
ek in (3.3), Algorithm 3.1 reduces to the method proposed by Yang and He [11]; when γk =
0, αk = 1, Algorithm 3.1 reduces to the method proposed by Zhou et al. [12]; when αk = 1,
Algorithm 3.1 reduces to the method proposed by Qin et al. [13] with PCf

k = ũk.

In the following, we give the convergence analysis of Algorithm 3.1, beginning with
some lemmas. For convenience, we use the notation

dk = uk − ũk + ek. (3.5)

Lemma 3.3 (see [6]). LetH be a real Hilbert space and let C be a nonempty closed convex subset of
H. For given uk ∈ H, βk > 0 and ek ∈ H, there exists ũk ∈ C conforming to the set-valued equation
(3.1) Furthermore, for any p ∈ T−10, one has

〈
uk − ũk, dk

〉
≤
〈
uk − p, dk

〉
. (3.6)

Lemma 3.4. Let αk be defined by (3.4), then

αk >
1
2
. (3.7)

Proof. By the notation of dk, it follows from (3.2) that

〈
uk − ũk, dk

〉
=
∥∥∥uk − ũk

∥∥∥
2
+
〈
xk − ũk, ek

〉

>
1
2

∥∥∥uk − ũk
∥∥∥
2
+
〈
uk − ũk, ek

〉
+
1
2

∥∥∥ek
∥∥∥
2

=
1
2

∥∥∥dk
∥∥∥
2
.

(3.8)

By the selection of αk, the proof is complete.

Lemma 3.5. Let p be any zero of T in C, then

∥∥∥PC

(
uk − αkd

k
)
− p

∥∥∥ ≤
∥∥∥uk − p

∥∥∥. (3.9)

Proof. Since p ∈ C and PC(·) is nonexpansive, by Lemma 3.3, we have

∥∥∥PC

(
uk − αkd

k
)
− p

∥∥∥
2 ≤

∥∥∥uk − αkd
k − p

∥∥∥
2

=
∥∥∥uk − p

∥∥∥
2 − 2αk

〈
uk − p, dk

〉
+ α2

k

∥∥∥dk
∥∥∥
2

≤
∥∥∥uk − p

∥∥∥
2 − 2αk

〈
uk − ũk, dk

〉
+ α2

k

∥∥∥dk
∥∥∥
2
.

(3.10)
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Considering the last two terms of the above equality, by the definition of αk and dk, we have

−2αk

〈
uk − ũk, dk

〉
+ α2

k

∥
∥
∥dk

∥
∥
∥
2
= −αk

〈
uk − ũk, dk

〉

≤ −αk

[∥
∥
∥uk − ũk

∥
∥
∥
2 −

∥
∥
∥uk − ũk

∥
∥
∥
∥
∥
∥ek

∥
∥
∥
]
.

(3.11)

Taking into account that ‖ek‖ ≤ ηk‖uk − ũk‖, by Lemma 3.4, we further obtain

∥
∥
∥PC

(
uk − αkd

k
)
− p

∥
∥
∥
2 ≤

∥
∥
∥uk − p

∥
∥
∥
2 − 1

2
(
1 − ηk

)∥∥
∥uk − ũk

∥
∥
∥
2
. (3.12)

Since supk≥0ηk = v < 1, the assertion follows from (3.12) immediately.

We now prove the strong convergence of Algorithm 3.1

Theorem 3.6. Let {uk} be generated by Algorithm 3.1. Suppose that
∑∞

k=0‖ek‖ < ∞. Then, the
sequence {uk} converges strongly to a zero point z of T , where z = limt→∞Jtu.

Proof. We divide the proof into three parts.

Claim 1. Show that the sequence {uk} is bounded.
For any p ∈ T−10. Set M = max{‖u − p‖, ‖u0 − p‖, supk≥0‖ũk − p‖}. We want to prove

that

∥∥∥uk − p
∥∥∥ ≤ M, ∀k ≥ 0. (3.13)

It is easy to see that (3.13) is true for k = 0. Now, assume that (3.13) holds for some k ≥ 0. We
prove that (3.13) holds for k + 1. By the definition of uk+1, it follows from λk + δk + γk = 1 that

∥∥∥uk+1 − p
∥∥∥ =

∥∥∥λku + δkPC

(
uk − αkd

k
)
+ γkũ

k − p
∥∥∥

≤ λk
∥∥u − p

∥∥ + δk
∥∥∥PC

(
uk − αkd

k
)
− p

∥∥∥ + γk
∥∥∥ũk − p

∥∥∥

≤ λk
∥∥u − p

∥∥ + δk
∥∥∥uk − p

∥∥∥ + γk
∥∥∥ũk − p

∥∥∥

≤ M,

(3.14)

where the second inequality follows from Lemma 3.5. Hence, the sequence {uk} is bounded.

