
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2011, Article ID 349361, 14 pages
doi:10.1155/2011/349361

Research Article
The Terminal Responses of the Two-Wire Line in
Multiaperture Cavities Based on Electromagnetic
Topology and Method of Moments

Ying Li, Jianshu Luo, and Guyan Ni

Department of Mathematics and System Science, College of Science, National University of
Defense Technology, Changsha, Hunan 410073, China

Correspondence should be addressed to Ying Li, liying801@163.com

Received 1 September 2010; Accepted 7 January 2011

Academic Editor: Alois Steindl

Copyright q 2011 Ying Li et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

A simulation technique based on electromagnetic topology (EMT) theory is proposed for ana-
lyzing electromagnetic interference (EMI) coupling through apertures onto the two-transmission
line enclosed within metallic structures. The electromagnetic interactions between apertures and
the external-internal interactions were treated through the topological decomposition and the
multistep iterative method. Then, the load responses of the two-wire transmission line are resolved
by the the Baum-Liu-Tesche (BLT) equation. The simulation results both without and with the
electromagnetic interaction are presented for the frequency range from 100MHz to 3GHz. These
numerical results obtained by two methods imply that the electromagnetic interaction cannot be
simply ignored, especially for the frequency range up to 1GHz.

1. Introduction

While considering analysis and design of EMC, it is important to protect electronic
circuits/components from electromagnetic effects due to external illumination. For this
purpose, electronic circuits/components are often shielded inside metallic cavities. However,
these metallic surfaces are not perfect. On a metallic cavity, there may be apertures that
become sources of the EMI problem. In most cases the cavity and apertures are usually
rectangular, which has led to a number of attempts to solve the coupling problem of
the rectangular cavity with a series of rectangular apertures when illuminated by a plane
wave (see [1–3]). So there would be interference between the fields entering through
the apertures and the circuitry inside the cavities. A natural problem is a comprehensive
analysis of the coupling mechanism for such structures under external EMI illumination. In
this paper, electromagnetic interaction problems can be simulated through codes based on
electromagnetic topology. An important element of topological analysis is the determination
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Figure 1: The rectangular cavity with R rectangular apertures.

of a mechanism which represents the external-internal coupling through a small aperture
and the subsequent propagation process. By combining methodologies suggested earlier
(see [4]), an equivalent source can be created to relate the electromagnetic coupling at the
exterior surface and the transfer function through the free space by assuming an imaginary
transmission line as a source of the aperture radiation (see [5, 6]), but this method only adapts
to the case where the dimension of the aperture is electrically small when compared to the
wavelength. Moreover most papers in the literature neglect the electromagnetic interaction
among apertures (see [3, 7]), which is not reasonable.

This paper provides a novel numerical technique for the electromagnetic coupling.
More precisely, we first use the EMT theory and the multistep iteration to deal with problems
of coupling between apertures and the external-internal interaction. Then, we employ dyadic
Green’s functions and the method of moments to determine the electromagnetic coupling
fields inside the cavity. Finally, we apply the BLT equation to resolve the load response of the
two-wire transmission line. The simulation result shows the effect of the external coupling
fields on the two-wire line current depends on both the cavity with multiaperture and the
electromagnetic interaction.

2. The Topological Decomposition of Complicated Electrical Systems

Electromagnetic interaction problems on very large and complex system, such as an aircraft,
can be simulated through codes based on the EMT. The most important aspect of the EMT is
the assumption that volumes can be decomposed into subvolumes that can be interacted
with each other through apertures (see [8]). To analyze the interaction processes for the
electromagnetic coupling by the EMT, we need to establish the topological structure model
and the topological diagram for the system configuration. First, we consider a rectangular
cavity with R energy penetration paths (multiaperture) illuminated by a harmonic plane
wave, see Figure 1. Figure 2 shows the topological structure model associated to Figure 1.
Vi denote these subvolumes, where “i” indicates the hierarchical order of the volume. Si,j is
a surface separating volumes Vi from Vj . Figure 3 shows the topological diagram. To analyze
the field coupling phenomenon in the cavity, we introduce a “field coupling junction” J3,
which takes into account the internal EM field coupling to the two-wire line. Moreover, by
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reciprocity, this junction also provides effects of the EM field radiation by the two-wire line
(see [9]). Wi(0) is the outgoing wave and Ws is the network cable coupling source. Signals
on an entire transmission line network is expressed through the BLT (Baum-Liu-Tesche)
equation which is the multiconductor transmission line (MTL) network composed of the
outgoing wave supervector [W(0)] and the source wave supervector [Ws] (see [10]).

