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Monitoring a process over time using a control chart allows quick detection of unusual states.
In phase I, some historical process data, assumed to come from an in-control process, are used
to construct the control limits. In Phase II, the process is monitored for an ongoing basis using
control limits from Phase I. In Phase II, observations falling outside the control limits or unusual
patterns of observations signal that the process has shifted from in-control process settings.
Such signals trigger a search for assignable cause and, if the cause is found, corrective action
will be implemented to prevent its recurrence. The purpose of this paper is to introduce a
new methodology appropriate for constructing a robust control chart when a nonnormal or a
contaminated data that may arise in phase I state. Through extensive Monte Carlo simulations,
we examine the behaviors and performances of the proposedMM robust control chart when there
is a process shift in mean.

1. Introduction

Statistical process control (SPC) concepts and methods have become very significant in the
manufacturing and process industries. Their goal is to monitor the performance of a process
over time in order to justify whether or not the process is remaining in a “state of statistical
control.” This state of control is said to occur if certain process or product variables remain
near to their desired values and the only source of variation is “common-cause” variation,
that is, the variation which affects the process all the time and is essentially inevitable within
the current process. Shewhart charts are used to monitor key product variables in order to
detect the occurrence of any event having a “special” or “assignable” cause. By discovering
assignable causes, long-term improvements in the process and in product quality can be
accomplished by eliminating the causes or improving the process or its operating procedures.
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Detecting one or more change points in a batch of observations has attracted
substantial investigation in the statistical, engineering, and econometric literature. Assuming
that there is an ordered sequence of observations, usually, but not necessarily, taken at equally
spaced times, there is a change point between two successive observations if their statistical
distributions are different. Between change points, the distributions are usually considered to
be identical. In practice, recognizing when a process has changed would simplify the search
for the special cause. If the time of the change could be identified, process engineers would
have a smaller search window within which to look for the special cause. Consequently, the
special cause can be determined more quickly, and necessary actions needed to improve
quality can be carried out sooner. In this paper, we will analyze the efficiency of a change
point estimator in process mean [1] for each of Shewhart X, Median, and the proposed MM
control chart once issues a signal. The derivation of the change point estimator that is shown
in the appendix is in virtue of Hinkley [2]. Hinkley discussed the asymptotic properties of
the estimator. Whenever each of ShewhartX, Median, or the proposed MM chart signals that
a special cause is present. The estimator provides practitioners with a useful estimate of the
time of the process change. In Section 2, we will introduce a model for a step change in the
location of a process. We consider a step change for a process mean occurs when the mean
suddenly changes its value and then remains unchanged again until corrective action has
been taken. On the basis of this step-change model, we adopt the estimator of the time of
the process change when the corresponding chart does signal. In Section 5, we analyze the
performances of each chart by means of Monte Carlo simulation.

2. Process Step-Change Model

Suppose that the process is initially in control, with observations coming from a Normal
distribution with a known mean of μ0 and a known standard deviation of σ0. Even so,
after an unknown point in time T (known as the process change point), the process location
changes from μ0 to μ1 = μ0 + δσ0/

√
n, where n is the subgroup size and δ is the unknown

magnitude of the change. Assuming also that once this step change in the process location
occurs, the process remains at the new level of μ1, until the special cause has been identified
and removed. We let XT be the first subgroup average to exceed a control limit and that this
signal is not a false alarm. Hence, X1, X2, . . . , Xτ are the subgroup averages that come from
the in-control process, while Xτ+1, Xτ+2, . . . , XT are from the changed process.

3. Definitions

To illustrate, we concentrate on robust estimates for the simple location-scale model, by
letting x1, . . . , xn be n observations on the real line satisfying

xi = μ + σεi, i = 1, . . . , n, (3.1)

where εi are independent and identically distributed observations with variance equal to 1.
We are interested in estimating μ and the scale σ which is a nuisance parameter. We consider
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M-location estimates which is proposed by Huber [3]. He defined μ̂n as the solution of an
estimating equation of the form

n
∑

i=1

ψ

(
(

xi − μ̂n
)

σ̂n

)

= 0, (3.2)

where σ̂n is a robust estimate of the residuals scale, and ψ : R → R is a bounded,
nondecreasing, and odd real function. We focus on ψ function which is continuous and
differentiable influence function given in (3.2) (see [4])

ψc(u) = sign(u)
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where c > 0 is a user-chosen tuning constant, and p4(u) = 38.4− 175u+ 300u2 − 225u3 + 62.5u4

(see [5]), for other choices of smooth functions ψ.
The scale estimate σ̂n in (3.2) is an S-estimate of scale (see [6]) which is defined as

follows. Let ρ : R → R+ be a bounded, continuous, and even function satisfying ρ(0) = 0
and let b ∈ (0, 1). The S-scale σ̂n is defined by

σ̂n = inf
t∈R

sn(t), (3.4)

where, for each t ∈ R, sn(t) is the solution of

1
n

n
∑

i=1

ρ

(

(xi − t)
sn(t)

)

= b. (3.5)

Indeed, associated with this family are the S-location estimates μ̃n is given by

μ̃n = arg inf
t∈R

sn(t). (3.6)

Beaton and Tukey [7] proposed a family of functions ρd given by

ρd(u) =
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(3.7)
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where the tuning constant d is positive. According to Yohai [8], these M-location estimates
obtained with an S-scale estimate are calledMM-location estimates. Specifically, the estimates
μ̂n, σ̂n, and μ̃n solve the following system of equations:

n
∑

i=1

ψ

(
(

xi − μ̂n
)

σ̂n

)

= 0,

1
n

n
∑

i=1

[

ρ

(
(

xi − μ̃n
)

σ̂n

)

− b
]

= 0,

1
n

n
∑

i=1

ρ′
(
(

xi − μ̃n
)

σ̂n

)

= 0.

