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The main objective of our paper is to solve a problemwhich was encountered in an industrial firm.
It concerns the conception of a weekly production planning with the aim to optimize the quantities
to be launched. Indeed, one of the problems raised in that company could be modeled as a linear
multiobjective program where the decision variables are of two kinds: the first ones are upper
and lower bounded, and the second ones are nonnegative. During the resolution process of the
multiobjective case, we were faced with the necessity of developing an effective method to solve
the mono-objective case without any increase in the linear program size, since the industrial case to
solve is already very large. So, we propose an extension of the direct support method presented in
this paper. Its particularity is that it avoids the preliminary transformation of the decision variables.
It handles the bounds as they are initially formulated. The method is really effective, simple to use,
and permits speeding up the resolution process.

1. Introduction

The company Ifri is one of the largest and most important Algerian companies in the agroal-
imentary field. Ifri products mainly mineral water and various drinks.

From January to October of the year 2003, the company production was about 175
million bottles. Expressed in liters, the production in this last period has exceeded the
203 million liters of finishedproducts (all products included). Having covered the national
market demand, Ifri left to the acquisition of new international markets.

The main objective of our application [1] is to conceive a data-processing application
to carry out an optimal weekly production planning which will replace the planning based
primarily on the good management and the experiment of the decision makers.

This problem relates to the optimization problem of the quantities to launch in
production. It is modeled as a linear multi-objective program where the objective functions
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involved are linear, the constraints are linear and the decision variables are of two kinds: the
first ones are upper and lower bounded, and the second ones are nonnegative.

Multicriteria optimization problems are a class of difficult optimization problems in
which several different objective functions have to be considered at the same time. It is seldom
the case that one single point will optimize all the several objective functions. Therefore, we
search the so-called efficient points, that is, feasible points having the property that no other
feasible point improves all the criteria without deteriorating at least one.

In [2], we developed a method to solve the multi-objective linear programming
problem described above. To avoid the preliminary transformation of the constraints, hence
the augmentation of the problem dimension, we propose to extend the direct support method
of Gabasov et al. [3] known in single-objective programming.

In [2], we proposed a procedure for finding an initial efficient extreme point, a pro-
cedure to test the efficiency of a nonbasic variable, and a method to compute all the efficient
extreme points, the weakly efficient extreme points, and the ε-weakly efficient extreme points
of the problem.

A multiobjective linear program with the coexistence of the two types of the decision
variables can be presented in the following canonical form:

Cx +Qy −→ max,

Ax +Hy = b,

d− ≤ x ≤ d+,

y ≥ 0,

(1.1)

where C and Q are k × nx and k × ny matrices, respectively, A and H are matrices of order
m × nx and m × ny , respectively, with rang(A | H) = m < nx + ny, b ∈ �

m , d− ∈ �
nx , and

d+ ∈ �nx .
We denote by S the set of feasible decisions:

S =
{(
x, y
) ∈ �nx +ny , Ax +Hy = b, d− ≤ x ≤ d+, y ≥ 0

}
. (1.2)

Definition 1.1. A feasible decision (x0, y0) ∈ �nx +ny is said to be efficient (or Pareto optimal) for
the problem (1.1), if there is no other feasible solution (x, y) ∈ S such thatCx+Qy ≥ Cx0+Qy0

and Cx +Qy /=Cx0 +Qy0.

Definition 1.2. A feasible decision (x0, y0) ∈ �
nx +ny is said to be weakly efficient (or Slater

optimal) for the problem (1.1), if there is no other feasible solution (x, y) ∈ S such that Cx +
Qy > Cx0 +Qy0.

Definition 1.3. Let ε ∈ �k , ε ≥ 0. A feasible decision (xε, yε) ∈ S is said to be ε-weakly efficient
for the problem (1.1), if there is no other feasible solution (x, y) ∈ S such thatCx+Qy−Cxε −
Qyε > ε.

