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We deal with the stabilization problem of discrete nonlinear systems. We construct a control
Lyapunov function on discrete nonlinear systems. Then, we present a new method to construct
a continuous state feedback law.

1. Introduction

For nonlinear dynamical systems, Lyapunov function-based methods play a vital role in
stability analysis since the Lyapunov functions have been used to design stabilizing feedback
laws that render asymptotically controllable systems ISS to actuator errors and small
observation noise [1]. This is an important and challenging problem for the general class of
nonlinear systems. Artstein [2] proves that, for smooth control-affine systems evolving on Rn

with controls in Rm, there exists a globally stabilizing feedback control law continuously on
Rn\{0} if the system has a smooth control Lyapunov function. Sontag [3] provided an explicit
proof of Artstein’s Theorem which uses a “universal formula” for the stabilizing controller.
Shahmansoorian et al. [4] presented a new stabilizing control law with respect to a control
Lyapunov function. Many researchers dealt with the effects of control Lyapunov functions
and obtained considerably meaningful results, just as in [5–12].

The stabilization of discrete systems is studied by means of Lyapunov functions in this
paper. Xiushan et al. [13] also studied discrete system, but the control Lyapunov function and
the control law they give are not easy to get. We will present an explicit control Lyapunov
function and feedback law stabilizing a discrete-time control system. Furthermore, a new
way to construct a continuous state feedback law is designed.
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2. Main Results

The problem amounts to find a function u : Rn → Rm with u(0) = 0, such that the closed-loop
system

xk+1 = f(xk, u(xk)) (2.1)

is asymptotically stable at the origin. Of course we assume that f(0, 0) = 0, but the origin is
not asymptotically stable equilibrium for the unforced system xk+1 = f(xk, 0).

Equation (2.1) describes the behavior of the system in the sense that its evolution
depends not only on an initial state, but also on a sequence of input signal. In this paper,
we address the following discrete-time nonlinear control systems of the form:

xk+1 = f(xk) + ukg(xk), (2.2)

which is said to be affine-in-control, where f and g are continuous on Rn and f(0) = 0,
{uk} ∈ U ⊂ R (a sequence of input signal). The system (2.2) is globally asymptotically stable
at the origin if there exists a map x → u(x), such that the system

xk+1 = f(xk) + u(xk)g(xk) (2.3)

is globally asymptotically stable at 0 ∈ Rn.

Definition 2.1. A smooth, proper, and positive definite function V mapping Rn into R is said
to be a control Lyapunov for the discrete system (2.2) if and only if

inf
{uk}⊂U

(ΔV (xk) = V (xk+1) − V (xk)) < 0, (2.4)

for all x ∈ Rn \ {0}.

Remark 2.2. Suppose that V (x) = xTPx, then

ΔV (xk) =
(
f(xk) + ukg(xk)

)T
P
(
f(xk) + ukg(xk)

) − xT
kPxk (2.5)

is a function about xk and uk.

Theorem 2.3. Suppose that f =
(

f1
f2

)
, g =

( g1
g2

)
, and let

Ω0 =
{
x ∈ R2 \ {0} | g(x) = 0

}
,

Ω1 =
{
x ∈ R2 \ {0} | g(x)/= 0

}
.

(2.6)
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Assume that there exist constants A > 0, B > 0, such that supx∈R2(‖f‖/‖x‖) = A < 1, and

sup
x∈R2

f1g2 − f2g1
(
g2
1 + g2

2

)(
x2
1 + x2

2

) = B < +∞, (2.7)

then there exists a positive definite matrix P , such that V (x) = xTPx is a control Lyapunov function
of system (2.2).

Proof. For (x, u) ∈ R2 × R, let

hx(u) = u2gTPg + 2ufTPg + fTPf − xTPx. (2.8)

Obviously, ΔV = V (xk+1) − V (xk) = hxk (uk).
(i) If xk ∈ Ω0, ΔV does not depend on uk, then we just need

fTPf − xTPx < 0. (2.9)

Suppose λmax, λmin > 0 are the eigenvalues of P , then

fTPf − xTPx ≤ λmax
∥∥f

∥∥2 − λmin‖x‖2 ≤ (Aλmax − λmin)‖x‖2 < 0. (2.10)

So, it is easy for us to give a suitable positive definite matrix P such that which satisfies the
relationship.