(3.8)

Let d = 1.548 for ρd in (3.7), b = 0.5 in (3.5), and c = 1.525 for ψc in (3.3), which yields a
location estimate μ̂n with 50% breakdown point and 95% efficiency when the errors have a
normal distribution.

3.1. Sample Median

Sample median has been used in early process control charts as it is insensitive to behavior
in the tails of the distribution. However, under the normal distribution, the efficiency of
the sample median drops off rapidly towards its asymptotic value of 0.64 as sample size
increases. For a random sample of size n observations X1, X2, . . . , Xn, the sample median,
denoted by MD, is defined as follows:

MD =

⎧

⎪

⎨

⎪

⎩

X((n+1)/2), if n is odd,

X(n/2) +X((n/2)+1)

2
, if n is even.

(3.9)

The interest of using the sample median, MD, is that it is easy to determine, requires
only the middle values to calculate, can be used when a distribution is skewed, is not
affected by outliers, and has amaximal 50 percent breakdown point. Moreover, its gross-error
sensitivity is low and as the sample size n increases, the variance of the MD decreases as 1/n,
but the maximum bias does not change. Hence, the bias is the property of importance for
large sample sizes, and MD is the estimator possesses the smallest maximum bias for a given
proportion of contamination ε. Huber [3] showed that it minimizes the maximum asymptotic
bias over contamination neighborhoods. As opposed to that, the disadvantages for the
sample median, MD, are its difficulty to handle in mathematical equations, nonutilizing
all available values, and being misleading when the distributions come from a long tail
distribution as it might sometimes discard some useful information (see [9, 10]). However,
the sample median has become as a good general purpose estimator and is generally
considered as an alternative average to the sample mean especially whenever outliers might
present in the distribution.
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3.2. Median Absolute Deviation from the Sample Median

The median absolute deviation from the sample median, denoted as MAD, is a more robust
scale estimator than the standard deviation. The MAD was first introduced by Hampel [11]
who attributed it to Gauss. It is simple and easy to compute and mainly used in detecting
outliers in a data. The estimate is often used as an initial value for the computation of
more efficient robust estimators. Let us denote X1, X2, . . . , Xn as a random sample of size
n observations with sample median MD. MAD possesses the following properties:

(i) it has a maximal 50 percent breakdown point which is twice as the IQR;

(ii) in the case of the standard normal distribution, F, the influence function of theMAD
estimator, IF(X;MAD,Φ), is a step function that takes on two values. This IF is
bounded by the sharpest possible bound among all scale estimators. With regard to
the optimality properties of MAD, Martin and Zamar [12] established expressions
for the maximum asymptotic bias of M-estimates of scale over contamination
neighborhood as a function of the fraction of contamination and show that the
similar strong results are obtained in terms of maximum asymptotic bias for MAD
as with the MD.

3.3. Control Limits

In this paper, we consider the general equations for constructing control limits (see [13]).
Thus, with a robust location estimator T and the corresponding scale estimator S, the control
limits are given by

UCL = T +
3S
A
√
n
,

CL = T,

LCL = T − 3S
A
√
n
.

(3.10)

The constant A in (3.10) is determined in such a way that S/A is an unbiased estimator of
the scale parameter. The most commonly used control charts are ShewhartX charts using the
sample range. ForX charts using the sample standard deviation, the T in (3.10) is the sample
mean X and S is the sample standard deviation with A = c4.

Shewhart modified these control limits using rational subgroups (see [14]) in whichm
rational subgroups with each of size n are taken. According to Shewhart’s suggestion, these
subgroups are formed in order that the between-groups variability is maximized while the
within-group variation is minimized. In this view, then

X =
1
m

m
∑

i=1

Xi, S =
1
m

m
∑

i=1

Si, (3.11)
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where Xi and Si are the subgroup mean and standard deviation, respectively. Each of these
estimates is an unbiased estimate of the corresponding parameter, then the control limits
using rational subgroups are

UCL = T +
3S
A
√
n
,

CL = T,

LCL = T − 3S
A
√
n
.

(3.12)

In practice, the control limits are the average of the control limits for them subgroups.
In the case of X chart for which we employ the sample range as the scale parameter, it is
estimated with the average range computed by averaging over them subgroups

T = X =
1
m

m
∑

i=1

Xi,

S = R =
1
m

m
∑

i=1

Ri.

(3.13)

Then, the control limits are defined as

UCL = X +
3R
A
√
n
,

CL = X,

LCL = X − 3R
A
√
n
.

(3.14)

For constructing the control charts under a normal distribution using the robust
estimators, we will determine the appropriate constant A for the desired estimators through
computer simulations. To illustrate, a sample of size nwas taken fromN(0, 1). The constantA
was computed by averaging over 100,000 repetitions. Here, for instance, if we consider using
S as scale estimator, then over 100,000 repetitions, we expect E(S/A) = σ for any σ. Table 1
exhibits the constantA such that E(scale estimator/A) = σ. It can be seen that if scale estimator
is the sample range, the simulated values (E1) agree closely with the standard tabled values.
E2 and E3 are the corresponding estimates for the Median and the proposed MM charts.

Thus, in the same way, the estimators for location and scale for Median-MAD chart are
given by

T = Median(xi),

S = MAD = Median{|xi − T |},
(3.15)
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Table 1: Simulated values of A for different scale estimators.

Estimator n = 5 n = 10
E1 2.3275 3.0563
E2 0.8255 0.9123
E3 0.7677 0.8897

while the estimators for the proposed MM chart are given by

T = μ̃n = arg inf
t∈R

sn(t),

S = σ̂n = inf
t∈R

sn(t).
(3.16)

In this study, three different estimators under investigation are as follows:
E1: T = Sample Mean; S = Range,
E2: T =Median; S = MAD =Median{|xi − T |},
E3: T = μ̃n = arg inft∈R sn(t); S = σ̂n = inft∈R sn(t).