The multiobjective linear programming consists of determining the whole set of all
the efficient decisions, all weakly efficient decisions and all ε-weakly efficient decisions of
problem (1.1) for given C,Q,A,H, b, d−, and d+.
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During the resolution process, we need to use an efficiency test of nonbasic variables.
This problem can be formulated as a single-objective linear program where the decision
variables are of two types: upper and lower bounded variables and nonnegative variables.We
propose in this paper to solve this latter problem by an adapted direct support method. Our
approach is based on the principle of the methods developed by Gabasov et al. [3], which
permit to solve a single-objective linear program with nonnegative decision variables or a
single-objective linear program with bounded decision variables. Our work aims to propose
a generalization for the single-objective linear program with the two types of decision
variables: the upper and lower bounded variables and the nonnegative variables.

This work is devoted to present this method. Its particularity is that it avoids the pre-
liminary transformation of the decision variables. It handles the constraints of the problems
such as they are initially formulated. The method is really effective, simple to use, and direct.
It allows us to treat problems in a natural way and permits speeding up the whole resolution
process. It generates an important gain in memory space and CPU time. Furthermore, the
method integrates a suboptimal criterion which permits to stop the algorithm with a desired
accuracy. To the best of our knowledge, no other linear programming method uses this
criterion which could be useful in practical applications.

The principle of this iterativemethod is simple: starting with an initial feasible solution
and an initial support, each iteration consists of finding an ascent direction and a step along
this direction to improve the value of the objective functionwithout leaving the problem’s fea-
sible space. The initial feasible solution and the initial support could be computed indepen-
dently. In addition to this, the initial feasible point need not to be an extreme point such as in
the simplex method. The details of our multiobjective method will be presented in our future
works.

2. Statement of the Problem and Definitions

The canonical form of the program is as follows:

z
(
x, y
)
= ctx + kty −→ max, (2.1)

Ax +Hy = b, (2.2)

d− ≤ x ≤ d+, (2.3)

y ≥ 0, (2.4)

where c and x are nx-vectors, k and y are ny-vectors, b an m-vector, A = A(I, Jx) an m × nx-
matrix, H = H(I, Jy) an m × ny-matrix, with rank(A | H) = m < nx + ny ; I = {1, 2, . . . , m},
Jx = {1, 2, . . . , nx}, Jy = {nx + 1, nx + 2, . . . , nx + ny}.

Let us set J = Jx ∪ Jy, such that Jx = JxB ∪ JxN , Jy = JyB ∪ JyN , with JxB ∩ JxN = φ,
JyB ∩ JyN = φ and |JxB | + |JyB | = m.

We set JB = JxB ∪JyB , JN = J \JB = JxN ∪JyN , and we note byAH them×(nx+ny)-matrix
(A | H).
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Let the vectors and the matrices be partitioned in the following way:

x = x(Jx) =
(
xj , j ∈ Jx

)
, y = y

(
Jy
)
=
(
yj, j ∈ Jy

)
,

x =
(
xB

xN

)
, xB = x(JxB) =

(
xj , j ∈ JxB

)
, xN = x(JxN ) =

(
xj, j ∈ JxN

)
,

y =
(
yB

yN

)
, yB = y

(
JyB

)
=
(
yj , j ∈ JyB

)
, yN = y

(
JyN

)
=
(
yj, j ∈ JyN

)
,

c =
(
cB
cN

)
, cB = c(JxB) =

(
cj , j ∈ JxB

)
, cN = c(JxN ) =

(
cj , j ∈ JxN

)
,

k =
(
kB
kN

)
, kB = k

(
JyB

)
=
(
kj , j ∈ JyB

)
, kN = k

(
JyN

)
=
(
kj , j ∈ JyN

)
,

A = A(I, Jx) =
(
aij , 1 ≤ i ≤ m, 1 ≤ j ≤ nx

)
=
(
aj, j ∈ Jx

)
= (AB | AN),

AB = A(I, JxB), AN = A(I, JxN), aj is the jth column of A,

H = H
(
I, Jy

)
=
(
hij , 1 ≤ i ≤ m, nx + 1 ≤ j ≤ nx + ny

)
=
(
hj , j ∈ Jy

)
= (HB | HN),

HB = H
(
I, JyB

)
, HN = H

(
I, JyN

)
, hj is the jth column of H,

AH = AH(I, J) =
(
aHij , 1 ≤ i ≤ m, 1 ≤ j ≤ nx + ny

)
=
(
aHj , j ∈ Jx ∪ Jy

)
= (AHB | AHN ),

AHB = AH

(
I, JxB ∪ JyB

)
= (AB | HB), AHN = AH

(
I, JxN ∪ JyN

)
= (AN | HN).