3. The Multistep Iterative Method

Based on the topology decomposition, we deal with problems of the electromagnetic
interaction among apertures and the external-internal interaction using the multistep
iterative method (see [11]). We assume R apertures on the same wall located on the plane
where z = 0. R is the number of apertures.

Step 1. Find the zeroth-order approximation for R-aperture magnetic currents M0 and the
corresponding coupling electromagnetic fields E0,H0 in a cavity due toM0.
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Theoretically, a plane wave excitation represents the simplest electromagnetic source
and therefore is particularly suitable to test numerical techniques. In this paper, without
lose of practical applications, we will use a harmonic plane wave with a wide frequency
spectrum to simplify the problem under consideration. Consider a rectangular cavity with R
rectangular apertures illuminated by a harmonic plane wave shown in Figure 1. This field is
described by angles of incidence ψ and φ, as well as a polarization anglesα, which defines
the E-field vector direction with respect to the vertical plane of the incidence. It is given as

H
i
=
(
H0xx̂ +H0yŷ +H0zẑ

)
e−jk0k̂

i·r ,

E
i
= Z0H

i × k̂i,
(3.1)

where r = xx̂ + yŷ + zẑ refers to the location of the field in the free space,

k̂i = −(sin θ cosφx̂ + sin θ sinφŷ + cos θẑ
)
, (3.2)

k0 = ω
√
μ0ε0 is the free space wave number, and Z0 is the free space intrinsic impedance. For

a unity amplitude electric field, the coefficients H0x,H0y, H0z are given by

H0x =
1
Z0

(
sinα cos θ cosφ + cosα sinφ

)
, (3.3)

H0y =
1
Z0

(
sinα cos θ sinφ − cosα cosφ

)
, (3.4)

H0z = − 1
Z0

sinα sin θ. (3.5)

We introduce equivalent magnetic currentsM0 on R apertures as

M0 =
R∑

r=1

M0r =
R∑

r=1

[
M0rx

(
x,y

)
x̂ +M0ry

(
x,y

)
ŷ
]
, (3.6)

whereM0r is an equivalent magnetic current on the rth aperture.
The equivalent magnetic current components now are expanded as

M0rx
(
x,y

)
=

Pr−1∑

p=1

Qr∑

q=1

M0rxpqΨrpq

(
x,y

)
,

M0ry
(
x,y

)
=

Pr∑

p=1

Qr−1∑

q=1

M0rypqΦrpq

(
x,y

)
,

(3.7)
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where

Ψrpq

(
x,y

)
= Tp(x − xar )Pq

(
y − ybr

)
, (3.8)

Φrpq

(
x,y

)
= Pp(x − xar )Tq

(
y − ybr

)
, (3.9)

in which (xar ,ybr ) is the coordinates of the lower left-hand corner of the rth aperture, (p, q)
are integers used for multiaperture modes, Tp(t) and Pq(t) are triangular and pulse functions
defined by

Tp(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t − (p − 1
)
Δt

Δt
,

(
p − 1

)
Δt ≤ t ≤ pΔt,

(
p + 1

)
Δt − t

Δt
, pΔt ≤ t ≤ (

p + 1
)
Δt,

0,
∣∣t − pΔt∣∣ ≥ Δt

(3.10)

for p = 1, 2, . . . ,Pr − 1, and

Pq(t) =

⎧
⎨

⎩

1,
(
q − 1

)
Δt ≤ t ≤ qΔt,

0, otherwise,
(3.11)

for q = 1, 2, . . . ,Qr .
Substituting (3.7) into expression (3.6), we derive equivalent magnetic currents as