3.4. Confidence Regions (Confidence Set)

One of the benchmarks for assessing the performance of a control chart is to construct a
confidence region for the time of the process change. The use of confidence region on the
change point is that it will suggest practitioners with useful starting points for searching
their process log books and records for the special cause. This will provide the practitioners a
“search window” for the special cause and aid in quicker identification. Hence, practitioners
can then take necessary action for the special cause sooner in order to improve quality as well
as to reduce process downtime.

Basically, we will incorporate the likelihood function to obtain a confidence region for
the process change point. The confidence region approaches in the statistics literature involve
the likelihood function that relies on asymptotic theory (see [15]). In process monitoring,
there are relatively small time intervals between the process change point and the time
of the control chart signal. Thus, approximations based on asymptotic theory may not be
appropriate.

Box and Cox [16] proposed a method involving the log likelihood function for
constructing a possibly noncontiguous confidence region (also called a confidence set) on
a parameter. Their approach can be used to build a confidence set (CS) for the process change
point using the log likelihood function having the form

CS = {t : lnL(τ̂) − lnL(τ) < D}. (3.17)

Here, ln L(τ̂) is the maximum value of the log likelihood function; τ̂ is the MLE of τ (i.e., the
value of t that maximizes the log likelihood function), where

lnL(t) = −T ln
(√

2πσx
)

− n

2σ2
0

[

T
∑

i=1

X2
i − 2μ0

t
∑

i=1

Xi + tμ20 − (T − t)
(

XT, t

)2
]

(3.18)
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is the value of the log likelihood function at t. We let k1 and k2 represent constants determined
by the subgroup averages. Thus, lnL(t) can be expressed as

lnL(t) = k1 − n

2σ2
0

[

k2 − (T − t)
(

XT,τ − μ0
)2
]

. (3.19)

Box and Cox [16] proposed using D = (1/2)χ2
1,α to obtain a 100(1 − α)% confidence

region. Siegmund [17] used asymptotic theory to develop a 100(1 − α)% confidence set for
the change point of a normal process mean based on the log likelihood function. He proposed
using the value

D = − ln
[

1 − (1 − α)1/2
]

. (3.20)

By means of Monte Carlo simulation, we study the confidence sets obtained with
nominal confidence coefficient of 1 − α = 0.90. In accordance with Box and Cox [16] and
Siegmund [17], theD values for a 90% confidence set areD = 1.353 andD = 2.97, respectively.
It was observed thatD = 1.353 value suggested by Box and Cox [16] provides a 90% coverage
for a value of δ between 2.0 and 3.0, while Siegmund’s [17] of D = 2.97 provides at least 90%
coverage for δ ≥ 1.0. By trial and error, the value of D = 3.7 provides at least 90% coverage
for δ ≥ 0.5.

4. Methodology

In order to analyze the performance of the control charts, we consider using Shewhart X,
Median, and our proposed MM control chart. When a control chart signals that suggest a
process change has occurred, the change point estimator (see the appendix) is then applied
to the data to estimate the time of the change at which we need to find the value of t in the

range 0 ≤ t < T which maximizes Ct = (T − τ)(XT,t − μ0)2. The reverse cumulative average,

XT,τ = (T − τ)−1∑T
i=τ+1Xi, is the overall average of the T − tmost recent subgroups for which

the value of t maximizing the Ct values is our estimator of the last subgroup from in-control
process.

5. Simulation Study

We will now analyze the performance of the change point estimator adopting the three
control charts through the simulation study. Assuming that the process is initially in control,
with observations coming from a normal distribution with a known mean of μ0 and a known
standard deviation of σ0. However, after an unknown point in time τ (known as the process
change point), the process location changes from μ0 to μ1 = μ0 ± δσ0/

√
n, where δ is the

unknown magnitude of the change. We also assume that once this step change in the process
location occurs, the process remains at the new level of μ1, until the special cause has been
identified and removed.

To illustrate, the data are generated under different settings of distributions. In
addition to the normal distribution, two alternative distributional forms are considered.
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They are contaminated model (Case 2 of (5.2)) and Slash distribution. Under different
types of distributions, for each run, the data consist of m = 30 subgroups of size n = 5
are used to construct the control limits and summary statistics are calculated. In order to
assess the performance of the corresponding chart, observations for 1 to 100 are generated
from standard normal distribution. Then, starting from subgroup 101, observations were
randomly generated from a normal distribution with mean δ and standard deviation 1 until
each of Shewhart X, Median, and the proposed MM control chart produces a signal. The
procedure was repeated a total of 10,000 times for each of the values of magnitude that was
studied, namely δ = 1.0, 2.0, and 3.0. For each simulation run, the change point estimate was
computed. Subsequently, the average of the estimates of τ̂ for the 10,000 simulation runs was
computed along with its standard error, expected length, and coverage probability.

For analyzing the outlier model, we modified the contaminated model by Davis
and Adams [18]. Specifically, the in-control conditions with contaminated data values are
determined by generating a random number from a Uniform (0, 1) distribution and the
corresponding frequency of contaminated data, 0 ≤ β ≤ 1. A Uniform (0, 1) random
probabilistic value pij is generated for observations j of sample i, xij . Let I(a,b)(p) represent an
indicator function with

I(a,b)
(

p
)

=

⎧

⎨

⎩

1, if a < p < b,

0, otherwise.
(5.1)

A random observation xij in the simulated data is described by (5.2). Different changes for
each of process states are illustrated in the expression. For the purpose of comparisons, the
frequencies of contamination of β = 0.05 and β = 0.10 with C = 9.0 are considered for the
purpose of creating some disturbances in the data

xij ∼N
(

μ + C, σ2
)

I(0,β)
(

pij
)

+N
(

μ, σ2
)

I[β,1)
(

pij
)

, for i = 1, 2, . . . , 10, 000,

j = 1, 2, . . . , n.
(5.2)

Case 1. In-control (no contaminated data): μ = 0, σ2 = 1, β = 0, C = 0.