Claim 2. Show that lim supk→∞〈u − z, uk+1 − z〉 ≤ 0, where z = limt→∞Jtu. Note that the
existence of limt→∞Jtu is guaranteed by Lemma 2.8.
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Since T is maximal monotone, Ttu ∈ TJtu and Tβku
k ∈ TJβku

k, we have

〈
u − Jtu, Jβku

k − Jtu
〉
= −t

〈
Ttu, Jtu − Jβku

k
〉

= −t
〈
Ttu − Tβku

k, Jtu − Jβku
k
〉
− t

〈
Tβku

k, Jtu − Jβku
k
〉

≤ − t

βk

〈
uk − Jβku

k, Jtu − Jβku
k
〉
.

(3.15)

Since βk → ∞ as k → ∞, for any t > 0, we obtain

lim sup
k→∞

〈
u − Jtu, Jβku

k − Jtu
〉
≤ 0. (3.16)

By the nonexpansivity of Jβk , we have

∥∥∥Jβk
(
uk + ek

)
− Jβku

k
∥∥∥ ≤

∥∥∥uk + ek − uk
∥∥∥ =

∥∥∥ek
∥∥∥. (3.17)

Since ‖ek‖ → 0 as k → ∞, we obtain

lim
k→∞

∥∥∥Jβk
(
uk + ek

)
− Jβku

k
∥∥∥ = 0, (3.18)

which combines with (3.16) yielding that

lim sup
k→∞

〈
u − Jtu, Jβk

(
uk + ek

)
− Jtu

〉
≤ 0. (3.19)

By Lemma 2.7, we get

∥∥∥PC

(
ũk − ek

)
− Jβk

(
uk + ek

)∥∥∥ ≤
∥∥∥
(
ũk − ek

)
− Jβk

(
uk + ek

)∥∥∥ =
∥∥∥ek

∥∥∥. (3.20)

Thus,

lim
k→∞

∥∥∥PC

(
ũk − ek

)
− Jβk

(
uk + ek

)∥∥∥ = 0. (3.21)

Furthermore, we have

lim sup
k→∞

〈
u − Jtu, PC

(
ũk − ek

)
− Jtu

〉
≤ 0. (3.22)

Adopting the notation uk = (δk/(δk+γk))PC(uk−αkd
k)+(γk/(δk+γk))ũk. Since λk+δk+γk = 1,

then

uk+1 = λku + (1 − λk)u
k. (3.23)
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Since PC(·) is nonexpansive, by the notation of dk, we obtain

∥
∥
∥uk − PC

(
ũk − ek

)∥∥
∥ =

∥
∥
∥
∥

δk
δk + γk

PC

(
uk − αkd

k
)
+

γk
δk + γk

ũk − PC

(
ũk − ek

)∥∥
∥
∥

≤ δk
δk + γk

∥
∥
∥PC

(
uk − αkd

k
)
− PC

(
ũk − ek

)∥∥
∥ +

γk
δk + γk

∥
∥
∥ũk − PC

(
ũk − ek

)∥∥
∥

≤ δk
δk + γk

∥
∥
∥uk − αkd

k − ũk + ek
∥
∥
∥ +

γk
δk + γk

∥
∥
∥ek

∥
∥
∥

= |1 − αk| δk
δk + γk

∥
∥
∥dk

∥
∥
∥ +

γk
δk + γk

∥
∥
∥ek

∥
∥
∥.

