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This paper investigates the suppression of galloping in a suspension bridge due to wind loads.
The galloping phenomenon can be destructive due to the high-amplitude oscillations of the
structure. Two controllers are proposed to generate the control force needed to suppress the vertical
galloping in the suspended cables and in the bridge deck. SIMULINK software is used to simulate
the controlled system. The simulation results indicate that the proposed controllers work well.
In addition, the performance of the system with the proposed controllers is compared to the
performance of the system controlled with a tuned mass damper.

1. Introduction

Suspension bridges are one of the most popular types of bridges. Very long spans of
suspension bridges are being planned [1]. Long, suspended steel cables such as those used in
suspension bridges are prone to vibrations induced by wind and moving loads [2–6]. When
suspended cables are subjected to wind disturbance, the system behaves nonlinearly due to
its flexibility and because there is coupling between the motion of the bridge deck and the
motion of the suspended cable.

The wind forces exerted on the cables and the bridge deck are complex. The
aerodynamic stability of the cables and the bridge deck depends on many parameters
including the wind velocity, the shape, and the size of the cross-sections and the angles
of attack. When the wind velocity exceeds a certain critical value, the oscillations of the
cable and/or the bridge deck will increase until a steady state response is achieved. This
can be quite destructive to the structure due to the large amplitude of the oscillations. The
aerodynamic instability of the bridge deck could occur simultaneously in both the torsional
and vertical vibrational modes; this is called flutter and occurs when the torsional stiffness



2 Mathematical Problems in Engineering

is close in magnitude to the flexural stiffness [7]. Aerodynamic instability can also occur
exclusively in the vertical mode if the torsional stiffness is much larger than the flexural
stiffness, and this form is called galloping. In this paper, we will consider only the galloping
instability for a suspension bridge where changing the shape or size of the cross-sections is
difficult.

The occurrence of galloping is difficult to predict. The effect of the galloping
phenomenon can be quite destructive, due to the high-amplitude oscillations of the structure
in the direction perpendicular to the mean wind direction [8]. For structures with low
damping such as suspended cables, suspension bridges, or tall buildings, galloping can easily
occur at low, steady or unsteadywind speeds [9]. The nonlinearity behavior of the suspended
bridge under wind excitation can cause internal resonances which affect the safety of the
structures [7, 10, 11].

Galloping of suspended cables due to resonant harmonic loading has been studied in
[10, 11]while galloping due to wind effects was studied in [12]. It has been shown by Abdel-
Rohman in [8] that increasing the damping is a very effective factor in increasing the critical
wind speed at which galloping occurs. Attempts to introduce passive or semiactive damping
into stay cables were made in [13–18].

In this paper, we proposed two active control schemes to suppress the galloping
due to wind loading in suspension bridges. The designs of both controllers are based
on Lyapunov theory; the proposed controllers guarantee the asymptotic stability of the
controlled suspension bridge.

The paper is organized as follows. The dynamic model of the suspension bridge
subject to wind forces is presented in Section 2. In Section 3, a SIMULINKmodel is presented
for each subsystem of the suspension bridge. In Section 4, two state feedback controllers are
proposed. Simulation results are given and discussed in Section 5. Finally, some concluding
remarks are given in Section 6.

In the sequel, we denote by WT the transpose of a matrix or a vector W . We use W >
0 (W < 0) to denote a positive- (negative-) definite matrix W . Sometimes, the arguments of
a function are omitted in the analysis when no confusion can arise.

2. Equations of Motion of the System

The derivation of the basic equations of motion of the suspended cables subject to wind forces
can be found in [12, 17, 19, 20]. For ease of presentation, the dynamic model is rederived in
this paper.

Using the displacement directions defined in Figure 1, the general equations of motion
are
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Figure 1: Displacement directions of the suspended cables.
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Figure 2: Suspension bridge model.

where s is the spatial coordinate along the cable curved length (which is λ), t is the time, x(s)
is the horizontal coordinate along the cable span, y(s) is the equation of the cable static profile,
U(s, t), V (s, t), and W(s, t) are, respectively, the displacements of the cable at location s in
the horizontal, vertical, and transversal directions, To is the static tension, τ is the additional
dynamic tension in the cable, c is the damping coefficient,mc is the mass of the cable per unit
length, g is the gravitational force, and fv(s, t) and fw(s, t) are the external loading per unit
length in the vertical and transverse directions, respectively.