Case 2. In-control (contaminated data): μ = 0, σ2 = 1, β = 0.05, 0.10,C = 9.0.

As with the computation of sizes of confidence sets obtained using a specific value
of D, for each control chart and magnitude of change studied, a step change in the
normal process mean was simulated following τ = 100. The confidence set estimator was
applied following a signal from the corresponding control charts considered. The size of the
confidence set was recorded as well as whether the confidence set covered the true process
change point of τ = 100. This procedure was repeated for a total of N = 10, 000 simulation
runs for each of values δ considered. The proportion of the 10,000 runs that covered the true
process change point was also determined. This was reflected by the resulting estimates of
the coverage probabilities obtained by specifying theD value to be 2.97, such that it provides
at least 90% coverage for δ ≥ 1.0, which has been discussed in Section 4. The results are
tabulated along with the average sizes of confidence sets. For a given coverage probability, a
smaller confidence set is preferred, so that process engineers can more narrowly focus their
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search for the special cause. In general, it is presumed that the increase in the magnitude of
shift will be followed by the increase in the corresponding coverage probability.

From Tables 2, 3, 4, and 5, we can see that the performances of the three charts in
terms of coverage probability are quite similar especially when the process data come from a
normal distribution. Generally, the Median chart and the proposed MM chart perform better
in most of the cases (particularly for a larger proportion of contamination). For instance, for
a change of magnitude δ = 3.0, with β = 0.05, C = 9.0, the coverage probability utilizing X
chart is 0.588, while the coverage probability for Median chart and the proposed MM chart
are 0.626 and 0.632, respectively.

In Tables 2–5, averages of change point estimates τ̂ are also tabulated for various sizes
of change in the process mean together with its corresponding standard error estimates for a
normal case setting. As the actual change point for the simulation was at time 100, the average
estimated time of the process change, τ̂ , should possibly be close to 100. With X chart, we see
that when the process step change of standardized magnitude δ = 1, the average estimated
time of the process change was 100.00, which is fairly close to the actual change point of 100.
While for a standardized process location change of size δ = 2, the average estimated time of
the change is 99.60.Meanwhile, when δ = 3, the average estimated time of the change is 99.47.
Hence, on average, the change point estimate of the time of the process change is considerably
close to the actual time of the change, regardless of the magnitude of the change.

By the same taken, with the Median chart, for the process step change of standardized
magnitude δ = 1, the average estimated time of the process change was 99.70, which is also
close to the actual change point of 100.00. As for a standardized process location change of
size δ = 2, the average estimated time of the change is 99.49. And when δ = 3, the average
estimated time of the change is 99.57.

Lastly, when the process is monitored with our proposed robust MM chart, by and
large, the change point estimate of the time of the process change is fairly close to the actual
time of the change, regardless of the magnitude of the change. In the case when the process
step change of standardized magnitude δ = 1, the average estimated time of the process
change was 99.90. It turns out that for a standardized process location change of size δ = 2,
the average estimated time of the change is 99.42. As with δ = 3, the average estimated
time of the change is 99.59. Overall, we could say that for all types of charts under study,
the change point estimator of the time of the process change is able to detect the change
point considerably close to the actual time of the change, irrespective of the magnitude of the
change.

Another benchmark of evaluating the control chart is by examining the expected
length of the signal. This is the expected time at which the control chart signals a change in the
process mean that is supposed to occur at time 100. It is generally perceived that Shewhart
X control chart might issue a signal of a change in a process mean a considerable amount
of time after the change in the process mean actually occurred. Thus, estimating the time
of process change with the time when the control chart indeed issues a signal would lead
to an unfavorably biased estimate. As a consequence, probably a misleading estimate of the
time of the process changes. This bias is in virtue of the potentially large delay in generating
a signal from the control chart. Hence, the criterion for evaluating the performance of the
control chart is how quick the chart would signal (Expected Length). Tables 2–5 and Figures
1–4 summarize the performance in terms of expected length for the three charts.

In a normal distribution situation, for a step change in the process mean of magnitude
δ = 1, it is easy to see from Figure 1 that the expected length for a Shewhart X chart is 57.
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The result seems to suggest that X chart is the best compared to the Median chart and the
proposed MM chart for which each needs 157 and 98, respectively, when the shift is small.
The situation improves as the magnitude of shift δ increases to 2 or 3. All types of charts
considered here seem to be relatively comparable and perform quite closely.

On the other hand, the Shewhart X chart is inferior in an outlier model. With β = 0.10
and C = 9, according to Table 4, both the Median chart and the proposed MM chart appear
to be better than Shewhart X chart for different magnitudes of shifts. The similar situation
arises when a very heavy-tailed distribution (Slash distribution) is considered. Again, the
Median chart and the proposed MM chart outperformed Shewhart X chart with respect to
the expected length. It can be observed from Table 5 that the differences are quite apparent,
whereby Shewhart X chart requires the expected length of 24 and yet the Median chart and
the proposed MM chart both demand about 3 subgroups before detecting the first signal
when the magnitude of shift is 1.