(2.5)

Definition 2.1. (i) A vector (x, y), satisfying the constraints (2.2)–(2.4), is called a feasible solu-
tion of the problem (2.1)–(2.4).

(ii)A feasible solution (x0, y0) is said to be optimal if z(x0, y0) = ctx0+kty0 = max(ctx+
kty), where (x, y) is taken among all the feasible solutions of the problem (2.1)–(2.4).

(iii) On the other hand, a feasible solution (xε, yε) is called ε-optimal or suboptimal if

z
(
x0, y0

)
− z
(
xε, yε

)
= ctx0 − ctxε + kty0 − ktyε ≤ ε, (2.6)

where (x0, y0) is an optimal solution of the problem (2.1)–(2.4), and ε is a nonnegative num-
ber, fixed in advance.

(iv) The set JB = JxB ∪ JyB ⊂ J, |JB| = m is called a support if detAHB = det(AB,HB)/= 0.
(v) A pair {(x, y), (JxB , JyB)}, formed by a feasible solution (x, y) and a support

(JxB , JyB), is called a support feasible solution.
(vi) The support feasible solution is said to be nondegenerate, if

d−
j < xj < d+

j , for any j ∈ JxB , yj > 0, for any j ∈ JyB . (2.7)
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3. Increment Formula of the Objective Function

Let {(x, y), (JxB , JyB)} be a support feasible solution for the problem (2.1)–(2.4), and let us
consider any other feasible solution (x, y) = (x + Δx, y + Δy).

We define two subsets JyN+ and JyN0 of JyN as follows:

JyN+ =
{
j ∈ JyN , yj > 0

}
, JyN0 =

{
j ∈ JyN , yj = 0

}
. (3.1)

The increment of the objective function is as follows:

Δz = −
((

ctB, k
t
B

)
A−1

HB
AN − ctN

)
ΔxN −

((
ctB, k

t
B

)
A−1

HB
HN − kt

N

)
ΔyN. (3.2)

The potential vector u and the estimations vector E are defined by

ut =
(
ctB, k

t
B

)
A−1

HB
,

Et =
(
Et
B, E

t
N

)
, Et

B =
(
Et
xB
, Et

yB

)
= (0, 0),

Et
N =

(
Et
xN

, Et
yN

)
, Et

xN
= utAN − ctN, Et

yN
= utHN − kt

N.

(3.3)

Then, the increment formula presents the following final form:

Δz = −Et
xN

ΔxN − Et
yN

ΔyN. (3.4)

4. Optimality Criterion

Theorem 4.1. Let {(x, y), (JxB , JyB)} be a support feasible solution for the problem (2.1)–(2.4). Then,
the following relations

Exj ≥ 0, if xj = d−
j , j ∈ JxN ,

Exj ≤ 0, if xj = d+
j , j ∈ JxN ,

Exj = 0, if d−
j < xj < d+

j , j ∈ JxN ,

Eyj ≥ 0, if yj = 0, j ∈ JyN ,

Eyj = 0, if yj > 0, j ∈ JyN ,

(4.1)

are sufficient for the optimality of the feasible solution (x, y). They are also necessary if the support
feasible solution is nondegenerate.
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Proof. Sufficiency
Let {(x, y), (JxB , JyB)} be a support feasible solution satisfying the relations (4.1). For

any feasible solution (x, y) of the problem (2.1)–(2.4), the increment formula (3.4) gives the
following:

Δz = −
∑

j∈JxN
Exj

(
xj − xj

) −
∑

j∈JyN+

Eyj

(
yj − yj

)
−
∑

j∈JyN0

Eyj

(
yj − yj

)
. (4.2)

Since d−
j ≤ xj ≤ d+

j , for all j ∈ Jx, and from the relations (4.1), we have

−
∑

j∈JxN
Exj

(
xj − xj

)
= −

∑

j∈JxN , Exj
>0

Exj

(
xj − d−

j

)
−

∑

j∈JxN , Exj
<0

Exj

(
xj − d+

j

)
≤ 0. (4.3)

On the other hand, the condition yj ≥ 0, for all j ∈ Jy, implies that

−
∑

j∈JyN+

Eyj

(
yj − yj

)
−
∑

j∈JyN0

Eyj

(
yj − yj

)
= −

∑

j∈JyN0

Eyjyj ≤ 0. (4.4)

Hence,

Δz = z
(
x, y
) − z

(
x, y
) ≤ 0, z

(
x, y
) ≤ z

(
x, y
)
. (4.5)

The vector (x, y) is, consequently, an optimal solution of the problem (2.1)–(2.4).