The nonlinear strain-displacement relationship during the deformation of the cable
[20] is given by

τ

EA
=

ds′ − ds

ds
, (2.2)

whereE is themodulus of elasticity,A is the cross-section area of the cable, ds′ is the deformed
cable segment, and ds is the undeformed cable segment.

The variables ds′ and ds are defined such that

ds′2 = (dx + ∂U)2 +
(
dy + ∂V

)2 + (∂W)2,

ds2 = dx2 + dy2.
(2.3)

The two-hinged bridge deck is suspended from the cables using vertical hangers
located at s = si as shown in Figure 2. L is the length of the bridge deck and u(t) is the
active control force installed at the general location x = xu along the bridge.

Based on the assumption of a small curvature regime and neglecting the horizontal
motion U(s, t) (which can be safely disregarded because there is zero longitudinal loading
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[17]), the equations of motion from the static equilibrium position of the cable and the bridge
can be simplified as follows:
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(2.4)

where EI is the flexural rigidity of the bridge deck, cb and mb are, respectively, the damping
and mass per unit length of the bridge deck, ki is the stiffness of the vertical hangers (each
located at xi and si), Z (x, t) is the vertical response of the bridge deck, Zi and Vi indicate the
response of the bridge deck and the suspended cables at x = xi and s = si, respectively, and
the δ(·) is the Dirac-Delta function which is used to introduce, into the differential equations,
the active control force u(t). The forces fw, fv, and fb are, respectively, the lateral and vertical
wind forces on the suspended cable and the vertical wind force on the bridge deck.

Previous studies have shown that locating the control force at the most flexible
location of the structure provides the most feasible and optimal performance of the controlled
structure as was shown by Abel-Rohman in [21]. Thus, we set xu = 0.5L (see Figure 2).

The displacement functions W(s, t), V (s, t), and Z(s, t) are considered to be the
contribution of the first modes of vibrations and are assumed to take the forms

W(s, t) = λ(s)W(t),

V (s, t) = φ(s)V (t),

Z(x, t) = η(x)B(t),

(2.5)

where λ(s) and φ(s) are, respectively, the cable first mode shapes in the transversal and
vertical directions, which can be determined using linear theory of cables [20] and satisfy
the following boundary conditions:
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l

))
,

(2.6)
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where ko is a constant chosen to make φ(s) = 1 at the midspan of the cable, s = (λ/2). The
parameter Ω is computed from the following relations:
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2

)
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Ω
2
− 4
λ2

(
Ω
2

)3

,

λ2 = L

(
EA

Hl

)
×
(
mgL

H

)2

.

(2.7)

Here, the termsmgL andH denote the vertical weight on the cable and the horizontal
component of the static tension To, respectively. The force H is obtained from the static
equilibrium of the cable as follows:

H =
mgL2

8yc
(2.8)

in which yc is the sag in the cable profile of which is given by the equation:

yc =
mgL2

2H

(
x

L
− x2

L2

)
. (2.9)

For a two-hinged bridge deck, the mode shape η(x) can be assumed to take the form

η(x) = sin
(πx

L

)
. (2.10)

Substituting (2.5) into (2.4) and applying an integral transformation one obtains the
equations of motion for the suspended cable in the transverse and vertical directions and for
the vertical motion of the bridge deck as follows:

Ẅ + 2ζcωwẆ +ω2
wW + c5WV + c6WV 2 + c7W

3 = FW(t), (2.11)

V̈ + 2ζcωvV̇ +ω2
vV + c1V

2 + c2W
2 + c3V

3 + c4VW2 + FV (t) = d1B + d2V + c11u(t), (2.12)

B̈ + 2ζbωbḂ +ω2
bB = FB(t) + c8B + c9V − c10u(t) (2.13)

in which ζc is the damping ratio in the suspended cable, ωw and ωv are, respectively, the
natural frequencies of the cable in W and V directions, ζb is the damping ratio in the bridge
deck, and ωb is the natural frequency of the bridge deck.
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Expressions of the forces FW(t), FV (t), and FB(t) in the above equations are given in
[17] as follows:

FW(t) = Cwo + Cw1Ẇ + Cw2Ẇ
2 + Cw3V̇ + Cw4ẆV̇ + Cw5V̇
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3Ẇ
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6Ẇ2 + Cv21V̇
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FB(t) = c12Ḃ + c13ḂB,

(2.14)

where the coefficients Cwi and Cvi are functions of the basic wind speed Uo.