We now turn to evaluate the observed frequency in which the estimates of the time of
the step were within m observations of the actual time of the change, for m = 0, 1, 2, . . . , 10.
The results are tabulated in Tables 6, 7, 8, 9, 10, 11, 12, 13, and 14. This provides an indication
of the precision of the estimator by means of the three different charts. The proportion of the
10,000 runs where the estimated time of the change was within ±m of the actual change is
expected to be increase in size as m increases. Referring to Tables 6–14, we observed that the
precision increases with the increases ofm for each δ value. Let us first focus our attention to
a normal setting, when the process step change of magnitude δ = 2. Monitoring the process
using traditional ShewhartX chart identified correctly the change point in 60.49%of the trials.
It was within one observation of the actual change point in 83.23% of the trials, and within
two observations of the actual change point in 91.39% of the trials. Turning to the Median
chart, which is shown in Table 7, the chart detected correctly the change point in 59.59% of
the trials. It was within one observation of the actual change point in 83.46% of the trials, and
within two observations of the actual change point in 91.66% of the trials. It then follows that,
based on Table 8, our proposed MM chart located accurately the change point in 59.61% of
the trials. It was within one observation of the actual change point in 82.88% of the trials, and
within two observations of the actual change point in 91.25% of the trials. All types of charts
considered here seem to be comparable and performed quite equally.

Next, we observe the situation under outlier model setting, with β = 0.10 and C = 9.
Consider again when the process step change of magnitude is δ = 2, for step change of this
magnitude, the Shewhart X chart estimator exactly identified the time of the change in just
23.65% of the trials and was within one (two) observation of the time of the actual process
change in 45.03% (56.69%) of the trials. As for the Median chart, we can notice that, of the
10,000 simulation trials conducted for δ = 2, 24.99% of those simulation trials identified the
change point precisely. It was in 46.92% and 58.11% of the trials that the change point was
estimated to be within ±1 and ±2, respectively, from the actual time of the process change. The
results of the study also indicate that 25.25% of those simulation trials identified the change
point correctly for the proposed MM chart. In 47.53% of the trials, the estimate was within ±1
observation, and in 58.61% of the trials, the estimate was within ±2 observations. Overall, the
procedure using the proposed MM chart seems to perform slightly better than the other two
charts in this respect.

Finally, we focus on nonnormal data without outliers’ situation, the Median chart and
the proposed MM chart generally lead to shorter control limits than the traditional Shewhart
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Figure 1: Simulation result: expected length for change point of τ = 100 (normal distribution).

Table 2: Simulation result: estimates of expected length, average change point, standard error, average size
of confidence set and coverage probability for change point of τ = 100 (normal distribution).

X-Bar chart Median chart Proposed MM chart
Magnitude of shift, δ Magnitude of shift, δ Magnitude of shift, δ

δ = 1.0 δ = 2.0 δ = 3.0 δ = 1.0 δ = 2.0 δ = 3.0 δ = 1.0 δ = 2.0 δ = 3.0
Expected length, E(T) 156.75 106.88 102.05 257.05 108.30 102.16 198.14 107.60 102.14
τ̂ 100.00 99.60 99.47 99.70 99.49 99.57 99.90 99.42 99.59
Standard error (τ̂) 3.55 2.04 2.43 4.29 2.60 2.18 3.70 2.76 2.16
Average size, CS 14.00 5.90 4.08 16.20 6.69 4.13 15.80 6.13 4.29
Coverage probability 0.897 0.959 0.984 0.901 0.953 0.979 0.901 0.956 0.981

X chart. Here, we just limit ourselves to the study of Slash distribution (see [13]) which is a
very heavy-tailed distribution. When the process step change of magnitude δ = 2, monitoring
the process using traditional X chart identified correctly the change point in 5.31% of the
trials. It was within one observation of the actual change point in 14.44% of the trials, and
within two observations of the actual change point in 20.64% of the trials. For the Median
chart which is shown by Table 13, the chart was able to detect correctly the change point in
5.45% of the trials. It was within one observation of the actual change point in 12.08% of the
trials, and within two observations of the actual change point in 17.95% of the trials. It then
follows that, based on Table 14, our proposed MM chart discovered accurately the change
point in 5.49% of the trials. It was within one observation of the actual change point in 12.28%
of the trials, and within two observations of the actual change point in 18.02% of the trials.
On the whole, we would say that the Median, and the proposed MM charts perform better
and more consistently than the X chart in this setting.

6. Conclusions

Control charts are used to detect whether or not a process has changed. When a control chart
signals indicate that a process has changed, practitioners must initiate a search for the special
cause. However, given a signal from a control chart, practitioners generally do not know
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Figure 2: Simulation result: expected length for change point of τ = 100 (contaminated distribution, β =
0.05, C = 9).
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Figure 3: Simulation result: expected length for change point of τ = 100 (contaminated distribution, β =
0.10, C = 9).
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Figure 4: Simulation result: expected length for change point of τ = 100 (slash distribution).
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Table 3: Simulation result: estimates of expected length, average change point, standard error, average
size of confidence set, and coverage probability for change point of τ = 100 (contaminated distribution,
β = 0.05, C = 9).

X-Bar chart Median chart Proposed MM chart
Magnitude of shift, δ Magnitude of shift, δ Magnitude of shift, δ

δ = 1.0 δ = 2.0 δ = 3.0 δ = 1.0 δ = 2.0 δ = 3.0 δ = 1.0 δ = 2.0 δ = 3.0
Expected length, E(T) 113.00 107.24 104.50 107.00 104.08 101.92 107.00 104.23 101.97
τ̂ 105.00 100.11 98.89 96.70 95.17 91.61 97.00 95.93 91.98
Standard error (τ̂) 7.14 5.21 4.92 9.54 8.03 9.61 9.48 7.42 9.47
Average size, CS 2.57 2.20 2.06 4.47 4.10 4.54 4.17 3.81 4.24
Coverage probability 0.179 0.438 0.588 0.248 0.476 0.626 0.244 0.481 0.632

Table 4: Simulation result: estimates of expected length, average change point, standard error, average
size of confidence set, and coverage probability for change point of τ = 100 (contaminated distribution,
β = 0.10, C = 9).

