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We consider the concept of Ω-distance on a complete, partially ordered G-metric space and prove
some fixed point theorems. Then, we present some applications in integral equations of our
obtained results.

1. Introduction

The Banach fixed point theorem for contraction mapping has been generalized and extended
in many directions [1–11]. Nieto and Rodrı́guez-López [10], Ran and Reurings [12], and
Petrusel and Rus [13] presented some new results for contractions in partially ordered metric
spaces. The main idea in [10, 12, 14] involves combining the ideas of an iterative technique
in the contraction mapping principle with those in the monotone technique. Also, Mustafa
and Sims [15] introduced the concept of G-metric. Some authors [16, 17] have proved some
fixed point theorems in these spaces. Recently, Saadati et al. [18], using the concept of G-
metric, defined an Ω-distance on complete G-metric space and generalized the concept of
w-distance due to Kada et al. [19].

In this paper, we extend some recent fixed point theorems by using this concept and
prove various fixed point theorems in generalized partially ordered G-metric spaces.

At first we recall some definitions and lemmas. For more information see [15–18, 20–
23].
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Definition 1 (see [15]). Let X be a nonempty set. A function G : X ×X ×X → [0,∞) is called
a G-metric if the following conditions are satisfied:

(i) G(x, y, z) = 0 if x = y = z (coincidence),

(ii) G(x, x, y) > 0 for all x, y ∈ X, where x /=y,

(iii) G(x, x, z) ≤ G(x, y, z) for all x, y, z ∈ X, with z/=y,

(iv) G(x, y, z) = G(p{x, y, z}), where p is a permutation of x, y, z (symmetry),

(v) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).

A G-metric is said to be symmetric if G(x, y, y) = G(y, x, x) for all x, y ∈ X.

Definition 2. Let (X, G) be a G-metric space,

(1) a sequence {xn} in X is said to be G-Cauchy sequence if, for each ε > 0, there exists
a positive integer n0 such that for all m,n, l ≥ n0, G(xn, xm, xl) < ε;

(2) a sequence {xn} in X is said to be G-convergent to a point x ∈ X if, for each ε > 0,
there exists a positive integer n0 such that for all m,n ≥ n0, G(xm, xn, x) < ε.

Definition 3 (see [15]). Let (X, G) be a G-metric space. Then a function Ω : X × X × X →
[0,∞) is called an Ω-distance on X if the following conditions are satisfied:

(a) Ω(x, y, z) ≤ Ω(x, a, a) + Ω(a, y, z) for all x, y, z, a ∈ X,

(b) for any x, y ∈ X, Ω(x, y, ·),Ω(x, ·, y) : X → [0,∞) are lower semicontinuous,

(c) for each ε > 0, there exists a δ > 0 such that Ω(x, a, a) ≤ δ and Ω(a, y, z) ≤ δ imply
G(x, y, z) ≤ ε.

Example 1 (see [18]). Let (X, d) be a metric space and G : X3 → [0,∞) defined by

G
(
x, y, z

)
= max

{
d
(
x, y

)
, d

(
y, z

)
, d(x, z)

}
, (1.1)

for all x, y, z ∈ X. Then Ω = G is an Ω-distance on X.

Example 2 (see [18]). In X = R we consider the G-metric G defined by

G
(
x, y, z

)
=

1
3
(∣∣x − y

∣∣ +
∣∣y − z

∣∣ + |x − z|), (1.2)

for all x, y, z ∈ R. Then Ω : R
3 → [0,∞) defined by

Ω
(
x, y, z

)
=

1
3
(|z − x| + ∣∣x − y

∣∣), (1.3)

for all x, y, z ∈ R is an Ω-distance on R.

For more example see [18].
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Lemma 1.1 (see [18]). Let X be a metric space with metric G and Ω be an Ω-distance on X. Let
xn, yn be sequences in X, αn, βn be sequences in [0,∞) converging to zero and let x, y, z, a ∈ X.
Then one has the following.

(1) If Ω(y, xn, xn) ≤ αn and Ω(xn, y, z) ≤ βn for n ∈ N, then G(y, y, z) < ε and hence y = z.

(2) If Ω(yn, xn, xn) ≤ αn and Ω(xn, ym, z) ≤ βn for m > n then G(yn, ym, z) → 0 and hence
yn → z.