3. Simulation of the Uncontrolled Suspension Bridge Model
Using SIMULINK

The dynamic model of the uncontrolled suspension bridge is simulated using the SIMULINK
software. At first, a SIMULINK model is built for each subsystem of the suspension bridge.
Then, the SIMULINK model subsystems are combined to simulate the overall system.

3.1. SIMULINK Model for the Unsuspended Bridge

The response of the bridge alone is obtained by simulating (2.13) with c8, c9, and, c10 set to
zero. Galloping occurs when c12 > 2ζbωb, and therefore the critical wind speed is calculated to
be 10.39 (m/sec) [17]. The SIMULINKmodel of the unsuspended bridge is shown in Figure 3.

3.2. SIMULINK Model for the Suspended Cable Alone

If the cable is constructed alone, then the transverse and vertical responses of the suspended
cable are obtained by simulating (2.11) and (2.12) with d1 and c11 set to zero. The critical
wind speed of the cables is calculated to be 7.30 (m/sec) [17]. The SIMULINK model of the
suspended cable is shown in Figure 4 while the wind forces are simulated in Figure 5.
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Figure 3: SIMULINK model of the unsuspended bridge including wind force FB(t).
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Figure 4: SIMULINK model of the suspended cable.

3.3. Simulation Results of the Uncontrolled Suspension Bridge

In the case of a suspension bridge, the response of the uncontrolled suspension bridge is
simulated using (2.11)–(2.13) with c10 and c11 set to zero. The SIMULINK model of the
uncontrolled suspension bridge is shown in Figure 6.

Abdel-Rohman and Joseph [17] showed that the critical wind speed is approximately
10.4 (m/sec). Therefore, we simulated the response of the uncontrolled suspended bridge at
wind speed 12 (m/sec) which causes galloping as shown in Figure 7. It can be seen that the
uncontrolled suspension bridge response has galloping in the vertical direction of both the
cable and the bridge deck.

In order to suppress galloping due to wind forces at mean wind speed Uo =
12 (m/sec), in the cable and bridge vertical responses, a vertical cable between the bridge
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deck and the suspended cables is used to install a hydraulic actuator able to generate the
required active control force on the bridge deck. The controller will generate two equal and
opposite active control forces. In the next section, a controller design based on Lyapunov
theory is proposed. Two state feedback controllers are provided: the first one is a nonlinear
controller and the second one is a linear controller.

4. Controllers Design

The suspension bridge model described by the nonlinear differential equations (2.11)–(2.13)
can be represented in the following state-space form:

ẋ(t) = Ax(t) + Bu(t) + gx(x(t)) + d(t), (4.1)
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where

x(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W(t)

Ẇ(t)

V (t)

V̇ (t)

B(t)

Ḃ(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

−ω2
w −2ζcωw α 0 0 0

0 0 0 1 0 0

0 0 d2 −ω2
v −2ζcωv d1 0

0 0 0 0 0 1

0 0 c9 0 c8 −ω2
b −2ζbωb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

c11

0

−c10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, d(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

FW(t)

0

−FV (t)

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, gx(x(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−αx3 − c7x
3
1 − (c5 + c6x3)x1x3

0

−(c2 + c4x3)x2
1 − (c1 + c3x3)x2

3

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.2)

In order to insure the controllability of the pair (A,B), the element (2,3) of theAmatrix
is set to a constant α, and, consequently, αx3 is subtracted from the second element in the
gx(x(t)) vector.

Let

g(x, t) = gx(x(t)) + d(t). (4.3)

Hence, the equation of the system in (4.1) can be written as

ẋ(t) = Ax(t) + Bu(t) + g(x, t). (4.4)

The objective of this paper is to design control schemes to improve the stability of the
system by suppressing the oscillations in the suspension bridge under wind excitation.

Remark 4.1. The simulation results indicate that the nonlinear function g(x, t) in (4.4) is
uniformly bounded, and hence it can be assumed that the nonlinear term g(x, t) satisfies the
following cone-bounding constraint:

‖g(x, t)‖ ≤ μ‖x(t)‖, (4.5)

where μ is a positive scalar and ‖ · · · ‖ is the Euclidian norm of a vector.