M0 =
R∑

r=1

⎡

⎣
Pr−1∑

p=1

Qr∑

q=1

M0rxpqΨrpq

(
x,y

)
x̂ +

Pr∑

p=1

Qr−1∑

q=1

M0rypqΦrpq

(
x,y

)
ŷ

⎤

⎦. (3.12)

To solve the unknown currentsM0, we use the continuity of tangential magnetic fields across
R apertures. Then, we have

ẑ ×
[
H

a(
M0

)
+H

i]
= −ẑ ×H

b(
M0

)
, z = 0, (3.13)

where H
a
refers to the corresponding exterior scattered magnetic field due to M0, and H

b

refers to the corresponding interior coupling magnetic field due toM0.
The exterior scattered field can be expressed as the radiation caused by the equivalent

magnetic currentM0, say,

H
a(
M0

)
= −jk0Y0

∫

∑R
r=1 Sr

2M0
(
r ′
) · Γ0

(
r; r ′

)
ds′, (3.14)
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where Sr denotes the surface of the rth aperture and Γ0(r; r
′) is the dyadic Green’s function

in the free space, which reads

Γ0
(
r; r ′

)
=

(

I +

(
1
k20

)

∇∇
)

e−jk0|r−r
′ |

4π
∣
∣r − r ′∣∣ ,

∣
∣r − r ′∣∣ =

√
(x − x′)2 +

(
y − y′)2,

(3.15)

in which r and r ′ represent the locations of both the field and source points on the aperture,
respectively.

The interior field can be formulated as the radiation due toM0 on R apertures. Using
the available dyadic Green’s functions for the cavity, we can express the interior field as

E
b(
M0

)
=
∫

∑R
r=1 Sr

∇ ×GHM ·M0ds
′, (3.16)

H
b(
M0

)
= jωε

∫

∑R
r=1 Sr

GHM ·M0ds
′, (3.17)

where the dyadic Green’s function is defined as

GHM = − 1
k20

ẑẑδ
(
R − R

′) −
∑

m,n

2(2 − δmn)
abk2ckmn sin(kmnc)

·
[
Moe(z + c)M

′
oe(0) +Neo(z + c)N

′
eo(0)

]
,

(3.18)

where δmn denotes the Kronecker delta, say, δmn = 1 form or n = 0, and zero otherwise. Also,
the wave functions within representation (3.18) are given by

Moe(z) = kyn sin(kxmx) cos
(
kyny

)
cos(kmnz)x̂

− kxm cos(kxmx) sin
(
kyny

)
cos(kmnz)ŷ,

Neo(z) =
1
kb

[ − kmnkxm sin(kxmx) cos
(
kyny

)
cos(kmnz)x̂

− kmnkyn cos(kxmx) sin
(
kyny

)
cos(kmnz)ŷ

+k2c cos(kxmx) cos
(
kyny

)
sin(kmnz)ẑ

]
.

(3.19)

As usual, kb = k0
√
μbεb = ω

√
με; kxm = mπ/a, kyn = nπ/b, k2c = k

2
xm + k2yn, and

kmn =

⎧
⎪⎨

⎪⎩

−j
√
k2c − k20 , k20 < k

2
c ,

√
k20 − k2c , k20 > k

2
c ,

(3.20)

withm,n being nonnegative integers excludingm = n = 0.



Mathematical Problems in Engineering 7

Substituting (3.18) into expressions (3.16) and (3.17) yields all components of the
electromagnetic field inside the cavity as

Eb
0x

(
x,y, z

)
= −

R∑

r=1

∑

m,n

2(2 − δmn)
ab sin(kmnc)

Pr∑

p=1

Qr−1∑

q=1

M0rypqIrypqmn

· cos(kxmx) sin
(
kyny

)
sin(kmn(z + c)),

Eb
0y

(
x,y, z

)
=

R∑

r=1

∑

m,n

2(2 − δmn)
ab sin(kmnc)

