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This paper presents that the kernel of the fractional Fourier transform (FRFT) satisfies the operator
version of Kramer’s Lemma (Hong and Pfander, 2010), which gives a new applicability of
Kramer’s Lemma. Moreover, we give a new sampling formulae for reconstructing the operators
which are bandlimited in the FRFT sense.

1. Introduction and Notations

Sampling theory for operators motivated by the operator identification problem in com-
munications engineering has been developed during the last few years [1–4]. In [4], Hong
and Pfander gave an operator version of Kramer’s Lemma (see [4, Theorem 25]). But
they did not give any explicit kernel satisfying the hypotheses in [4, Theorem 25] other
than the Fourier kernel. In this paper, we present that the kernel of the fractional Fourier
transform satisfies the hypotheses in [4, Theorem 25]. Therefore, we give a new applicability
of Kramer’s method.

The FRFT—a generalization of the Fourier transform (FT)—has received much atten-
tion in recent years due to its numerous applications, including signal processing, quantum
physics, communications, and optics [5–7]. Hong and Pfander studied the sampling theorem
on the operators which are bandlimited in the FT sense (see [4]). In this paper, we generalize
their results to bandlimited operators in the FRFT sense.

For f ∈ L2(R), its FRFT is defined by

Fα(u) = Fα[f(x)
]
(u) =

∫

R

f(x)Kα(u, x)dx, (1.1)
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where α ∈ R, and the transform kernel is given by

Kα(u, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Aαe
(i/2)(x2+u2)cotα−iux cscα if α/= kπ,

δ(x − u) if α = 2kπ,

δ(x + u) if α = (2k − 1)π,

(1.2)

where δ(·) is Dirac distribution function over R, Aα =
√
(1 − i cotα)/2π , and k ∈ Z. The

inverse FRFT is the FRFT at angle −α, given by

f(x) = F−α[Fα(u)] =
∫

R

Fα(u)Kα(u, x)du, (1.3)

where the bar denotes the complex conjugation. Whenever α = π/2, (1.2) reduces to the FT.
Through this paper, we assume that α/= kπ .

In FRFT domain, the function space with bandwidth Ω is defined by

FPWΩ =
{
f ∈ L2(R) : suppFαf ⊆

[
−Ω
2
,
Ω
2

]}
. (1.4)

For the sake of simplicity, when α = π/2, FPWΩ is written as PWΩ.
In the following, we use the notation

A(F) � B(F), F ∈ F (1.5)

if there exist positive constants c and C such that cA(F) ≤ B(F) ≤ CA(F) for all objects F in
the set F.

Let H be a Hilbert space and {fn : n ∈ Z} be a sequence in H. The set {fn : n ∈ Z} is
said to be a frame [8, 9] for H if

∥∥f
∥∥2

H
�
∑

n∈Z

∣∣〈f, fn〉H

∣∣2, f ∈ H. (1.6)

Let Λ = {λk : k ∈ Z} ⊆ R with (λk < λk+1). Λ is a set sampling for FPWΩ if

∥∥f
∥∥2
L2 �
∑

k∈Z

∣∣f(λk)
∣∣2, f ∈ FPWΩ. (1.7)

2. The Properties of the Kernel of FRFT

In this section, we consider under what conditions {Kα(λk + t, ·) : k ∈ Z} is a frame for
L2[−Ω/2,Ω/2] for every t ∈ R. The following theorem gives a necessary and sufficient
condition for {Kα(λk + t, ·) : k ∈ Z} to be a frame for L2[−Ω/2,Ω/2] for every t ∈ R.

Theorem 2.1. For any t ∈ R and sinα > 0. {Kα(λk + t, ·) : k ∈ Z} is a frame for L2[−Ω/2,Ω/2] if
and only if {e−iλkω : k ∈ Z} is a frame for L2[−(Ω/2)cscα, (Ω/2)cscα].
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Remark 2.2. By Theorem 2.1, when taking appropriate λk, {Kα(λk + t, ·) : k ∈ Z} is a frame for
each t ∈ R. Therefore, we give a kernel satisfying the hypotheses in [4, Theorem 25], which
gives a new applicability of Kramer’s Lemma.

To prove Theorem 2.1, we need to introduce the following results.

Lemma 2.3. Λ = {λk : k ∈ Z} is a set of sampling for FPWΩ if and only if {Kα(λk + t, ·) : k ∈ Z} is
a frame for L2[−Ω/2,Ω/2] for every t ∈ R.