(3.24)

Since ‖ek‖ → 0 as k → ∞ and
∑∞

k=0δk < ∞, we get

lim
k→∞

∥∥∥uk − PC

(
ũk − ek

)∥∥∥ = 0. (3.25)

By using (3.23), we get

∥∥∥uk+1 − PC

(
ũk − ek

)∥∥∥ =
∥∥∥λku + (1 − λk)u

k − PC

(
ũk − ek

)∥∥∥ (3.26)

≤ λk
∥∥∥u − PC

(
ũk − ek

)∥∥∥ + (1 − λk)
∥∥∥uk − PC

(
ũk − ek

)∥∥∥. (3.27)

Since limk→∞λk = 0, it follows from (3.25) and (3.27) that

lim
k→∞

∥∥∥uk+1 − PC

(
ũk − ek

)∥∥∥ = 0. (3.28)

Combining (3.28) with (3.22), we obtain

lim sup
k→∞

〈
u − Jtu, u

k+1 − Jtu
〉
≤ 0. (3.29)

Note that z = limt→∞Jtu, we get

lim sup
k→∞

〈
u − z, uk+1 − z

〉
≤ 0. (3.30)

Claim 3. Show that uk → z as k → ∞.
By Lemma 2.7 and by the nonexpansivity of Jβk , we have

∥∥∥ũk − z
∥∥∥ =

∥∥∥Jβk
(
uk + ek

)
− z

∥∥∥ (3.31)

≤
∥∥∥uk − z

∥∥∥ +
∥∥∥ek

∥∥∥. (3.32)
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By the definition of uk+1, we have

uk+1 − z = λku + δkPC

(
uk − αkd

k
)
+ γkũ

k − z

= λk(u − z) + δk
[
PC

(
uk − αkd

k
)
− ũk

]
+ (1 − λk)

(
ũk − z

)
.

(3.33)

Since PC(·) is nonexpansive, we obtain

∥
∥
∥uk+1 − z

∥
∥
∥
2
=
〈
λk(u − z) + δk

[
PC

(
uk − αkd

k
)
− ũk

]
+ (1 − λk)

(
ũk − z

)
, uk+1 − z

〉

= λk
〈
u − z, uk+1 − z

〉
+ δk

〈
PC

(
uk − αkd

k
)
− ũk, uk+1 − z

〉

+ (1 − λk)
〈
ũk − z, uk+1 − z

〉

≤ λk
〈
u − z, uk+1 − z

〉
+ δk

∥∥∥PC

(
uk − αkd

k
)
− ũk

∥∥∥
∥∥∥uk+1 − z

∥∥∥

+ (1 − λk)
∥∥∥ũk − z

∥∥∥
∥∥∥uk+1 − z

∥∥∥

≤ λk
〈
u − z, uk+1 − z

〉
+ δk

∥∥∥uk − αkd
k − ũk

∥∥∥
∥∥∥uk+1 − z

∥∥∥

+ (1 − λk)
∥∥∥ũk − z

∥∥∥
∥∥∥uk+1 − z

∥∥∥.

(3.34)

Now, we consider the last two terms on the right-hand side of the above equality. Since λk ∈
[0, 1], it follows from (3.32) that

δk‖uk − αkd
k − ũk‖‖uk+1 − z‖ + (1 − λk)‖ũk − z‖‖uk+1 − z‖

≤ δk
∥∥∥uk − αkd

k − ũk
∥∥∥
∥∥∥uk+1 − z

∥∥∥ + (1 − λk)
(∥∥∥uk − z

∥∥∥ +
∥∥∥ek

∥∥∥
)∥∥∥uk+1 − z

∥∥∥

≤ 1 − λk
2

(∥∥∥uk − z
∥∥∥
2
+
∥∥∥uk+1 − z

∥∥∥
2
)
+
[
δk

∥∥∥uk − αkd
k − ũk

∥∥∥ + (1 − λk)
∥∥∥ek

∥∥∥
]∥∥∥uk+1 − z

∥∥∥

≤ 1 − λk
2

∥∥∥uk − z
∥∥∥
2
+
1
2

∥∥∥uk+1 − z
∥∥∥
2
+
[
δk

∥∥∥uk − αkd
k − ũk

∥∥∥ + (1 − λk)
∥∥∥ek

∥∥∥
]∥∥∥uk+1 − z

∥∥∥.

(3.35)

Consequently, we get

∥∥∥uk+1 − z
∥∥∥
2 ≤ λk

〈
u − z, uk+1 − z

〉
+
1 − λk

2

∥∥∥uk − z
∥∥∥
2
+
1
2

∥∥∥uk+1 − z
∥∥∥
2

+
[
δk

∥∥∥uk − αkd
k − ũk

∥∥∥ + (1 − λk)
∥∥∥ek

∥∥∥
]∥∥∥uk+1 − z

∥∥∥.