Pr−1∑

p=1

Qr∑

q=1

M0rxpqIrxpqmn

· sin(kxmx) cos
(
kyny

)
sin(kmn(z + c)),

Eb
0z

(
x,y, z

)
= −

R∑

r=1

∑

m,n

2(2 − δmn)
abkmn sin(kmnc)

·
⎡

⎣kyn
Pr−1∑

p=1

Qr∑

q=1

M0rxpqIrxpqmn − kxm
Pr∑

p=1

Qr−1∑

q=1

M0rypqIrypqmn

⎤

⎦

· sin(kxmx) sin
(
kyny

)
cos(kmn(z + c)),

Hb
0x

(
x,y, z

)
= −jYb

R∑

r=1

∑

m,n

2(2 − δmn)
abkmnkb sin(kmnc)

·
⎡

⎣
(
k2b − k2xm

)Pr−1∑

p=1

Qr∑

q=1

M0rxpqIrxpqmn +
(−kxmkyn

) Pr∑

p=1

Qr−1∑

q=1

M0rypqIrypqmn

⎤

⎦

· sin(kxmx) cos
(
kyny

)
cos(kmn(z + c)),

Hb
0y

(
x,y, z

)
= −jYb

R∑

r=1

∑

m,n

2(2 − δmn)
abkmnkb sin(kmnc)

·
⎡

⎣
(−kxmkyn

)Pr−1∑

p=1

Qr∑

q=1

M0rxpqIrxpqmn +
(
k2b − k2yn

) Pr∑

p=1

Qr−1∑

q=1

M0rypqIrypqmn

⎤

⎦

· cos(kxmx) sin
(
kyny

)
cos(kmn(z + c)),

Hb
0z

(
x,y, z

)
= jYb

R∑

r=1

∑

m,n

2(2 − δmn)
abkb sin(kmnc)

·
⎡

⎣kxm
Pr−1∑

p=1

Qr∑

q=1

M0rxpqIrxpqmn + kyn
Pr∑

p=1

Qr−1∑

q=1

M0rypqIrypqmn

⎤

⎦

· cos(kxmx) cos
(
kyny

)
sin(kmn(z + c)),

(3.21)
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where Yb = 1/Zb = (1/Z0)
√
εb/μb =

√
ε/μ, kb = k0

√
μbεb = ω

√
με, and

Irxpqmn =
8sin2(kxm(Δxr/2)) sin

(
kyn

(
Δyr/2

))

k2xmkynΔxr

· sin[kxm
(
xar + pΔxr

)]
cos

[
kyn

(
ybr +

(
q − 1

2

)
Δyr

)]
,

Irypqmn =
8sin2(kyn

(
Δyr/2

))
sin(kxm(Δxr/2))

k2ynkxmΔyr

· sin[kyn
(
ybr + qΔyr

)]
cos

[
kxm

(
xar +

(
p − 1

2

)
Δxr

)]
.

(3.22)

M0rxpq andM0rypq are the unknown constants of the pq mode on the rth aperture, wr , lr are
the width and length of the rth aperture, respectively. Δxr , Δyr refer to the width and length
of the surface element used to discretize the rth aperture.

Using Galerkin’s method (see [12]), the integral equation to be solved for M0rxpq,
M0rypq is

∫

∑R
r=1 Sr

ẑ ×
[
H

a(
M0

)
+H

b(
M0

)]
·Wds′ = −

∫

∑R
r=1 Sr

ẑ ×H
i ·Wds′, z = 0, (3.23)

where W is a weighting function, H
a
(M0) and H

b
(M0) are given by (3.14) and (3.17),

respectively. To discretize (3.23), the corresponding weighing functions are given by

Wr ′p′q′ = Φr ′p′q′
(
x,y

)
x̂ + Ψr ′p′q′

(
x,y

)
ŷ. (3.24)

where Φr ′p′q′(x,y) and Ψr ′p′q′(x,y) are given by (3.8) and (3.9), respectively. Substitution of
(3.14) and (3.17) into (3.23) yields a matrix equation:

[
Y a+b

]
[M0] =

[
Cinc

]
. (3.25)

The expressions of all matrix entries in (3.25) are as follows.
Self-admittance matrix [Y b] is represented by

(
Y b11

)

rpqr ′p′q′
=
jωε0

k2b

∑

m,n

εmεn
(
k2b − k2xm

)

abkmn tan(kmnc)
IrxpqmnIr ′xp′q′mn,

(
Y b12

)

rpqr ′p′q′
=
jωε0

k2
b

∑

m,n

εmεnkxmkyn

abkmn tan(kmnc)
IrypqmnIr ′xp′q′mn,

(
Y b21

)

rpqr ′p′q′
=
jωε0

k2
b

∑

m,n

εmεnkxmkyn

abkmn tan(kmnc)
IrxpqmnIr ′yp′q′mn,

(
Y b22

)

rpqr ′p′q′
=
jωε0

k2b

∑

m,n

εmεn
(
k2b − k2yn

)

abkmn tan(kmnc)
IrypqmnIr ′yp′q′mn,

(3.26)

where εm is Neumann’s numbers, and Irxpqmn, Irypqmn are given by (3.22).
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External admittance matrix [Y a] is represented by

(Y a11)rpqr ′p′q′ = − ωε0

4(πk0)
2

∫∫+∞

−∞

(
k20 − k2xm

)

kmn
FrpqF

∗
rpqdkxmdkyn,

(Y a12)rpqr ′p′q′ = − ωε0

4(πk0)
2

∫∫+∞

−∞

kxmkyn

kmn
GrpqF

∗
r ′p′q′dkxmdkyn,

(Y a21)rpqr ′p′q′ = − ωε0

4(πk0)
2

∫∫+∞

−∞

kxmkyn

kmn
FrpqG

∗
r ′p′q′dkxmdkyn,

(Y a22)rpqr ′p′q′ = − ωε0

4(πk0)
2

∫∫+∞

−∞

(
k20 − k2xm

)

kmn
GrpqG

∗
rpqdkxmdkyn,

(3.27)

where Frpq(kxm, kyn) and Grpq(kxm, kyn) are the Fourier transforms of Ψrpq(x,y) and
Φrpq(x,y), respectively. By replacing kxm, kyn by −kxm, −kyn, the expressions F∗

rpq and G∗
rpq

can be obtained from expressions of Frpq and Grpq, respectively.
Admittance matrix [Y a+b] is represented by

[
Y a+b

]
= [Y a] +

[
Y b
]

(3.28)

Excitation vector [Cinc] is represented by

(
Cinc

x

)

rpq
= −2H0xΔxrΔyre

jk0 sin θ[pΔxr+xar ] cosφ+[(q−1/2)Δyr+ybr ] sinφ

· sinc2
(
k0Δxr sin θ cosφ

2

)
sinc

(
k0Δyr sin θ sinφ

2

)
,

(
Cinc

y

)

rpq
= −2H0yΔxrΔyre

jk0 sin θ[(p−1/2)Δxr+xar ] cosφ+[qΔyr+ybr ] sinφ

· sinc
(
k0Δxr sin θ cosφ

2

)
sinc2

(
k0Δyr sin θ sinφ

2

)
,

(3.29)

where sinc(x) = sin(x)/x,H0x and H0y are given by (3.3) and (3.4), respectively.
The solution of this matrix equation (3.25) yields the coefficients M0rxpq, M0rypq of

R-aperture magnetic currentsM0. A similar result can be found in [3, 11].

Step 2. Find R-aperture magnetic current increment ΔM1 due to E
b

0, H
b

0 and find the

corresponding exterior scatter fields ΔE
a

1 , ΔH
a

1 and interior coupling fields ΔE
b

1, ΔH
b

1 due
to ΔM1.