Proof. Suppose that Λ is a set of sampling for FPWΩ. Then, for any F ∈ L2[−Ω/2,Ω/2], there
exists f ∈ FPWΩ such that F = Fαf . Since

〈
F(·)e−i(·)t cscα,Kα(λk + t, ·)

〉

L2
=
〈
F(·)e−i(·)t cscα,Aαe

(i/2)((λk+t)
2+(·)2)cotα−i(·)(λk+t)cscα

〉

L2

= e−(i/2)(2λkt+t
2)
〈
F(·), Aαe

(i/2)(λ2
k
+(·)2)cotα−i(·)λkcscα

〉

L2

= e(−i/2)(2λkt+t
2)〈F(·), Kα(·, λk)〉 = e−(i/2)(2λkt+t

2)f(λk),

(2.1)

we have

∥∥∥F(·)e−i(·)tcscα
∥∥∥
2

L2
= ‖F‖2L2 =

∥∥f
∥∥2
L2 �
∑

k∈Z

∣∣f(λk)
∣∣2

=
∑

k∈Z

∣∣∣
〈
F(·)e−i(·)tcscα,Kα(λk + t, ·)

〉∣∣∣
2
.

(2.2)

Therewith, {Kα(λk + t, ·) : k ∈ Z} is a frame for L2[−Ω/2,Ω/2] for any t ∈ R.
On the other hand, suppose that {Kα(λk + t, ·) : k ∈ Z} is a frame for L2[−Ω/2,Ω/2] for

any t ∈ R. Specifically, {Kα(λk, ·) : k ∈ Z} is also a frame for L2[−Ω/2,Ω/2]. Then, by (2.1),

∥∥f
∥∥2
L2 = ‖F‖2L2 �

∑

k∈Z

|〈F(·), Kα(λk, ·)〉|2

=
∑

k∈Z

∣∣f(λk)
∣∣2.

(2.3)

This completes our proof.

The following proposition gives a necessary and sufficient condition about Λ = {λk :
k ∈ Z} is set of sampling for PWΩ.

Proposition 2.4 (see [10, Lemma 3.5]). Λ = {λk : k ∈ Z} is set of sampling for PWΩ if and only if
{e−iλkω : k ∈ Z} is a frame for L2[−Ω/2,Ω/2].

Lemma 2.5. Λ = {λk : k ∈ Z} is set of sampling for FPWΩ if and only if {e−iλkω : k ∈ Z} is a frame
for L2[−(Ω/2)cscα, (Ω/2)cscα].
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Proof. Since

Fα[f(t)
]
(u) =

√
2πe(i/2)u

2cotαF
[
f(t)e(i/2)t

2cotα
]
(u cscα), (2.4)

where F denotes the FT operator, we have

e(i/2)(·)
2cotαFPWΩ = PWΩ cscα. (2.5)

By Proposition 2.4, this completes the proof.

Proof of Theorem 2.1. By Lemmas 2.3 and 2.5, we immediately get the claim.

3. Sampling of Operators Related to FRFT

In this section, a new sampling formulae for operator is proposed. First we introduce some
definitions and notations about sampling of operator.

The class of Hilbert-Schmidt operators HS(L2(R)) consists of bounded linear operators
on L2(R) which can be represented as integral operators of the form

Hf(x) =
∫

R

κH(x, t)f(t)dt (3.1)

with kernel κH ∈ L2(R2). Let hH(t, x) = κH(x, x−t). We call hH(t, x) the time-varying impulse
response of H. If H ∈ HS(L2(R)), then the operator norm of H is defined by ‖H‖HS :=
‖κH‖L2 = ‖hH‖L2 .

The Feichtinger algebra is defined by

S0(R) =
{
f ∈ L2(R) : Vgf(t, ν) ∈ L1

(
R

2
)}

, (3.2)

where Vgf(t, ν) = 〈f,MνTtg〉 is the short-time Fourier transform of f with respect to the
Gaussian g(x) = e−πx

2
. An operator class O ⊆ HS(L2(R)) is identifiable if all H ∈ O extend to

a domain containing a so-called identifier f ∈ S′
0(R) and

‖H‖HS �
∥∥Hf

∥∥
L2 , H ∈ O. (3.3)

The operator class O ⊆ HS(L2(R)) permits operator sampling if one can choose f in (3.3)
with discrete support in R in the distributional sense. In that case, supp f is called sampling
set for O.

For T,Ω > 0, let

OPWT,Ω =
{
H ∈ HS

(
L2(R)

)
: suppF(hH(t, ·)) ⊆ [0, T] ×

[
−Ω
2
,
Ω
2

]}
,

OFPWT,Ω =
{
H ∈ HS

(
L2(R)

)
: suppFα(hH(t, ·)) ⊆ [0, T] ×

[
−Ω
2
,
Ω
2

]}
.

(3.4)
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The following theorem states that a bandlimited operator in FRFT sense permits
operator sampling.