Remark 4.2. It can be checked that the pair (A,B) in (4.4) is controllable. Hence, the poles of
the closed-loop system can be selected such that the response of the linear part of the system
(i.e., g(x, t) = 0) is as desired.
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4.1. Design of the First Controller

In this section, a nonlinear controller is used to suppress the oscillations in the suspension
bridge due to wind loads. The control law is divided into two parts: a linear part and a
nonlinear part. The linear part of the controller is designed by using the standard pole
placement technique. The nonlinear part of the controller is designed to guarantee the
asymptotic stability of the closed-loop system.

Let the matrix Ac be such that

Ac = A − BK, (4.6)

where K is the feedback gain vector obtained by the standard pole placement technique. Let
the symmetric positive definite matrix P1 be the solution of the following Lyapunov equation
[22]:

AT
cP1 + P1Ac = −Q1, (4.7)

where Q1 = QT
1 > 0.

Proposition 4.3. The control law given by the following equations (4.8)–(4.10) when applied to the
suspension bridge system described by (4.4) guarantees the asymptotic stability of the closed-loop
system:

u = uL + uN (4.8)

with

uL = −Kx, (4.9)

uN = −ρ1 sgn
(
BTP1x

)
, (4.10)

where ρ1 is a positive design parameter and sgn is the sign function:

sgn(σ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1 if σ > 0,

0 if σ = 0,

−1 if σ < 0.

(4.11)

Proof. Using (4.4), (4.8), and (4.9), it follows that

ẋ = Ax + B(−Kx + uN) + g(x, t)

= (A − BK)x + BuN + g(x, t)

= Acx + BuN + g(x, t).

(4.12)
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Consider the following Lyapunov function candidate:

V1 = xTP1x. (4.13)

Note that V1 > 0 for x/= 0 and V1 = 0 for x = 0. Taking the derivative of V1 with respect
to time and using (4.12), (4.10), (4.7), and (4.5), it follows that

V̇1 = ẋTP1x + xTP1ẋ

= (Acx + BuN + g(x, t))TP1x + xTP1(Acx + BuN + g(x, t))

= xT
(
AT

cP1 + P1Ac

)
x + 2xTP1BuN + 2g(x, t)TP1x

= −xTQ1x + 2xTP1BuN + 2g(x, t)TP1x

= −xTQ1x + 2xTP1B
(
−ρ1 sgn

(
BTP1x

))
+ 2g(x, t)TP1x

≤ −λmin(Q1)‖x‖2 + 2μλmax(P1)‖x‖2 − 2ρ1xTP1B
BTP1x∣∣BTP1x

∣∣

= −λmin(Q1)‖x‖2 + 2μλmax(P1)‖x‖2 − 2ρ1
∣∣∣BTP1x

∣∣∣
≤ −(λmin(Q1) − 2μλmax(P1)

)‖x‖2,

(4.14)

where λmin and λmax are the minimum and maximum eigenvalues of a matrix, respectively.
Therefore, it can be concluded that V̇1 < 0 if the matrices P1 and Q1 are selected such

(λmin(Q1) − 2μλmax(P1)) > 0. Hence, the control scheme given by Proposition 4.3 guarantees
the asymptotic stability of the closed-loop system.

4.2. Design of the Second Controller

To simplify the computations involved in the implementation of the first controller, a linear
controller is designed for the suspension bridge under wind loads as described by (4.4).
Again, the control law is divided into two parts. The first part of the controller is designed by
using the pole placement technique. The second part of the controller is designed to guarantee
the asymptotic stability of the closed-loop system.

Define the matrix Ac is such that

Ac = A − BK. (4.15)

Let the symmetric positive definite matrix P2 be the solution of the following
Lyapunov equation:

AT
cP2 + P2Ac = −Q2, (4.16)
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where Q2 = QT
2 > 0. Also, let a positive design parameter γ2 be such that

γ2 ≥ λmax(P2)
λmin

(
P2BBTP2

)μ. (4.17)

Proposition 4.4. The control law given by (4.18)–(4.20) when applied to the suspension bridge
system described in (4.4) guarantees the asymptotic stability of the system:

u = uL1 + uL2 (4.18)

with

uL1 = −Kx, (4.19)

uL2 = −γ2BTP2x. (4.20)

Proof. Using (4.4), (4.18), and (4.19), it follows that

ẋ = Ax + B(−Kx + uL2) + g(x, t)

= (A − BK)x + BuL2 + g(x, t)

= Acx + BuL2 + g(x, t).