(3.36)



Mathematical Problems in Engineering 11

Furthermore, we obtain

∥∥
∥uk+1 − z

∥∥
∥
2 ≤ (1 − λk)

∥∥
∥uk − z

∥∥
∥
2
+ 2λk

〈
u − z, uk+1 − z

〉

+ 2
[
δk

∥
∥
∥uk − αkd

k − ũk
∥
∥
∥ + (1 − λk)

∥
∥
∥ek

∥
∥
∥
]∥∥
∥uk+1 − z

∥
∥
∥.

(3.37)

Since
∑∞

k=0δk < ∞ and
∑∞

k=0‖ek‖ < ∞, we have

∞∑

k=0

2
[
δk

∥
∥
∥uk − αkd

k − ũk
∥
∥
∥ + (1 − λk)

∥
∥
∥ek

∥
∥
∥
]∥∥
∥uk+1 − z

∥
∥
∥ < ∞. (3.38)

Set σk = max{〈u − z, uk+1 − z〉, 0}, we have σk → 0 as k → ∞. Denote ak = ‖uk − z‖2,
bk = 2λkσk and ck = 2[δk‖uk −αkd

k − ũk‖+(1−λk)‖ek‖]‖uk+1−z‖, by Lemma 2.9, we conclude
that ak → 0 as k → ∞, that is, uk → z as k → ∞. The proof is complete.

4. Applications

This section considers two interesting applications, convex programming problems and
generalized variational inequalities.

Let H be a real Hilbert space, let C be a nonempty closed convex subset of H, and
let f : C → (−∞,+∞] be a proper closed convex function. Consider the following convex
programming problem:

min
x∈C

f(x). (4.1)

In 1965, Moreau [18] indicated that if f is a proper closed convex function, ∂f is a maximal
monotone operator, where ∂f(z) represents the subdifferential of f , that is,

∂f(u) =
{
y ∈ H : f(z) ≥ f(u) +

〈
z − u, y

〉
, z ∈ H

}
, ∀u ∈ H. (4.2)

Since z is a minimizer of f if and only if 0 ∈ ∂f(z). Thus, the problem (4.1) can be directly
transformed to the maximal monotone inclusion problem (1.1). Note that

uk + ek ∈ ũk + βk∂f
(
ũk

)
(4.3)

is equivalent to the following equation:

ũk = argmin
u∈H

{
f(u) +

1
2βk

∥∥∥u − uk − ek
∥∥∥
2
}
. (4.4)

Hence, when dealing with the convex programming problems, we use (4.4) instead of (3.1),
see [12, 13], for example. Specifically, Theorem 3.6 could be detailed as follows.
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Theorem 4.1. Let H be a real Hilbert space, let C be a nonempty closed convex subset of H, and let
f : H → (−∞,∞] be a proper closed convex function such that ∂f(0)∩C/= ∅. Let {βk} ⊂ (0,∞)with
βk → ∞ as k → ∞, {ek} be a sequence inH satisfying ‖ek‖ ≤ ηk‖uk − ũk‖ with supk≥0ηk = v < 1
and

∑∞
k=0‖ek‖ < ∞. Given u0 ∈ C and u ∈ C, let {uk} be generated by

ũk = argmin
u∈H

{
f(u) +

1
2βk

∥
∥∥u − uk − ek

∥
∥∥
2
}
,

uk+1 = λku + δkPC

[
uk − αk

(
uk − ũk + ek

)]
+ γkũ

k,

(4.5)

where the stepsize αk is defined by

αk =

〈
uk − ũk, uk − ũk + ek

〉

∥
∥uk − ũk + ek

∥
∥2

, (4.6)

and {λk}, {δk}, and {γk} are real sequences in [0, 1] satisfying

(i) λk + δk + γk = 1;

(ii) limk→∞λk = 0 and
∑∞

k=0λk = ∞;

(iii)
∑∞

k=0δk < ∞.

Then, the sequence {uk} converges strongly to a minimizer of f nearest to u.