(3) If Ω(xn, xm, xl) ≤ αn for any l,m, n ∈ N with n ≤ m ≤ l, then xn is a G-Cauchy sequence.

(4) If Ω(xn, a, a) ≤ αn for any n ∈ N then xn is a G-Cauchy sequence.

Definition 4 (see [18]). G-metric space X is said to be Ω-bounded if there is a constant M > 0
such that Ω(x, y, z) ≤ M for all x, y, z ∈ X.

2. Fixed Point Theorems on Partially Ordered G-Metric Spaces

Definition 5. Suppose (X, ≤) is a partially ordered space and T : X → X is a mapping of X
into itself. We say that T is nondecreasing if for x, y ∈ X,

x ≤ y =⇒ T(x) ≤ T
(
y
)
. (2.1)

Theorem 2.1. Let (X, ≤) be a partially ordered space. Suppose that there exists aG-metric onX such
that (X, G) is a complete G-metric space andΩ is anΩ-distance on X such that X isΩ-bounded. Let
f : X → X and g : X → X weakly compatible and f, g be non-decreasing mapping such that

(a) g(X) ⊆ f(X);

(b) Ω(gx, gy, gz) ≤ kmax{Ω(fx, fy, fz), Ω(fx, gx, fz), Ω(fy, gy, fz), Ω(fx, gy, fz),
Ω(fy, gx, fz)}; for all x, y, z ∈ X and 0 ≤ k < 1,

(c) for every x ∈ X and y ∈ X with f(y)/= g(y), inf{Ω(fx, y, fx) + Ω(fx, y, gx) +
Ω(fx, gx, y) : f(x) ≤ g(x)} > 0;

(d) there exist x0 ∈ X that f(x0) ≤ g(x0); then f and g have a unique common fixed point u
in X and Ω(u, u, u) = 0.

Proof. Let x0 ∈ X that f(x0) ≤ g(x0). By part (a), we can choose x1 ∈ X such that f(x1) =
g(x0). Again from part (a), we can choose x2 ∈ X such that f(x2) = g(x1). Continuing this
process we can construct sequences {xn} in X such that,

yn = gxn = fxn+1, ∀ n ≥ 0,

xn ≤ xn+1.
(2.2)

Now, since g is non-decreasing mapping then,

gxn ≤ gxn+1, ∀ n ≥ 0, (2.3)
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so, for all s ≥ 0,

Ω
(
yn, yn+1, yn+s

)
= Ω

(
gxn, gxn+1, gxn+s

)

≤ kmax
{
Ω
(
fxn, fxn+1, fxn+s

)
,Ω

(
fxn, gxn, fxn+s

)
,Ω

(
fxn+1, gxn+1, fxn+s

)
,

Ω
(
fxn, gxn+1, fxn+s

)
,Ω

(
fxn+1, gxn, fxn+s

)}

= kmax
{
Ω
(
yn−1, yn, yn+s−1

)
,Ω

(
yn−1, yn, yn+s−1

)
,Ω

(
yn, yn+1, yn+s−1

)
,

Ω
(
yn−1, yn+1, yn+s−1

)
,Ω

(
yn, yn, yn+s−1

)}
.

(2.4)

Then,

Ω
(
yn, yn+1, yn+s

) ≤ kmax
{
Ω
(
yn−1, yn, yn+s−1

)
,Ω

(
yn, yn+1, yn+s−1

)
,

Ω
(
yn−1, yn+1, yn+s−1

)
,Ω

(
yn, yn, yn+s−1

)}
. (2.5)

Now since,

Ω
(
yn−1, yn+1, yn+s−1

) ≤ kmax
{
Ω
(
yn−2, yn, yn+s−2

)
,Ω

(
yn−2, yn−1, yn+s−2

)
,Ω

(
yn, yn+1, yn+s−2

)
,

Ω
(
yn−2, yn+1, yn+s−2

)
,Ω

(
yn, yn−1, yn+s−2

)}

Ω
(
yn, yn, yn+s−1

) ≤ kmax
{
Ω
(
yn−1, yn−1, yn+s−2

)
,Ω

(
yn−1, yn, yn+s−2

)
,Ω

(
yn−1, yn, yn+s−2

)
,

Ω
(
yn−1, yn, yn+s−2

)
,Ω

(
yn−1, yn, yn+s−2

)}
,

(2.6)

thus,

Ω
(
yn, yn+1, yn+s

) ≤ k2 max
{
Ω
(
yi, yj , yt

)
, n−2≤ i≤n, n−1≤ j ≤n+1, n+s−2≤ t≤n +s−1}

...