X-Bar chart Median chart Proposed MM chart
Magnitude of shift, δ Magnitude of shift, δ Magnitude of shift, δ

δ = 1.0 δ = 2.0 δ = 3.0 δ = 1.0 δ = 2.0 δ = 3.0 δ = 1.0 δ = 2.0 δ = 3.0
Expected length, E(T) 112.11 105.84 103.60 104.11 102.73 101.72 104.27 102.83 101.81
τ̂ 102.53 99.61 99.72 91.96 92.76 91.89 92.78 93.49 92.44
Standard error (τ̂) 8.72 5.24 3.24 10.71 9.12 9.10 10.37 8.80 8.84
Average size, CS 1.82 1.53 1.39 2.96 2.63 2.62 2.79 2.51 2.53
Coverage probability 0.131 0.311 0.470 0.186 0.339 0.465 0.185 0.340 0.473

what caused the process situation to change or when the process has changed. Identifying
the time of the process change would simplify the seeking of the special cause. In the event
that the practitioners knew when the process changed, the search would simply be reduced
for discovering what aspect of the process changed at that time. As a result, practitioners
would increase their chances of identifying the special cause more correctly and quickly.
Subsequently, This allows them to take the appropriate actions immediately to improve the
quality.

In this paper, monitoring processes in the presence of data contamination and under
nonnormal setting are of primary concern. We have applied an estimator that is useful for
identifying the change point of a step change in normal process mean, nonnormal, and when
contamination may exist. We have discussed the performance of the change point estimator
and other criteria when they are monitored by Shewhart X, the Median and the proposed
MM control charts. The results show that the proposed MM robust control chart consistently
performed well in a range of situations. It provides a useful and much better alternative in
using the time of the signal from the conventional X control chart. Although the proposed
MM chart and the Median chart are comparable under nonnormal and contamination
situation; the Median chart becomes worse in the event of normal setting. The performance
of our proposed MM control chart has good properties in the aspect of expected length and
coverage probability for contamination data and that arise from a heavy-tailed distribution
functions for moderate sample sizes. The proposed MM chart compares favorably with
traditional Shewhart X control chart in normal setting especially when magnitudes of shift
are 2 and 3. It is interesting to note that the proposed robust MM chart is more efficient than
the Shewhart X chart when the process distribution function has a heavy-tailed distribution.



Mathematical Problems in Engineering 15

Table 5: Simulation result: estimates of expected length, average change point, standard error, average size
of confidence, set and coverage probability for change point of τ = 100 (slash distribution).

X-Bar chart Median chart Proposed MM chart
Magnitude of shift, δ Magnitude of shift, δ Magnitude of shift, δ

δ = 1.0 δ = 2.0 δ = 3.0 δ = 1.0 δ = 2.0 δ = 3.0 δ = 1.0 δ = 2.0 δ = 3.0
Expected length, E(T) 124.00 120.46 114.63 103.00 102.17 101.46 103.00 102.24 101.50
τ̂ 99.40 97.84 92.46 65.40 64.29 64.74 66.00 64.75 64.85
Standard error (τ̂) 37.40 42.48 28.23 14.90 14.78 14.61 14.90 14.81 14.58
Average size, CS 1.01 1.01 1.02 1.08 1.07 1.07 1.07 1.06 1.07
Coverage probability 0.029 0.056 0.083 0.040 0.055 0.076 0.040 0.056 0.079

Table 6: Precision of the estimator when used with X-Bar chart for different magnitudes of process change
(magnitude of shift, δ) based on 10,000 trials. Subgroup size n = 5, change point τ = 100 (normal
distribution).

Magnitude of shift, δ
δ = 1.0 δ = 2.0 δ = 3.0

̂P(τ̂ = τ) 0.2660 0.6049 0.8168
̂P(|τ̂ − τ | ≤ 1) 0.4790 0.8323 0.9393
̂P(|τ̂ − τ | ≤ 2) 0.6230 0.9139 0.9734
̂P(|τ̂ − τ | ≤ 3) 0.7080 0.9537 0.9834
̂P(|τ̂ − τ | ≤ 4) 0.7610 0.9720 0.9843
̂P(|τ̂ − τ | ≤ 5) 0.7990 0.9783 0.9893
̂P(|τ̂ − τ | ≤ 6) 0.8260 0.9811 0.9900
̂P(|τ̂ − τ | ≤ 7) 0.8580 0.9831 0.9909
̂P(|τ̂ − τ | ≤ 8) 0.8790 0.9848 0.9909
̂P(|τ̂ − τ | ≤ 9) 0.9100 0.9877 0.9915
̂P(|τ̂ − τ | ≤ 10) 0.9220 0.9899 0.9915

Table 7: Precision of the estimator when used with median chart for different magnitudes of process
change (magnitude of shift, δ) based on 10,000 trials. Subgroup size n = 5, change point τ = 100 (normal
distribution).

Magnitude of shift, δ
δ = 1.0 δ = 2.0 δ = 3.0

̂P(τ̂ = τ) 0.2520 0.5959 0.8164
̂P(|τ̂ − τ | ≤ 1) 0.4720 0.8346 0.9412
̂P(|τ̂ − τ | ≤ 2) 0.6120 0.9166 0.9769
̂P(|τ̂ − τ | ≤ 3) 0.6960 0.9557 0.9870
̂P(|τ̂ − τ | ≤ 4) 0.7510 0.9722 0.9882
̂P(|τ̂ − τ | ≤ 5) 0.7910 0.9794 0.9923
̂P(|τ̂ − τ | ≤ 6) 0.8200 0.9822 0.9930
̂P(|τ̂ − τ | ≤ 7) 0.8560 0.9833 0.9930
̂P(|τ̂ − τ | ≤ 8) 0.8760 0.9850 0.9930
̂P(|τ̂ − τ | ≤ 9) 0.8880 0.9879 0.9930
̂P(|τ̂ − τ | ≤ 10) 0.9060 0.9888 0.9930
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Table 8: Precision of the estimator when used with proposedMM chart for different magnitudes of process
change (magnitude of shift, δ) based on 10,000 trials. Subgroup size n = 5, change point τ = 100 (normal
distribution).