(4.21)

Consider the following Lyapunov function candidate:

V2 = xTP2x. (4.22)

Note that V2 > 0 for x/= 0 and V2 = 0 for x = 0. Taking the derivative of V2 with respect
to time and using (4.21), (4.20), (4.16), and (4.5), it follows that

V̇2 = ẋTP2x + xTP2ẋ

= (Acx + BuL2 + g(x, t))TP2x + xTP2(Acx + BuL2 + g(x, t))

= xT
(
AT

cP2 + P2Ac

)
x + 2g(x, t)TP2x + 2xTP2BuL2

= −xTQ2x + 2g(x, t)TP2x + 2xTP2BuL2

= −xTQ2x + 2g(x, t)TP2x + 2xTP2B
(
−γ2BTP2x

)

≤ −xTQ2x + 2μ‖P2x‖‖x‖ − 2γ2xTP2BBTP2x
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Table 1: Data for the great belt suspension bridge.

Bridge deck parameters Cable parameters Wind parameters

Span, L 2500m Suspended
length, l 2573m Air density,

ρ
1.25 Kg/m3

Deck mass, mb 14908Kg/m Cable mass,mc 4396Kg/m H∗ 1.7

Width, BB 27m Cable sag, yc 265m ε 100

Flexural rigidity, EI 2.4 ×1011N ·m2 Cross-sectional
area, A 0.56m2

Stiffness of vertical
hangers, ki

106 N/m (placed
at every 10m)

Young’s modulus
of elasticity, E 2.1 ×1011 N/m2

Damping ratio, ζb 0.01 Damping ratio, ζc 0.001
The parameters H∗ and ε are the aerodynamic coefficients which are usually determined experimentally from wind tunnel
tests. In this paper, we used the values of these parameters from [23].

≤ −xTQ2x + 2μλmax(P2)‖x‖2 − 2γ2xTP2BBTP2x

≤ −xTQ2x + 2μλmax(P2)‖x‖2 − 2γ2λmin

(
P2BBTP2

)
‖x‖2

= −xTQ2x + 2
(
μλmax(P2) − γ2λmin

(
P2BBTP2

))
‖x‖2

≤ −xTQ2x. (4.23)

The choice of γ2 guarantees that (μλmax(P2) − γ2λmin(P2BBTP2)) ≤ 0.
Therefore, it can be concluded that V̇2 < 0. Hence, the control scheme given by

Proposition 4.4 guarantees the asymptotic stability of the closed-loop system.

5. Simulation Results

The simulation results of the controlled suspension bridge using the proposed controllers are
presented and discussed. The system is simulated using the SIMULINK software. The data
for the suspension bridge used in [7] is used here. The details of the bridge deck and the cable
and wind parameters are given in Table 1. From this table, the parameters of the model of the
suspension bridge can be calculated as given in the appendix. It is worth mentioning that
the torsional mode frequency which is equal to 1.276 rad/sec is more than three times greater
than the frequency of the vertical bending mode of 0.404 rad/sec. Thus, our assumption of
ignoring the torsional frequency is reasonable.

In this example, it is assumed that the wind speed profile Uo(s, t) is a constant and
equals to the basic wind speed Uo [17]. The coefficients Cwi and Cvi can then be determined
as functions of the basic wind speed Uo as given in the appendix. In all simulations, the
following initial conditions are used V (0) = W(0) = B(0) = 0.1m and V̇ (0) = Ẇ(0) = Ḃ(0) =
0.1m/sec.
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Figure 7: Uncontrolled suspension bridge response whenUo = 12 (m/sec): (a) cable vertical response, (b)
bridge vertical response, and (c) cable transverse response.

5.1. Simulation Results Using the First Controller

The parameters of the first controller are ρ1 = 106, the feedback gain vector K =[
0.1201 2.7694 1.8156 5.5243 −0.5408 3.6275

] × 106, and Q1 = I, where I is the identity
matrix of appropriate dimension. The feedback gain vectorK is computed byMATLAB using
the linear part of the system:

� K = place (A, B, clp), (5.1)

where clp is the desired closed-loop poles of the linear part of the system. The P1 matrix
which is the solution of the Lyapunov equation in (4.7) is computed by MATLAB as follows:

� P1 = are (A − B ∗ K, zeors(6, 6), eye(6, 6)). (5.2)

Any wind speed greater than 10.4m/sec will cause galloping and can be used for
simulation purposes. In this paper, a wind speed of 12m/sec (equivalent to 43.2Km/hr) is
used. This wind speed equals the wind closed-loop poles of the linear suspension bridge as
shown in Figure 7. The results are shown in Figure 8.