≤ kn−1 max
{
Ω
(
yi, yj , yt

)
; 1 ≤ i ≤ n, 2 ≤ j ≤ n + 1, s + 1 ≤ t ≤ n + s − 1

}
.

(2.7)

So Ω(yn, yn+1, yn+s) ≤ kn−1Mn,s where

Mn,s := max
{
Ω
(
yi, yj , yt

)
, 1 ≤ i ≤ n, 2 ≤ j ≤ n + 1, s + 1 ≤ t ≤ n + s − 1

}
. (2.8)

Now, for any l > m > n withm = n + k and l = m + t (k, t ∈ N), we have,

lim
m,n,l→∞

Ω
(
yn, ym, yl

)
= 0. (2.9)
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Since X is Ω-bounded and

Ω
(
yn, ym, yl

) ≤ Ω
(
yn, yn+1, yn+1

)
+ Ω

(
yn+1, ym, yl

)

≤ Ω
(
yn, yn+1, yn+1

)
+ Ω

(
yn+1, yn+2, yn+2

)
+ · · · + Ω

(
ym−1, ym, yl

)

≤ kn−1Mn,1 + knMn+1,2 + · · · + km−2Mm−1,t+1

≤
n−m+2∑

j=1

kn−jM ≤ kn−1

1 − k
M,

(2.10)

so, by Part (3) of Lemma 1.1, {yn} is a G-Cauchy sequence. Since X is G-complete, {yn}
converges to a point y ∈ X. Thus, for ε > 0 and by the lower semicontinuity of Ω, we have

Ω
(
yn, ym, y

) ≤ lim inf
p→∞

Ω
(
yn, ym, yp

) ≤ ε, m ≥ n

Ω
(
yn, y, yl

) ≤ lim inf
p→∞

Ω
(
yn, yp, yl

) ≤ ε, l ≥ n.
(2.11)

Assume that fy /= gy. Since,

yn = fxn+1 = gxn ≤ gxn+1 = fxn+2 = yn+1, (2.12)

so, yn ≤ yn+1, and,

0 < inf
{
Ω
(
yn, y, yn

)
+ Ω

(
yn, yn+1, y

)
+ Ω

(
yn, y, yn+1

)} ≤ 3ε, (2.13)

for every ε > 0, that is a contraction. So, we have fy = gy. Then, by (b),

Ω
(
gy, gy, gy

) ≤ kΩ
(
gy, gy, gy

)
, (2.14)

so, Ω(gy, gy, gy) = 0. Similarly, Ω(g2y, g2y, gy) = 0.
Now,

Ω
(
gy, g2y, gy

)
≤ kmax

{
Ω
(
gy, g2y, gy

)
,Ω

(
g2y, gy, gy

)
,

Ω
(
g2y, g2y, gy

)
,Ω

(
gy, gy, gy

)}

= kmax
{
Ω
(
gy, g2y, gy

)
,Ω

(
g2y, gy, gy

)}

Ω
(
g2y, gy, gy

)
≤ kmax

{
Ω
(
gy, g2y, gy

)
,Ω

(
g2y, gy, gy

)}
.

(2.15)

Thus,

Ω
(
gy, g2y, gy

)
= 0, Ω

(
g2y, gy, gy

)
= 0. (2.16)
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By Part (c) of Definition 3, G(g2y, g2y, gy) = 0 and consequently g2y = gy which implies
that gy is a fixed point for g. Now,

f
(
gy

)
= g

(
fy

)
= g2y = gy. (2.17)

So, it is enough to put gy = u, then u is a common fixed point of f and g.
Uniqueness: Assume that there exist v ∈ X such that fv = gv = v. Hence, we have,

Ω(v, v, v) ≤ kΩ(v, v, v), (2.18)

and so Ω(v, v, v) = 0. Also, Ω(v, v, u) = 0. On the other hand,

Ω(v, u, u) ≤ kmax{Ω(v, u, u),Ω(u, v, u)},
Ω(u, v, u) ≤ kmax{Ω(u, v, u),Ω(v, u, u)},

(2.19)

which follows that, Ω(v, u, u) = Ω(u, v, u) = 0. Then by Part (c) of Definition 3, u = v and
Ω(u, u, u) = 0.