Necessity

Let {(x, y), (JxB , JyB)} be a nondegenerate optimal support feasible solution of the problem
(2.1)–(2.4) and assume that the relations (4.1) are not satisfied, that is, there exists at least one
index j0 ∈ JN = JxN ∪ JyN such that

Exj0
> 0, for xj0 > d−

j0
, j0 ∈ JxN , or,

Exj0
< 0, for xj0 < d+

j0
, j0 ∈ JxN , or,

Eyj0
< 0, for j0 ∈ JyN0 , or,

Eyj0 /= 0, for j0 ∈ JyN+
.

(4.6)

We construct another feasible solution (x, y) = (x + θlx, y + θly), where θ is a positive real

number, and
(

lx
ly

)
=
(

l(Jx)
l(Jy)

)
= l(J) = l is a direction vector, constructed as follows.
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For this, two cases can arise:

(i) if j0 ∈ JxN , we set

lxj0
= − signExj0

,

lxj = 0, j /= j0, j ∈ JxN ,

lyj = 0, j ∈ JyN ,

lB =

(
lxB

lyB

)

= A−1
HB

aj0 signExj0
,

(4.7)

where aj0 is the j0th column of the matrix A;

(ii) if j0 ∈ JyN , we set

lyj0
= − signEyj0

,

lyj = 0, j /= j0, j ∈ JyN ,

lxj = 0, j ∈ JxN ,

lB =

(
lxB

lyB

)

= A−1
HB

hj0 signEyj0
,

(4.8)

where hj0 is the j0th column of the matrixH .

From the construction of the direction l, the vector (x, y) satisfies the principal constraint
Ax +Hy = b.

In order to be a feasible solution of the problem (2.1)–(2.4), the vector (x, y) must in
addition satisfy the inequalities d− ≤ x ≤ d+ and y ≥ 0, or in its developed form

d−
j − xj ≤ θlxj ≤ d+

j − xj , j ∈ JxB ,

d−
j − xj ≤ θlxj ≤ d+

j − xj , j ∈ JxN ,

θlyj ≥ −yj , j ∈ JyB , θlyj ≥ −yj , j ∈ JyN .

(4.9)

As the support feasible solution {(x, y), (JxB , JyB)} is nondegenerate, we can always find a
small positive number θ such that the relations (4.9) are satisfied. Thus, for a small positive
number θ, we can state that the vector (x, y) is a feasible solution for the problem (2.1)–(2.4).
The increment formula gives in both cases

z
(
x, y
) − z

(
x, y
)
= θEj0 signEj0 = θ

∣
∣Ej0

∣
∣ > 0, (4.10)
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where

Ej0 = Exj0
if j0 ∈ JxN or Ej0 = Eyj0

if j0 ∈ JyN . (4.11)

Therefore, we have found another feasible solution (x, y)/= (x, y)with the inequality z(x, y) >
z(x, y) which contradicts the optimality of the feasible solution (x, y). Hence the relations
(4.1) are satisfied.

5. The Suboptimality Condition

In order to evaluate the difference between the optimal value z(x0, y0) and another value
z(x, y) for any support feasible solution {(x, y), (JxB , JyB)}, when Ey ≥ 0, we use the following
formula:

β
((
x, y
)
,
(
JxB , JyB

))
=
∑

j∈JxN
Exj

>0

Exj

(
xj − d−

j

)
+
∑

j∈JxN
Exj

<0

Exj

(
xj − d+

j

)
+
∑

j∈JyN
Eyj yj ,

(5.1)

which is called the suboptimality condition.

Theorem 5.1 (the suboptimality condition). Let {(x, y), (JxB , JyB)} be a support feasible solution
of the problem (2.1)–(2.4) and ε an arbitrary nonnegative number.