Figure 8(a) shows the vertical displacement of the suspended cable, V (t). It can be
seen that the oscillations in the response decay to zero in about 30 seconds. Figure 8(b) shows
the vertical displacement of the bridge deck, B(t). It can be seen that the oscillations in the
response decay to zero in about 30 seconds. Figure 8(c) shows the transverse displacement
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Figure 8: Suspension bridge response when using the first controller: (a) cable vertical response, (b) bridge
vertical response, and (c) cable transverse response.

of the suspended cable,W(t). It can be seen that the response oscillates with a slow decaying
envelop as time increases. Hence, it can be concluded that the first control scheme is able
to greatly reduce the oscillations in V (t) and B(t). Comparing Figures 7(c) and 8(c), we
noticed that the controller did not have much of an effect on the amplitude of the transverse
displacement oscillations while it reduced the frequency of the oscillations.

It is worth noting that the active control force was introduced only for the vertical
displacements, and hence the oscillations of the cable and the bridge deck in this direction
was suppressed, but the cable response in the transverse direction oscillates for some
time before decaying to a constant amplitude. The transverse response can be improved if
the bridge deck is supplemented by a horizontally sliding damper along the mean wind
direction. However, for this example, the transverse response is stable irrespective of the
value of the mean wind speed Uo. Moreover, the plot of the active control force versus time
is shown in Figure 9. It can be seen that the force stays within a reasonable range.

5.2. Simulation Results Using the Second Controller

The simulation results of the controlled suspension bridge using the second controller are
presented in this section. The parameters of the controller are γ2 = 106, K used in first
controller, and Q2 = I. The wind speed used in testing the performance of the proposed
controller isUo =12 (m/sec). The results are shown in Figure 10.

Figure 10(a) shows the vertical displacement of the suspended cable, V (t). It can be
seen that the oscillations in the response decay to zero in about 30 seconds. Figure 10(b)
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Figure 9: Response of the active control force when applied the first controller.
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Figure 10: Suspension bridge response when using the second controller: (a) cable vertical response, (b)
bridge vertical response, and (c) cable transverse response.
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Figure 11: Response of the active control force when applied the second controller.
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Figure 12: Vertical displacement of the suspended cable withUo = 12 (m/sec) when using first controller,
second controller, and TMD controller.

shows the vertical displacement of the bridge deck, B(t). It can be seen that the oscillations
in the response decay to zero in about 30 seconds. Figure 8(c) shows the transverse
displacement of the suspended cable, W(t). It can be seen that the response oscillates with
a slow decaying envelop as time increases. Hence, it can be concluded that the first control
scheme is able to greatly reduce the oscillations in V (t) and B(t). Comparing Figures 7(c) and
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Figure 13: Vertical displacement of the bridge deck with Uo = 12 (m/sec) when using first controller,
second controller, and TMD controller.

10(c), we noticed that the controller did not have much of an effect on the amplitude of the
transverse displacement oscillations.

The plot of the active control force versus time is shown in Figure 11. It can be seen
that the force stays within a reasonable range.

Although we have almost the same performance when applying the two controllers,
the second controller (which is linear) is much simpler in the implementation than the first
controller. Thus, one can suggest applying the second controller.

5.3. Comparison with a TMD Controller

In this section, a comparison with the TMD controller is presented. A tuned mass damper
with a weight 5% of that of the first mode mass of the bridge deck, a natural frequency of
ωd = 0.97ωb, and a damping ratio of 20% is used. The tuned mass damper TMD is added to
the bridge deck at xu = L/2. The wind speed used in testing the performance of the three
controllers is Uo = 12 (m/sec). The results are shown in Figures 12 and 13.

It can be seen from these figures that the proposed controllers gave better results
when compared to the passive TMD controller. The proposed controllers have smaller
oscillation amplitudes and faster decay rates. For further comparison, the norms of the
vertical displacements of the suspended cable and the bridge deck are computed and listed
in Table 2.

It can be seen that the linear controller gives the smallest norm among the three
controllers. This gives more advantage to the second controller.
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Table 2: Norms of vertical displacements of the suspension bridge.