Theorem 3.1. For Ω, T, T > 0 and 0 < T ′Ω ≤ TΩ ≤ 2π sinα, choose ϕ ∈ PW([−(2π/T −
(Ω cscα/2)), (2π/T − (Ω cscα/2))]) with F(ϕ) = 1 on [−Ω cscα/2, Ωcscα/2] and r ∈ L∞(R)
with supp r ⊆ [−T + T ′, T] and r = 1 on [0, T]. Then OFPWT ′,Ω permits operator sampling as

‖H‖HS =
√
T

∥∥∥∥∥
H
∑

k∈Z

δkT

∥∥∥∥∥
L2

, H ∈ OFPWT ′,Ω, (3.5)

and operator reconstruction is possible by means of the L2-convergent series

hH(t, x) = e−(i/2)x
2cotαr(t)T

∑

n∈Z

e−(i/2)(t+nT)
2cotα

×
(

H
∑

k∈Z

δkT

)

(t + nT)ϕ(x − t − nT).

(3.6)

Before we give the proof of Theorem 3.1, the following two propositions are needed.

Proposition 3.2 (see [4, Theorem 8]). For Ω, T, T > 0 and 0 < T ′Ω ≤ TΩ ≤ 2π , choose ϕ ∈
PW([−(2π/T − Ω/2), (2π/T − Ω/2)]) with F(ϕ) = 1 on [−Ω/2,Ω/2] and r ∈ L∞(R) with
supp r ⊆ [−T + T ′, T] and r = 1 on [0, T]. Then OPWT ′,Ω permits operator sampling as

‖H‖HS =
√
T

∥∥∥∥∥
H
∑

k∈Z

δkT

∥∥∥∥∥
L2

, H ∈ OPWT ′,Ω, (3.7)

and operator reconstruction is possible by means of the L2-convergent series

hH(t, x) = r(t)T
∑

n∈Z

(

H
∑

k∈Z

δkT

)

(t + nT)ϕ(x − t − nT). (3.8)

Proposition 3.3 (see [11, Lemma 1]). Assume a signal f(t) ∈ FPWΩ. Let

g(t) =
∫Ω/2

−Ω/2
Fα[f(t)

]
(u)e−(i/2)u

2cotα+iut cscαdu. (3.9)

Then g(t) ∈ PWΩ cscα.

Proof of Theorem 3.1. Due to (2.4), we have

f(t, x) ∈ OFPWT ′,Ω ⇐⇒ e(i/2)x
2cotαf(t, x) ∈ OPWT ′,Ω cscα. (3.10)
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By the proof of Proposition 3.2,

‖H‖HS =
√
T

∥∥∥∥∥
H
∑

k∈Z

δkT

∥∥∥∥∥
L2

, H ∈ OFPWT ′,Ω. (3.11)

Applying Proposition 3.3, we obtain

hH(t, x) = Aαe
−(i/2)x2cotαhH(t, x), (3.12)

where hH(t, x) =
∫Ω/2
−Ω/2 F

α[hH(t, ·)](u)e−(i/2)u2cotα+iux cscαdu and hH(t, x) ∈ OPWT ′,Ω cscα. Let

Hf(x) =
∫

R

hH(t, x)f(x − t). (3.13)

Using Proposition 3.2 again,

hH(t, x) = r(t)T
∑

n∈Z

(

H
∑

k∈Z

δkT

)

(t + nT)ϕ(x − t − nT). (3.14)

Therewith,

hH(t, x) = Aαe
−(i/2)x2cotαr(t)T

∑

n∈Z

(

H
∑

k∈Z

δkT

)

(t + nT)ϕ(x − t − nT)

= Aαe
−(i/2)x2cotαr(t)T

∑

n∈Z

hH(t, t + nT)ϕ(x − t − nT)

= e−(i/2)x
2cotαr(t)T

∑

n∈Z

e−(i/2)(t+nT)
2cotαhH(t, t + nT)ϕ(x − t − nT)

= e−(i/2)x
2cotαr(t)T

∑

n∈Z

e−(i/2)(t+nT)
2cotα

×
(

H
∑

k∈Z

δkT

)

(t + nT)ϕ(x − t − nT).

(3.15)

Next, we give an important multichannel operator sampling theorem, namely,
derivative operator sampling. Checking the proof of [4, Theorem 32], we have following
lemma.

Lemma 3.4. LetM,N ∈ N and f (r) denotes the rth derivative of f in the distributional sense. Then,

‖H‖2HS �
MN−1∑

j=0

∥∥∥∥∥∥

j∑

r=0

(
j

r

)

(−1)r
(

H
∑

k∈Z

δ
(r)
kN

)(j−r)∥∥∥∥∥∥

2

, H ∈ OPWN,M2π. (3.16)
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and operator reconstruction is possible by means of the L2-convergent series

hH(t, x) =
MN−1∑

j=0

∑

n∈Z

(

Hj

∑

k∈Z

δkN

)

(t + nN)ϕj(x − t − nN), (3.17)

where {ϕj(x − t − nN) : 0 ≤ j ≤ MN, n ∈ N} is a Riesz basis for PW2πM for each fixed t ∈ [0,N],

and Hjf(x) = (
∑j

r=0

(
j
r

)
(−1)r(Hf (r))j−r)(x).