If Ey ≥ 0 and

∑

j∈JxN
Exj

>0

Exj

(
xj − d−

j

)
+
∑

j∈JxN
Exj

<0

Exj

(
xj − d+

j

)
+
∑

j∈JyN
Eyj yj ≤ ε,

(5.2)

then the feasible solution (x, y) is ε-optimal.

Proof. We have

z
(
x0, y0

)
− z
(
x, y
) ≤ β

((
x, y
)
,
(
JxB , JyB

))
. (5.3)

Then, if

β
((
x, y
)
,
(
JxB , JyB

)) ≤ ε, (5.4)

we will have

z
(
x0, y0

)
− z
(
x, y
) ≤ ε, (5.5)

therefore, (x, y) is ε-optimal.
In the particular case where ε = 0, the feasible solution (x, y) is consequently optimal.
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6. Construction of the Algorithm

Given any nonnegative real number ε and an initial support feasible solution {(x, y),
(JxB , JyB)}, the aim of the algorithm is to construct an ε-optimal solution (xε, yε) or an optimal
solution (x0, y0). An iteration of the algorithm consists of moving from {(x, y), (JxB , JyB)}
to another support feasible solution {(x, y), (JxB

, JyB
)} such that z(x, y) ≥ z(x, y). For this

purpose, we construct the new feasible solution (x, y) as follows: (x, y) = (x, y) + θ(lx, ly),
where l = (lx, ly) is the appropriate direction, and θ is the step along this direction.

In this algorithm, the simplex metric is chosen. We will thus vary only one component
among those which do not satisfy the relations (4.1).

In order to obtain a maximal increment, wemust take θ as great as possible and choose
the subscript j0 such that

∣∣Ej0

∣∣ = max
(∣∣
∣Exj0

∣∣
∣,
∣∣
∣Eyj0

∣∣
∣
)
, (6.1)

with
∣∣∣Exj0

∣∣∣ = max
(∣∣∣Exj

∣∣∣, j ∈ JxNNO

)
,

∣∣∣Eyj0

∣∣∣ = max
(∣∣∣Eyj

∣∣∣, j ∈ JyNNO

)
, (6.2)

where JxNNO and JyNNO are the subsets, respectively, of JxN and JyN , whose the subscripts do
not satisfy the relations of optimality (4.1).

6.1. Computation of the Direction l

We have two cases.

(i) If |Ej0 | = |Exj0
|, we set:

lxj0
= − signExj0

,

lxj = 0, j /= j0, j ∈ JxN ,

lyj = 0, j ∈ JyN ,

lB =

(
lxB

lyB

)

= A−1
HB

aj0 signExj0
.

(6.3)

(ii) If |Ej0 | = |Eyj0
|, we will set

lyj0
= − signEyj0

,

lyj = 0, j /= j0, j ∈ JyN ,

lxj = 0, j ∈ JxN ,

lB =

(
lxB

lyB

)

= A−1
HB

hj0 signEyj0
.

(6.4)
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6.2. Computation of the Step θ

The step θ0 must be taken as follows:

θ0 = min
(
θx, θy

)
. (6.5)

(i) If |Ej0 | = |Exj0
|, then θx = min(θxj0

, θxj1
), where

θxj0
=

⎧
⎪⎨

⎪⎩

d+
j0
− xj0 , if Exj0

< 0,

xj0 − d−
j0
, if Exj0

> 0,

θxj1
= min

(
θxj , j ∈ JxB

)
,

(6.6)

with

θxj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d+
j − xj

lxj

, if lxj > 0,

d−
j − xj

lxj

, if lxj < 0,

∞, if lxj = 0.