Magnitude of shift, δ
δ = 1.0 δ = 2.0 δ = 3.0

̂P(τ̂ = τ) 0.2590 0.5961 0.8163
̂P(|τ̂ − τ | ≤ 1) 0.4800 0.8288 0.9415
̂P(|τ̂ − τ | ≤ 2) 0.6240 0.9125 0.9777
̂P(|τ̂ − τ | ≤ 3) 0.7090 0.9535 0.9878
̂P(|τ̂ − τ | ≤ 4) 0.7600 0.9714 0.9878
̂P(|τ̂ − τ | ≤ 5) 0.7980 0.9783 0.9928
̂P(|τ̂ − τ | ≤ 6) 0.8240 0.9811 0.9935
̂P(|τ̂ − τ | ≤ 7) 0.8610 0.9822 0.9935
̂P(|τ̂ − τ | ≤ 8) 0.8830 0.9839 0.9935
̂P(|τ̂ − τ | ≤ 9) 0.8960 0.9868 0.9935
̂P(|τ̂ − τ | ≤ 10) 0.9130 0.9877 0.9935

Table 9: Precision of the estimator when used with X-Bar chart for different magnitudes of process change
(magnitude of shift, δ) based on 10,000 trials. Subgroup size n = 5, change point τ = 100 (contaminated
distribution, β = 0.10, C = 9).

Magnitude of shift, δ
δ = 1.0 δ = 2.0 δ = 3.0

̂P(τ̂ = τ) 0.0943 0.2365 0.4044
̂P(|τ̂ − τ | ≤ 1) 0.2295 0.4503 0.6430
̂P(|τ̂ − τ | ≤ 2) 0.3184 0.5669 0.7574
̂P(|τ̂ − τ | ≤ 3) 0.3873 0.6547 0.8315
̂P(|τ̂ − τ | ≤ 4) 0.4595 0.7260 0.8667
̂P(|τ̂ − τ | ≤ 5) 0.5234 0.7826 0.8986
̂P(|τ̂ − τ | ≤ 6) 0.5672 0.8331 0.9308
̂P(|τ̂ − τ | ≤ 7) 0.6074 0.8583 0.9354
̂P(|τ̂ − τ | ≤ 8) 0.6413 0.8827 0.9501
̂P(|τ̂ − τ | ≤ 9) 0.6655 0.8991 0.9586
̂P(|τ̂ − τ | ≤ 10) 0.6928 0.9172 0.9620

The philosophy of the proposed robust MM control chart is more in keeping with
the desire to provide robust limits in the face of nonnormal distribution situation or that
outlier(s) may arise in data collection. The proposed robust MM charting methodology gives
better performance than the traditional Shewhart X chart if the underlying distribution of
chance cause is nonnormal or contaminated. This is usually desirable feature for any control
chart to be applied in the industry.

Appendix

In this appendix, we show the derivation of the maximum likelihood estimator (MLE) of τ ,
the process location change point. For maximum-likelihood estimation techniques, see [1].
Denoting the MLE of the change point τ as τ̂ , let subgroup averages be x1, . . . , xT , the MLE
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Table 10: Precision of the estimator when used with median chart for different magnitudes of process
change (magnitude of shift, δ) based on 10,000 trials. Subgroup size n = 5, change point τ = 100
(contaminated distribution, β = 0.10, C = 9).

Magnitude of shift, δ
δ = 1.0 δ = 2.0 δ = 3.0

̂P(τ̂ = τ) 0.1227 0.2499 0.3714
̂P(|τ̂ − τ | ≤ 1) 0.3075 0.4692 0.5843
̂P(|τ̂ − τ | ≤ 2) 0.4180 0.5811 0.6783
̂P(|τ̂ − τ | ≤ 3) 0.5078 0.6597 0.7309
̂P(|τ̂ − τ | ≤ 4) 0.5703 0.7016 0.7499
̂P(|τ̂ − τ | ≤ 5) 0.6213 0.7342 0.7662
̂P(|τ̂ − τ | ≤ 6) 0.6681 0.7688 0.7843
̂P(|τ̂ − τ | ≤ 7) 0.6970 0.7802 0.7893
̂P(|τ̂ − τ | ≤ 8) 0.7274 0.7981 0.8041
̂P(|τ̂ − τ | ≤ 9) 0.7464 0.8085 0.8087
̂P(|τ̂ − τ | ≤ 10) 0.7618 0.8190 0.8127

Table 11: Precision of the estimator when used with proposed MM chart for different magnitudes of
process change (magnitude of shift, δ) based on 10,000 trials. Subgroup size n = 5, change point τ = 100
(contaminated distribution, β = 0.10, C = 9).