(ii) If xk ∈ Ω1, gT (xk)Pg(xk) > 0, for the same reason, there exists uk ∈ R such that
hxk (uk) < 0. Let

uk = −f
T (xk)Pg(xk)

gT (xk)Pg(xk)
. (2.11)

An easy computation shows that ΔV < 0 is equal to

fTP
(
gfT − fgT

)
Pg + gTPgxTPx > 0, (2.12)

and let P =
( p1
p3

p3
p2

)
, through a simple computation, we can get

gTPgxTPx > λ4
min

∥∥g
∥∥2‖x‖2 > (

f1g2 − f2g1
)2(

p1p2 − p23

)
= fTP

(
fgT − gfT

)
Pg. (2.13)

Thus, we obtain

λ4
min

λmin · λmax
>

(
f1g2 − f2g1

)2

∥∥g
∥∥2‖x‖2

. (2.14)
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So, if

sup
x∈R2

f1g2 − f2g1
(
g2
1 + g2

2

)(
x2
1 + x2

2

) = B < +∞, (2.15)

we can choose suitable positive definite matrix P .
Then, we can choose a suitable positive definite matrix P satisfies (i) and (ii), such that

V (x) = xTPx is a control Lyapunov function of system (2.2). The proof is end.

Corollary 2.4. If V (x) is a control Lyapunov function for the discrete-time control system (2.2), then
the control

u =

⎧
⎪⎪⎨

⎪⎪⎩

−f
TPg

gTPg
x ∈ Ω1

0 x ∈ Ω0

(2.16)

globally asymptotically stabilizes the equilibrium x = 0 of the system (2.2).

Proposition 2.5. Suppose that g(x)/= 0 for any 0/=x ∈ R2. V (x) is a control Lyapunov function
for the discrete-time system (2.1), then the control Law (2.16) is smooth and globally asymptotically
stabilizes the equilibrium x = 0 of the system (2.1).

Theorem 2.6. If there exists a quadratic control Lyapunov function for the discrete-time system (2.2),
there exists a continuous stabilizing feedback law u : Rn → R, and u(0) = 0.

Proposition 2.7. Consider

Hx(u) = g2(x)u2 + 2f(x)g(x)u + f2(x) − x2 = 0, (2.17)

where x ∈ R, f, g : R → R, f2(x) − x2 ≤ 0.
Assume that

u1,2 =
−f(x) ± x sgn

(
xg(x)

)

g(x)
(2.18)

are the roots of (2.17). If u1,2 only have one discontinuity of the second kind x = x0, then one can
construct one continuous function u(x), such that u(0) = 0 andHx(u(x)) < 0.

Proof. Since x0 is the only second category discontinuous point of the roots of u1, u2, so for
any ε > 0, there must exist δ > 0, such that (1/|u1|), (1/|u2|) < ε for any x ∈ (x0 − δ, x0 + δ)
thus, we can let

u�
1 =

⎧
⎪⎪⎨

⎪⎪⎩

u1 x /∈ (x0 − δ, x0 + δ),

u1(x0 + δ) +
(u1(x0 + δ) − u1(x0 − δ))(x − x0 + δ)

2δ
x ∈ [x0 − δ, x0 + δ].

(2.19)
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Define u�
2 in the same way and let

u(x) =
u�
1 + u�

2

2
, (2.20)

then it is easy for us to verify that u(x) is what we want to get.

Proposition 2.8. Consider

Hx(u) = gTPgu2 + 2fTPgu + fTPf − xTPx = 0, (2.21)

where x ∈ Rn, f, g : Rn → Rn, fTPf − xTPx ≤ 0.
If x0 is the only second category discontinuous point of the roots

u1,2 =
−fTPg ±

√
fTPgfTPg − gTPgfTPf + gTPgxTPx

gTPg
(2.22)

of (2.21), then one can construct one continuous function u(x), such that u(0) = 0 andHx(u(x)) <
0.

Proof. For all ε > 0, there must exist δ > 0, such that (1/|u1|) < ε for any x ∈ Bδ(x0). Let
m = infx∈Bδ(x0)(1/u1(x)), M = supx∈Bδ(x0)(1/u1(x)). Obviously, there exists x1, x2 ∈ Bδ(x0)
satisfying u1(x1) = (1/m), u1(x2) = (1/M), then we can let

u�
1 =

⎧
⎪⎪⎨

⎪⎪⎩

u1 x /∈ Bδ(x0),

1
M

+ (x − x2)
(1/M) − (1/m)

x2 − x1
x ∈ Bδ(x0).

(2.23)

Using the same way, we can get u�
2, then we can get what we want to get.

By Proposition 2.8, it is easy for us to prove Theorem 2.6.

3. Example

Consider a discrete-time nonlinear system

xk+1 = ax2
k + (xk + b)uk, (3.1)

where 0 < a < 1, b > 0. Let V (x) = x2, then it is easy for us to obtain

Hx(u) = (x + b)2u2 + 2ax2(x + b)u + a2x4 − x2,

u1,2 =
−ax2 ± |x| sgn(x + b)

x + b
.

(3.2)
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By Theorem 2.6, we can get that a continuous control law

u(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−3ab − 5ax x ∈
[
−3
2
b,−b

2

]

−ax2

x + 1
x /∈

[
−3
2
b,−b

2

] (3.3)

globally asymptotically stabilizes the equilibrium x = 0 of the system (2.21).
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