(6.7)

The number θy will be computed in the following way:

θy = θyj1
= min

(
θyj , j ∈ JyB

)
, (6.8)

where

θyj =

⎧
⎪⎨

⎪⎩

−yj

lyj

, if lyj < 0,

∞, if lyj ≥ 0.
(6.9)

(ii) If |Ej0 | = |Eyj0
|, then

θx = θxj1
= min

(
θxj , j ∈ JxB

)
, (6.10)
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where

θxj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d+
j − xj

lxj

, if lxj > 0,

d−
j − xj

lxj

, if lxj < 0,

∞, if lxj = 0,

θy = min
(
θyj0

, θyj1

)
,

(6.11)

with

θyj0
=

⎧
⎨

⎩

yj0 , if Eyj0
> 0,

∞, if Eyj0
< 0,

θyj1
= min

(
θyj , j ∈ JyB

)
,

(6.12)

where

θyj =

⎧
⎪⎨

⎪⎩

−yj

lyj

, if lyj < 0,

∞, if lyj ≥ 0.
(6.13)

The new feasible solution is

(
x, y
)
=
(
x + θ0lx, y + θ0ly

)
. (6.14)

6.3. The New Suboptimality Condition

Let us calculate the suboptimality condition of the new support feasible solution in the case
of Ey ≥ 0. We have

β
((
x, y
)
,
(
JxB , JyB

))
=
∑

j∈JxN
Exj

>0

Exj

(
xj − d−

j

)
+
∑

j∈JxN
Exj

<0

Exj

(
xj − d+

j

)
+
∑

j∈JyN
Eyj yj . (6.15)

(i) If j0 ∈ JxN , then the components xj , for j ∈ JxN , are equal to

xj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xj , for j /= j0,

xj0 − θ0, if Exj0
> 0,

xj0 + θ0, if Exj0
< 0,

(6.16)
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and the components yj are

yj = yj, ∀j ∈ JyN . (6.17)

Hence,

β
((
x, y
)
,
(
JxB , JyB

))
= β
((
x, y
)
,
(
JxB , JyB

)) − θ0
∣∣∣Exj0

∣∣∣. (6.18)

(ii) If j0 ∈ JyN , then the components xj , for j ∈ JxN , are equal to

xj = xj, ∀j ∈ JxN , (6.19)

and the components yj , for j ∈ JyN , are

yj =

⎧
⎨

⎩

yj , for j /= j0,

yj0 − θ0, for j = j0.
(6.20)

Hence,

β
((
x, y
)
,
(
JxB , JyB

))
= β
((
x, y
)
,
(
JxB , JyB

)) − θ0Eyj0
. (6.21)

In both cases, we will have

β
((
x, y
)
,
(
JxB , JyB

))
= β
((
x, y
)
,
(
JxB , JyB

)) − θ0
∣
∣Ej0

∣
∣, (6.22)

with |Ej0 | = |Exj0
| ∨ Eyj0

.

6.4. Changing the Support

If β((x, y), (JxB , JyB)) ≤ ε, then the feasible solution (x, y) is ε-optimal and we can stop the
algorithm; otherwise, we will change JB as follows:

(i) if θ0 = θxj0
∨ θyj0

, then JB = JB, x = x + θ0lx, y = y + θ0ly,

(ii) if θ0 = θxj1
∨ θyj1

, then JB = (JB \ j1) ∪ j0, x = x + θ0lx, y = y + θ0ly.

Thenwe start a new iterationwith the new support feasible solution {(x, y), (JxB
, JyB

)}, where

the support JB satisfies the algebraic condition

detAHB = detAHB

(
I, JB

)
/= 0. (6.23)

Remark 6.1. The step θ0 = ∞ may happen only if JxB = ∅, |Ej0 | = |Eyj0
| and θy = ∞. In such a

case, the objective function is unbounded with respect to y.
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7. Algorithm

Let ε be any nonnegative real number and {(x, y), (JxB , JyB)} an initial support feasible solu-
tion. The steps of the algorithm are as follows.

(1) Compute the estimations vector:

Et
N = Et(JN) =

(
Et
xN

, Et
yN

)
=
(
utAN − ctN, utHN − kt

N

)
,

ut =
(
ctB, k

t
B

)
A−1

HB
.

(7.1)

(2) Optimality test of the support feasible solution {(x, y), (JxB , JyB)}.

(i) If Ey ≥ 0, then

(a) calculate the value of suboptimality β((x, y), (JxB , JyB)),
(b) if β((x, y), (JxB , JyB)) = 0, the process is stopped with {(x, y), (JxB , JyB)} as

an optimal support solution,
(c) if β((x, y), (JxB , JyB)) ≤ ε, the process is stopped with {(x, y), (JxB , JyB)} as

an ε-optimal support solution,
(d) if β((x, y), (JxB , JyB)) > ε, go to (3),

(ii) if Ey /≥ 0, go directly to (3).