For the operators which are bandlimited in FRFT sense. We have the following
theorem.

Theorem 3.5. Let M,N ∈ N and f (r) denotes the rth derivative of f in the distributional sense.
Then,

‖H‖2HS �
MN−1∑

j=0

∥∥∥∥∥∥

j∑

r=0

(
j

r

)(
e(i/2)x

2cotα
)(j−r) r∑

p=0

(
r

p

)

(−1)p
(

H
∑

k∈Z

δ
(r)
kN

)r−p∥∥∥∥∥∥

2

,

H ∈ OFPWN,M2π sinα.

(3.18)

and operator reconstruction is possible by means of the L2-convergent series

hH(t, x) = e−(i/2)x
2cotα

MN−1∑

j=0

∑

n∈Z

j∑

r=0

(
j

r

)

×
((

e(i/2)x
2cotα
)(j−r)

Hr

∑

k∈Z

δkN

)

(t + nN)ϕj(x − t − nN),

(3.19)

where {ϕj(x − t − nN) : 0 ≤ j ≤ MN,n ∈ N} is a Riesz basis for PWM2π for each fixed t ∈ [0,N]

and Hjf(x) = (
∑j

r=0

(
j
r

)
(−1)r(Hf (r))j−r)(x).

Proof. Due to (2.4), we have

f(t, x) ∈ OFPWN,M2π sinα ⇐⇒ e(i/2)x
2cotαf(t, x) ∈ OPWN,M2π. (3.20)

By Proposition 3.3, we obtain

hH(t, x) = Aαe
−(i/2)x2cotαhH(t, x), (3.21)

where hH(t, x) =
∫Ω/2
−Ω/2 F

α[hH(t, ·)](u)e−(i/2)u2cotα+iux cscαdu. Put

Hf(x) =
∫

R

hH(t, x)f(x − t)dt. (3.22)
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By Lemma 3.4, we have

hH(t, x) =
MN−1∑

j=0

∑

n∈Z

(

Hj

∑

k∈Z

δkN

)

(t + nN)ϕj(x − t − nN), (3.23)

where

Hjf(x) =

(
j∑

r=0

(
j

r

)

(−1)r
(
Hf (r)

)j−r
)

(x) =
∫

R

∂j

∂xj
hH(t, x)f(x − t)dt

=
1
Aα

∫

R

∂j

∂xj

(
e(i/2)x

2cotαhH(t, x)
)
f(x − t)dt

=
1
Aα

j∑

r=0

(
j

r

)(
e(i/2)x

2cotα
)(j−r)

(x)
∫

R

∂r

∂xr
hH(t, x)f(x − t)dt

=
1
Aα

j∑

r=0

(
j

r

)(
e(i/2)x

2cotα
)(j−r)

(x)Hrf(x)

=
1
Aα

j∑

r=0

(
j

r

)(
e(i/2)x

2cotα
)(j−r)

(x)

×
⎛

⎝
r∑

p=0

(
r

p

)

(−1)p
(
Hf (p)

)r−p
⎞

⎠(x).

(3.24)

By the proof of Lemma 3.4, (3.18) holds. Moreover, by (3.21)we obtain

hH(t, x) = Aαe
−(i/2)x2cotα

MN−1∑

j=0

∑

n∈Z

(

Hj

∑

k∈Z

δkN

)

(t + nN)ϕj(x − t − nN)

= e−(i/2)x
2cotα

MN−1∑

j=0

∑

n∈Z

j∑

r=0

(
j

r

)

×
((

e(i/2)x
2cotα
)(j−r)

Hr

∑

k∈Z

δkN

)

(t + nN)ϕj(x − t − nN).

(3.25)

Remark 3.6. After careful development of pertinent tools, one can formulate extensions of
results in this paper to the linear canonical transform case (see [11–13]). We have presented
the FRFT case because of its simplicity and applicability.

4. Conclusion

Kramer’s Lemma is very important in the proofs of a number of sampling theorems. In
[4, Theorem 25], Hong and Pfander proved an operator sampling version of Kramer’s
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Lemma. But they did not give any explicit kernel satisfying the hypotheses in [4, Theorem
25] other than the Fourier kernel. In this paper, we find that the kernel of the fractional
Fourier transform satisfies the hypotheses in [4, Theorem 25]. This observation gives a
new applicability of Kramer’s method. Moreover, we give a new sampling formulae for
reconstructing the operators which are bandlimited in the FRFT sense. This is an extension of
some results in [4].
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