Controller type Nonlinear Linear TMD
‖V (t)‖ 0.7420 0.6633 0.8566
‖B(t)‖ 0.6554 0.6093 0.7605

6. Conclusion

The control of the nonlinear oscillations of suspension bridges due to wind loads is
investigated in this paper. In order to control the vertical oscillations of the suspended
cables and the bridge deck, a hydraulic actuator can be installed between the bridge deck
and the suspended cables. This actuator is used to generate an active control force on the
bridge deck. A linear and a nonlinear control schemes are presented to generate the active
control forces. These controllers guarantee the asymptotic stability of the closed-loop system.
The performance of the controlled system is investigated through simulations using the
SIMULINK software. The simulation results indicate that the proposed control schemes work
well. Moreover, simulation results indicated that the proposed controllers gave better results
when compared to the TMD controller.

Appendix

A. Parameters of the Suspension Bridge Model

c1 = 0.023876381; c2 = −2.3130099 × 10−3; c3 = 5.0126930 × 10−4; c4 = 8.1873465 × 10−5;

c5 = 8.4261837 × 10−3; c6 = 4.4516311 × 10−5; c7 = 2.1234005 × 10−5; c8 = −6.7078079;

c9 = 2.91957; c10 = −2.683123 × 10−8; c11 = 9.099181 × 10−8; c12 = 0.4041035;

c13 = −0.0415744;
d1 = 17.69253; d2 = −22.6485;

ωw = 0.4349 (rad/sec); ωv = 1.1066 (rad/sec); ωb = 2 (rad/sec);

α = 10.
(A.1)

B. Coefficients of Wind Force FW(t)

Cw0 =
1.8 × 10−4

U2
o

; Cw1 =
−2.83 × 10−4

Uo
; Cw2 = 1.2 × 10−4; Cw3 = 1.78 × 10−5Uo;

Cw4 = 1.95 × 10−5U2
o; Cw5 = 3.47 × 10−5; Cw6 =

−3.48 × 10−6

Uo
; Cw7 =

−3.48 × 10−6

U2
o

;
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Cw8 =
−3.44 × 10−6

U3
o

; Cw9 =
−3.38 × 10−6

U4
o

; Cw10 =
−4.63 × 10−6

U2
o

; Cw11 =
−9 × 10−6

U3
o

;

Cw12 =
−1.32 × 10−5

U4
o

; Cw13 =
−1.73 × 10−5

U5
o

; Cw14 =
1.62 × 10−7

U3
o

; Cw15 =
4.82 × 10−7

U4
o

;

Cw16 =
1.62 × 10−7

U3
o

; Cw17 =
1.56 × 10−6

U6
o

; Cw18 =
10−7

U4
o

; Cw19 =
3.95 × 10−7

U5
o

;

Cw20 =
9.76 × 10−7

U6
o

; Cw21 =
1.93 × 10−6

U7
o

; Cw22 =
−2.25 × 10−9

U5
o

; Cw23 =
−1.11 × 10−8

U6
o

;

Cv24 =
−3.3 × 10−8

U7
o

; Cv25 =
−7.61 × 10−8

U8
o

.

(B.1)

C. Coefficients of Wind Force FV (t)

Cv0 = −8.62 × 10−6U2
o; Cv1 = 2.73 × 10−5Uo; Cv2 = −1.5 × 10−5; Cv3 = −1.64 × 10−4Uo;

Cv4 = 1.41 × 10−4; Cv5 = 2.89 × 10−5; Cv6 =
1.55 × 10−4

Uo
; Cv7 =

1.49 × 10−4

U2
o

;

Cv8 =
1.45 × 10−4

U3
o

; Cv9 =
1.41 × 10−4

U4
o

; Cv10 =
−7.23 × 10−6

U2
o

; Cv11 =
−1.44 × 10−5

U3
o

;

Cv12 =
−2.14 × 10−5

U4
o

; Cv13 =
−2.81 × 10−5

U5
o

; Cv14 =
−3.32 × 10−5

U3
o

; Cv15 =
−9.77 × 10−5

U4
o

;

Cv16 =
−1.92 × 10−4

U5
o

; Cv17 =
−3.16 × 10−5

U6
o

; Cv18 =
1.74 × 10−7

U4
o

; Cv19 =
6.9 × 10−7

U5
o

;

Cv20 =
1.71 × 10−6

U6
o

; Cv21 =
3.38 × 10−6

U7
o

; Cv22 =
7.93 × 10−7

U5
o

; Cv23 =
3.92 × 10−6

U6
o

;

Cv24 =
1.16 × 10−5

U7
o

; Cv25 =
2.69 × 10−5

U8
o

.

(C.1)
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