(3) Change the feasible solution (x, y) by (x, y): x = x + θ0lx and y = y + θ0ly.

(i) Choose a subscript j0.

(ii) Compute the appropriate direction l =
(

lx
ly

)
.

(iii) Compute the step θ0.

(a) If θ0 = ∞ then the objective function is unbounded with respect to y and
the process is stopped.

(b) Otherwise, compute (x, y) = (x + θ0lx, y + θ0ly).

(4) Optimality test of the new feasible solution (x, y).

(i) If Ey ≥ 0, then

(a) calculate β((x, y), (JxB , JyB)) = β((x, y), (JxB , JyB)) − θ0|Ej0 |,
(b) if β((x, y), (JxB , JyB)) = 0, the process is stopped with {(x, y), (JxB , JyB)} as

an optimal support solution,
(c) if β((x, y), (JxB , JyB)) ≤ ε, the process is stopped with {(x, y), (JxB , JyB)} as

an ε-optimal support solution,
(d) otherwise, go to (5).

(ii) If Ey /≥ 0, then go to (5).
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(5) Change the support JB by JB.

(i) If θ0 = θxj0
∨ θyj0

, then

JxB
= JxB , JxN

= JxN ,

JyB
= JyB , JyN

= JyN ,

x = x + θ0lx, y = y + θ0ly.

(7.2)

(ii) If θ0 = θxj1
∨ θyj1

, then two cases can arise:

(a) case where Ej0 = |Exj0
| :

∗ if θ0 = θxj1
, then

JxB
=
(
JxB \ j1

) ∪ j0, JxN
=
(
JxN \ j0

) ∪ j1,

JyB
= JyB , JyN

= JyN ,

(7.3)

∗ if θ0 = θyj1
, then

JxB
=JxB ∪ j0, JxN

= JxN \ j0,

JyB
=JyB \ j1, JyN

= JyN ∪ j1.

(7.4)

(b) Case where Ej0 = |Eyj0
|:

∗ if θ0 = θyj1
, then

JyB
=
(
JyB \ j1

) ∪ j0, JyN
=
(
JyN \ j0

) ∪ j1,

JxB
= JxB , JxN

= JxN ,

(7.5)

∗ if θ0 = θxj1
, then

JxB
= JxB \ j1, JxN

= JxN ∪ j1,

JyB
= JyB ∪ j0, JyN

= JyN \ j0.
(7.6)

(iii) Go to (1)with the new support feasible solution {(x, y), (JxB
, JyB

)}, where x =
x + θ0lx and y = y + θ0ly.
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8. Numerical Example

For the sake of clarity, let us illustrate the theoretical development of the method by con-
sidering the following linear program:

z
(
x, y
)
= 2x1 − 3x2 − y3 + y4 −→ max,

x1 − x2 + 3y3 + 2y4 = 2,

−7x1 + x2 + 2y3 + 3y4 = 2,

−2 ≤ x1 ≤ 2,

−4 ≤ x2 ≤ 4,

y3 ≥ 0,

y4 ≥ 0,

(8.1)

where x = (x1, x2) and y = (y3, y4).

We define A =
( 1 −1
−7 1

)
, H =

( 3 2
2 3

)
, ct =

(
2 −3

)
, and kt =

(
−1 1

)
.

Let (x, y) = (1 3 0 2) be an initial feasible solution of the problem. We set

JB =
{
JxB , JyB

}
= {1, 3}, JN = {2, 4}. (8.2)

Let ε = 0.
Thus, we have an initial support feasible solution {(x, y), JB} with

AHB =

(
1 3

−7 2

)

, AHN =

(−1 2

1 3

)

,

z
(
x, y
)
= −5.

(8.3)

First Iteration

Let us calculate

ut =
(
ctB, k

t
B

)
A−1

HB
=
(
− 3
23

− 7
23

)

Et
N = utAHN − (ctN, kt

N

)
=
(
65
23

−50
23

)
.