To solve the unknown magnetic current increment ΔM1, we require the tangential
magnetic field be continuous in the following sense:

∫

∑R
r=1 Sr

ẑ ×
[
H

b(
M0

)
+H

b(
ΔM1

)]
·Wds = −

∫

∑R
r=1 Sr

ẑ ×H
a(

ΔM1

)
·Wds, (3.30)
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where

H
b(

ΔM1

)
= jωε

∫

∑R
r=1 Sr

GHM ·ΔM1ds
′,

H
a(

ΔM1

)
= −jk0Y0

∫

∑R
r=1 Sr

2ΔM1
(
r ′
) · Γ0

(
r; r ′

)
ds′,

(3.31)

H
b
(M0) andW are given by (3.17) and (3.24), respectively. Substitution of (3.17), (3.24), and

(3.31) into (3.30) yields a matrix equation:

[
Y a+b

]
[ΔM1] = −

[
Y b
]
[M0]. (3.32)

The solution of this matrix equation (3.32)will yield the coefficientsΔM1rxpq,ΔM1rypq

of the magnetic current increment ΔM1.

Step 3. Find R-aperture magnetic current increment ΔM2 due to ΔE
a

1 , ΔH
a

1 and find the

corresponding exterior scatter fieldsΔE
a

2 ,ΔH
a

2 and internal coupling fieldsΔE
b

2,ΔH
b

2 due to
ΔM2.

Similarly,

∫

∑R
r=1 Sr

ẑ ×H
b(

ΔM2

)
·Wds = −

∫

∑R
r=1 Sr

ẑ ×
[
H

a(
ΔM1

)
+H

a(
ΔM2

)]
·Wds, (3.33)

and a matrix equation is obtained as

[
Y a+b

]
[ΔM2] = −[Y a][ΔM1]. (3.34)

So the solution of this matrix equation (3.34) will yield the coefficients ΔM2rxpq, ΔM2rypq of
the magnetic current increment ΔM2.

Step 4. Find R-aperture magnetic current increment ΔM3 due to ΔE
b

2, ΔH
b

2 and find the

corresponding exterior scatter fieldsΔE
a

3 ,ΔH
a

3 and internal coupling fieldsΔE
b

3,ΔH
b

3 due to
ΔM3.

Similarly,

∫

∑R
r=1 Sr

ẑ ×
[
H

b(
ΔM2

)
+H

b(
ΔM3

)]
·Wds = −

∫

∑R
r=1 Sr

ẑ ×H
a(

ΔM3

)
·Wds, (3.35)

and a matrix equation is obtained as:

[
Y a+b

]
[ΔM3] = −

[
Y b
]
[ΔM2]. (3.36)
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Figure 4: The isolated two-wire line excited by the interior coupling field.

So the solution of this matrix equation (3.36) will yield the coefficients ΔM3rxpq, ΔM3rypq of
the magnetic current increment ΔM3, and so on.

Finally, this iterative process approximates the magnetic currents on R apertures and
the total coupling electromagnetic field inside the cavity as

M =M0 +
Niter∑

i=1

ΔMi, (3.37)

E
b
= E

b

0 +
Niter∑

i=1

ΔE
b

i , (3.38)

H
b
= H

b

0 +
Niter∑

i=1

ΔH
b

i . (3.39)

We must point out that the four-step algorithm admits high accuracy for the
approximation to the interaction among apertures and the external-internal interaction.

4. The Application of the BLT Equation

The EMT can simulate the response of inner circuits of the electrically large complex
system. The BLT equation is the key equation of the EMT to express the signals on the
entire transmission line network [13]. Hence we use the BLT equation to solve the terminal
responses of the two-wire line in a multiaperture cavity illuminated by a plane wave. We
consider the casewhere a lossless two-wire line is illuminated by a coupling EMfield. In order
to simplify the notation, let us place the two-wire transmission line in the plane where y = y0,
which parallels to the x-axis as shown in Figure 4. We put the reference wire at the plane
where z = z0, and the other wire at z = z0 + d so that there is distance d between two wires.
We assume that d is greater than the wire radius ra(d 	 ra). ρi = (Zi −Zc)/(Zi +Zc) (i = 1, 2)
are the reflection coefficients at each node of the line. L is the length of the line. Z1 and Z2 are
the load impedances at the ends x = x0 and x = x0 + L, respectively, and Zc = 120 ln(d/ra)
is the characteristic impedance of the line. The transmission line theory shows that the wave
propagation constant γ = jk0.
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In this paper, we only consider the transmission line mode current. The BLT equation
of the load currents and the total voltages at the loads can be expressed in the matrix form as