Magnitude of shift, δ
δ = 1.0 δ = 2.0 δ = 3.0

̂P(τ̂ = τ) 0.1241 0.2525 0.3788
̂P(|τ̂ − τ | ≤ 1) 0.3107 0.4753 0.5946
̂P(|τ̂ − τ | ≤ 2) 0.4218 0.5861 0.6901
̂P(|τ̂ − τ | ≤ 3) 0.5115 0.6690 0.7437
̂P(|τ̂ − τ | ≤ 4) 0.5732 0.7138 0.7631
̂P(|τ̂ − τ | ≤ 5) 0.6241 0.7476 0.7812
̂P(|τ̂ − τ | ≤ 6) 0.6720 0.7834 0.7995
̂P(|τ̂ − τ | ≤ 7) 0.7024 0.7961 0.8045
̂P(|τ̂ − τ | ≤ 8) 0.7316 0.8120 0.8169
̂P(|τ̂ − τ | ≤ 9) 0.7506 0.8234 0.8215
̂P(|τ̂ − τ | ≤ 10) 0.7684 0.8350 0.8244

of τ is the value of τ that maximizes the likelihood function or, equivalently, its logarithm. It
is shown that logarithm of the likelihood function is

logL
(

τ, μ1 | x
)

= − n

2σ2
0

(

τ
∑

i=1

(

xi − μ0
)2 +

T
∑

i=τ+1

(

xi − μ1
)2

)

= − n

2σ2
0

(

T
∑
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x2
i − 2μ0

τ
∑

i=1

xi − τμ20 − 2μ1
T
∑

i=τ+1

xi + (T − τ)μ21
)

.

(A.1)
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Table 12: Precision of the estimator when used with X-Bar chart for different magnitudes of process
change (magnitude of shift, δ) based on 10,000 trials. Subgroup size n = 5, change point τ = 100 (slash
distribution).

Magnitude of shift, δ
δ = 1.0 δ = 2.0 δ = 3.0

̂P(τ̂ = τ) 0.0341 0.0531 0.0829
̂P(|τ̂ − τ | ≤ 1) 0.1057 0.1444 0.1798
̂P(|τ̂ − τ | ≤ 2) 0.1541 0.2064 0.2547
̂P(|τ̂ − τ | ≤ 3) 0.1862 0.2542 0.3053
̂P(|τ̂ − τ | ≤ 4) 0.2225 0.2937 0.3547
̂P(|τ̂ − τ | ≤ 5) 0.2547 0.3356 0.3892
̂P(|τ̂ − τ | ≤ 6) 0.2899 0.3659 0.4222
̂P(|τ̂ − τ | ≤ 7) 0.3038 0.3891 0.4482
̂P(|τ̂ − τ | ≤ 8) 0.3307 0.4165 0.4690
̂P(|τ̂ − τ | ≤ 9) 0.3554 0.4358 0.4849
̂P(|τ̂ − τ | ≤ 10) 0.3787 0.4618 0.5094

Table 13: Precision of the estimator when used with median chart for different magnitudes of process
change (magnitude of shift, δ) based on 10,000 trials. Subgroup size n = 5, change point τ = 100 (slash
distribution).

Magnitude of shift, δ
δ = 1.0 δ = 2.0 δ = 3.0

̂P(τ̂ = τ) 0.0437 0.0545 0.0761
̂P(|τ̂ − τ | ≤ 1) 0.1107 0.1208 0.1493
̂P(|τ̂ − τ | ≤ 2) 0.1623 0.1795 0.2021
̂P(|τ̂ − τ | ≤ 3) 0.2004 0.2116 0.2323
̂P(|τ̂ − τ | ≤ 4) 0.2261 0.2397 0.2567
̂P(|τ̂ − τ | ≤ 5) 0.2526 0.2549 0.2715
̂P(|τ̂ − τ | ≤ 6) 0.2845 0.2812 0.2940
̂P(|τ̂ − τ | ≤ 7) 0.2957 0.2915 0.2995
̂P(|τ̂ − τ | ≤ 8) 0.3177 0.3072 0.3140
̂P(|τ̂ − τ | ≤ 9) 0.3310 0.3246 0.3270
̂P(|τ̂ − τ | ≤ 10) 0.3460 0.3424 0.3396

We can see that there are two unknowns in the log-likelihood function: τ and μ1. If the change

point τ was known, the MLE of μ1 would be μ̂1 = XT,τ = (T − τ)−1∑T
i=τ+1Xi, the average of

the T − τ most recent subgroup averages. Substituting this back into (A.1), we obtain

logL(τ | x) = − n

2σ2
0

(

T
∑

i=1

x2
i − 2μ0

τ
∑

i=1

xi + τμ20 − (T − τ)X
2

T,τ

)

. (A.2)

It is easy to verify that this is equivalent to

logL(τ | x) = − n

2σ2
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)

. (A.3)
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Table 14: Precision of the estimator when used with proposed MM chart for different magnitudes of
process change (magnitude of shift, δ) based on 10,000 trials. Subgroup size n = 5, change point τ = 100
(slash distribution).

Magnitude of shift, δ
δ = 1.0 δ = 2.0 δ = 3.0

̂P(τ̂ = τ) 0.0437 0.0549 0.0780
̂P(|τ̂ − τ | ≤ 1) 0.1115 0.1228 0.1501
̂P(|τ̂ − τ | ≤ 2) 0.1631 0.1802 0.2030
̂P(|τ̂ − τ | ≤ 3) 0.2027 0.2154 0.2329
̂P(|τ̂ − τ | ≤ 4) 0.2300 0.2439 0.2585
̂P(|τ̂ − τ | ≤ 5) 0.2565 0.2604 0.2722
̂P(|τ̂ − τ | ≤ 6) 0.2884 0.2883 0.2947
̂P(|τ̂ − τ | ≤ 7) 0.2996 0.3002 0.3002
̂P(|τ̂ − τ | ≤ 8) 0.3228 0.3159 0.3147
̂P(|τ̂ − τ | ≤ 9) 0.3354 0.3333 0.3277
̂P(|τ̂ − τ | ≤ 10) 0.3504 0.3505 0.3403

In what follows, the value of τ that maximizes the log-likelihood function is

τ̂ = arg max
t

{

(T − τ)
(

XT,t − μ0
)2
}

= arg max
t

{Ct},
(A.4)

whereCt = (T−τ)(XT,t−μ0)2, that is, τ̂ is the value of τ in the range 0 ≤ t < T which maximizes

Ct = (T − τ)
(

XT,t − μ0
)2

. (A.5)
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