(8.4)
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Choice of j0: Among the nonoptimal indices JxNNO ∪ JyNNO = {2, 4}, j0 is chosen such that |Ej0 |
is maximal; we then have j0 = 2.

Computation of l:

lx2 = −1, ly4 = 0,

lB =

(
lx1

ly3

)

= A−1
HB

a2 =

⎛

⎜
⎜
⎝

− 5
23

− 6
23

⎞

⎟
⎟
⎠.

(8.5)

Hence

lx =

⎛

⎜
⎝

− 5
23

−1

⎞

⎟
⎠, ly =

⎛

⎜
⎝

− 6
23

0

⎞

⎟
⎠. (8.6)

Computation of θ0:

θxj0
= θx2 = x2 − d−

2 = 7,

θx1 =

(
d−
1 − x1

)

lx1

=
69
5
,

θy3 = −y3

ly3

= 0.

(8.7)

The maximal step is then

θ0 = θyj1
= θy3 = 0. (8.8)

Computation of (x, y):

x = x + θ0lx =
(
1 3
)
,

y = y + θ0ly =
(
0 2
)
.

(8.9)

Change the support:

JxB
= {1, 2}, JxN

= ∅,

JyB
= ∅, JyN

= {3, 4}.
(8.10)



Mathematical Problems in Engineering 17

Second Iteration

We have

(
x, y
)
=
(
1 3 0 2

)
,

JxB = {1, 2}, JxN = ∅,
JyB = ∅, JyN = {3, 4},

AHB =

(
1 −1
−7 1

)

, AHN =

(
3 2

2 3

)

.

(8.11)

We compute

ut =
(
ctB, k

t
B

)
A−1

HB
=
(
19
6

1
6

)
,

Et
N = utAHN − (ctN, kt

N

)
=
(
65
6

35
6

)
.

(8.12)

Computation of β((x, y), (JxB , JyB)):

β
((
x, y
)
,
(
JxB , JyB

))
= Ey3y3 + Ey4y4 =

35
3
. (8.13)

Then, (x, y) is not optimal.
Choice of j0: As the set of nonoptimal indices is JxNN0 ∪ JyNN0 = {4}, we have j0 = 4.
Computation of l:

ly4 = −1, ly3 = 0, lB =

(
lx1

lx2

)

= A−1
HB

h4 =

⎛

⎜⎜
⎝

−5
6

−17
6

⎞

⎟⎟
⎠. (8.14)

Hence, lx =
(

−5/6
−17/6

)
, ly =

(
0
−1
)
.

Computation of θ0:

θxj1
= min(θx1 , θx2)

= min

((
d−
1 − x1

)

lx1

,

(
d−
2 − x2

)

lx2

)

= min
(
18
5
,
42
17

)
=

42
17

= θx2 ,

θy3 = ∞, θyj0
= θy4 = 2.

(8.15)

The maximal step is thus θ0 = θy4 = 2.
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Consequently, the support remains unchanged:

JB = JB = {1, 2}, JN = JN = {3, 4}. (8.16)

Computation of (x, y):

x = x + θ0lx =
(
−2
3

−8
3

)
,

y = y + θ0ly =
(
0 0
)
.

(8.17)

Computation of β((x, y), (JxB , JyB)):

β
((
x, y
)
,
(
JxB , JyB

))
= 0. (8.18)

Then, the vector (x, y) = (−2/3,−8/3, 0, 0) is an optimal solution and the maximal value of
the objective function is z = 20/3.

9. Conclusion

The necessity of developing the method presented in this paper occurred during a more
complex optimization scheme involving the resolution of a multicriteria decision problem
[2]. Indeed, an efficiency test of nonbasic variables is necessary to be executed several times
along the resolution process. This efficiency test yields to solve a monocriteria program with
two kinds of variables: upper and lower bounded variables and nonnegative ones. This kind
of linear models can be found as subproblems in quadratic programming [4] and optimal
control for example. In these cases, the use of the simplex method is not suitable since the
transformed problems are often degenerated. An other particularity of our method is that
it uses a suboptimal criterion which can stop the algorithm with a desired precision. It is
effective, fast, simple, and permits a time reduction in the whole optimization process.
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[1] K. Ait Yahia and F. Benkerrou, “Méthodes d’aide à la planification de la production au niveau de la
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