[
I(x0)

I(x0 + L)

]

=
1
Zc

[
1 − ρ1 0

0 1 − ρ2

][−ρ1 eγL

eγL −ρ2

]−1[
S1

S2

]

,

[
V (x0)

V (x0 + L)

]

=

[
1 + ρ1 0

0 1 + ρ2

][−ρ1 eγL

eγL −ρ2

]−1[
S1

S2

]

.

(4.1)

We choose the Taylor formulation (see [14, 15]), since it consists of both voltage and
current sources that are appropriate for localized excitations through apertures and the source
vector given by

[
S1

S2

]

=

⎡

⎢⎢⎢
⎣

1
2

∫x0+L

x0

eγx[VS(x) + ZcIS(x)]dx

−1
2

∫x0+L

x0

eγ(L−x)[VS(x) − ZcIS(x)]dx

⎤

⎥⎥⎥
⎦
, (4.2)

in which voltage and current sources Vs(x) and Is(x) are given by

VS(x) = −jωμ0

∫z0+d

z0

Hb
y

(
x,y0, z

)
dz, (4.3)

IS(x) = −jωC
∫z0+d

z0

Eb
z

(
x,y0, z

)
dz, (4.4)

where

C =
πε

ln(d/ra)
(d 	 ra) (4.5)

Substituting (3.38) into (4.4) and (3.39) into (4.3) then into (4.2) can determine the source
vector. Thereafter, using the BLT equation, we obtain the induced voltage and current of a
two-wire line at each load in a multiaperture cavity under excitation.

5. Simulation

We present some numerical examples to demonstrate the formulation given in the previous
section. We consider the coupling in a cavity with two rectangular apertures on the plane
z = 0. There is a two-wire transmission line along the x direction in this cavity, see Figure 1.
We excite the cavity by a plane wave incident normal to the side of the box on which two
apertures resides. The parameters are as follows: the cavity’s size a = 0.3m, b = 0.3m, c =
0.2m, two identical apertures’ size l = 0.1m, w = 0.005m, the location of the first aperture
(0.15m, 0.12m, 0m), and the location of the second aperture (0.15m, 0.18m, 0m), the wire
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Figure 5: Comparison of induced currents of a two-wire line at load under excitation.

radius ra = 0.0003m, the wire length L = 0.15m, the wire separation distance d = 0.02m, the
characteristic impedance Zc ≈ 503Ω, the load resistance Z1 = Z2 = 50Ω.

The two-wire transmission line can be excited by the interior coupling electromagnetic
field. By employing the BLT equation, Figure 5 shows the results of the terminal response
at Junction 4 with those parameters. This example indicates that the effect of the external
coupling fields on the two-wire line current depends on both the multiaperture cavity and
the electromagnetic interaction among apertures. More precisely, the difference between the
results with the electromagnetic interaction and those without the electromagnetic interaction
is actually not small at all. Therefore, this electromagnetic interaction cannot be simply
neglected for the frequency range up to 1GHz. Moreover, using the BLT equation, we can
also conclude that the currents and voltages at arbitrary point on the two-wire line can be
derived from the interior coupling EM fields.

6. Conclusion

In this paper, the field coupling phenomenon between external fields and a two-wire line in
the multiaperture cavity is studied. For the issue of the field penetration through apertures,
the EMT theory and themultistep iteration are used to deal with these problems. This method
can also be used for electromagnetic interaction problems on more complex system. Then,
using the Modal Green’s Function and the method of moments, the electromagnetic total
coupling fields are determined inside a multiaperture cavity. Finally, the load response of
the two-wire transmission line could be resolved by the BLT equation. The results with
the electromagnetic interaction are largely different from those without the electromagnetic
interaction for the low frequency.
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