We now turn to another application of the proposed method. In recent years, the
approximate proximal point algorithms are a family important methods to solve monotone
variational inequalities, see [19–21], for example. Let H be a real Hilbert space, let C be
a nonempty closed convex subset of H, and let F : C → 2H be a monotone set-valued
mapping. Consider the following generalized variational inequality (GVI(F,C)): find a vector
u∗ ∈ C and ω∗ ∈ F(u∗) such that

〈u − u∗, ω∗〉 ≥ 0, ∀u ∈ C. (4.7)

When F is single-valued, GVI(F,C) reduces to the classical variational inequality VI(F,C).
Let T(u) = ξ(u) + NC(u), where ξ(u) ∈ F(u) is single-valued and NC(·) denotes the normal
cone operator with respect to C, namely,

NC(u) :=

⎧
⎨

⎩

{
y :

〈
y, v − u

〉 ≤ 0, ∀v ∈ C
}
, if u ∈ C;

∅, otherwise.
(4.8)

In this way, GVI(F,C) can be transformed to the maximal monotone inclusion problem (1.1)
easily. In particular, for given uk and βk > 0, using the proximal subproblem (3.1) to solve the
problem (4.7) is equivalent to find ũk ∈ C and ξk ∈ F(ũk) such that

ũk = PC

[
uk − βkξ

k + ek
]
. (4.9)

Specifically, when dealing with GVI(F,C), Theorem 3.6 could be detailed as follows.
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Theorem 4.2. Let H be a real Hilbert space,let C be a nonempty closed convex subset of H, and let
F : C → 2H be a monotone set-valued mapping. Suppose that the solution set of variational inequality
problem (4.7) is nonempty. Let {βk} ⊂ (0,∞) with βk → ∞ as k → ∞, {ek} be a sequence in H
such that ‖ek‖ ≤ ηk‖uk − ũk‖ with supk≥0ηk = v < 1 and

∑∞
k=0‖ek‖ < ∞. Given u0 ∈ C and u ∈ C,

let {uk} be generated by

ũk = PC

[
uk − βkξ

k + ek
]
, ξk ∈ F

(
ũk

)
,

uk+1 = λku + δkPC

[
uk − αk

(
uk − ũk + ek

)]
+ γkũ

k,

(4.10)

where the stepsize αk is defined by

αk =

〈
uk − ũk, uk − ũk + ek

〉

∥∥uk − ũk + ek
∥∥ , (4.11)

and {λk}, {δk}, and {γk} are real sequences in [0, 1] satisfying

(i) λk + δk + γk = 1;

(ii) limk→∞λk = 0 and
∑∞

k=0λk = ∞;

(iii)
∑∞

k=0δk < ∞.

Then, the sequence {uk} converges strongly to a solution of GVI(F,C) nearest to u.

5. Preliminary Computational Results

In this section, we give some numerical experiments and present comparisons between
Algorithm 3.1 and the algorithm presented in Qin et al. [13]. All the codes are written in
MATLAB 7.0 and run on the computer with an Intel Core2 1.86GHz CPU, and Windows
XP system. Throughout the computational experiments, the parameters are chosen as v =
0.9, βk = k + 1, λk = 1/10(k + 1), δk = 1/2k . The stopping criterion is ‖min{uk, F(uk)}‖∞ ≤
10−6.

Example 5.1. Consider the following generalized variational inequality problem which is
tested in [22] by four variables. Let C = {u ∈ R4

+ :
∑4

i=1ui = 1} and F : C → 2R
4
be defined by

F(u) = {(t, t + 2u2, t + 3u3, t + 4u4) : t ∈ [0, 1]}. (5.1)

Then, (1,0,0,0) is a solution of this problem.

We solve this problem with different starting points. The numbers of iterations (It.
num.) and the computation times (CPU(s)) are summarized in Table 1. From Table 1, we can
see that Algorithm 3.1 performs better. In addition, for the considered problem, the iterative
numbers and the computational times are not very sensitive to the starting point.
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Table 1: Numerical results for different starting point.

Starting point Algorithm 3.1 Algorithm in [13]
It. num. CPU(s) It. num. CPU(s)

(0,0,0,1) 30 0.2310 37 0.3470
(0,0,1,0) 32 0.2310 37 0.3470
(0,0.5,0.5,0) 33 0.2310 38 0.3790
(0.5,0,0.5,0) 33 0.2470 38 0.3780

6. Conclusion

This paper suggests an approximate proximal point algorithm for the maximal monotone
inclusion problems by adopting a more general correction step. Under suitable and standard
assumptions on the algorithm parameters, we get the strong convergence of the algorithm.
Note that Algorithm 3.1 here includes some existing methods as special cases. Therefore, the
proposed algorithm is expected to be widely applicable.
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