The following corollary is a generalization of [24, Theorem 2.1].

Corollary 2.2. Let (X, ≤) be a partially ordered space. Suppose that there exists a G-metric on X
such that (X, G) is a G-metric space and Ω is an Ω-distance on X such that X be Ω-bounded. Let
f : X → X and g : X → X be weakly compatible and f, g be a non-decreasing mapping such that

(a) g(X) ⊆ f(X) and either f(X) or g(X) is complete;

(b) for all x, y, z ∈ X and 0 ≤ k < 1, Ω(gx, gy, gz) ≤ kΩ(fx, fy, fz);

(c) for every x ∈ X and y ∈ X with f(y)/= g(y), inf{Ω(fx, y, fx) + Ω(fx, y, gx) +
Ω(fx, gx, y) : f(x) ≤ g(x)} > 0;

(d) there exist x0 ∈ X that f(x0) ≤ g(x0);

then f and g have a unique common fixed point y in X and Ω(y, y, y) = 0.

Definition 6 (see [25]). Let Φ be the set of all functions ϕ such that ϕ : [0,∞) → [0,∞) is a
continuous and nondecreasing function with ϕ(t) < t for all t ∈ R

+ and
∑∞

n=1ϕ
n(t) < ∞ for

each t ∈ R
+. The function ϕ is called a growth or control function of T : X → X.

It is clear that

limn→∞ϕn(t) = 0, ∀t ∈ R
+, ϕn(0) = 0. (2.20)

Theorem 2.3. Let (X, ≤) be a partially ordered space. Suppose that there exists a G-metric on X
such that (X, G) is a completeG-metric space andΩ is anΩ-distance onX and T is a non-decreasing
mapping from X into itself. Let X be Ω-bounded. Suppose that ϕ ∈ Φ and

Ω
(
Tx, T2x, Tw

)
≤ ϕ(Ω(x, Tx,w)) ∀x ≤ Tx, w ∈ X. (2.21)
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Also, for every x ∈ X

inf
{
Ω
(
x, y, x

)
+ Ω

(
x, y, Tx

)
+ Ω

(
x, T2x, y

)
: x ≤ Tx

}
> 0, (2.22)

for every y ∈ X with y /= Ty. If there exists an x0 ∈ X with x0 ≤ Tx0, then T has a unique fixed point.
Moreover, if v = Tv, then Ω(v, v, v) = 0.

Proof. If x0 = Tx0, then the proof is finished. Suppose that Tx0 /=x0. since x0 ≤ Tx0 and T is
non-decreasing, we obtain

x0 ≤ Tx0 ≤ T2x0 ≤ · · · ≤ Tn+1x0 ≤ · · · (2.23)

For all n ∈ N and t ≥ 0,

Ω
(
Tnx0, T

n+1x0, T
n+tx0

)
≤ ϕ

(
Ω
(
Tn−1x0, T

nx0, T
n+t−1x0

))

≤ ϕ2
(
Ω
(
Tn−2x0, T

n−1x0, T
n+t−2x0

))

...

≤ ϕn(Ω
(
x0, Tx0, T

tx0
))
.

(2.24)

We claim that for m = n + k and l = m + t (k, t ∈ N) with l > m > n,

lim
m,n,l→∞

Ω
(
Tnx0, T

mx0, T
lx0

)
= 0. (2.25)

We prove by,

Ω
(
Tnx0, T

mx0, T
lx0

)
≤ Ω

(
Tnx0, T

n+1x0, T
n+1x0

)
+ Ω

(
Tn+1x0, T

mx0, T
lx0

)

≤ Ω
(
Tnx0, T

n+1x0, T
n+1x0

)
+ Ω

(
Tn+1x0, T

n+2x0, T
n+2x0

)

+ · · · + Ω
(
Tm−1x0, T

mx0, T
lx0

)

≤ ϕn(Ω(x0, Tx0, Tx0)) + ϕn+1(Ω(x0, Tx0, Tx0))

+ · · · + ϕm−2(Ω(x0, Tx0, Tx0)) + ϕm−1
(
Ω
(
x0, Tx0, T

t+1x0

))

≤ ϕn−1(M)

( ∞∑

n=1

ϕn(M)

)

.

(2.26)

Since
∑∞

n=1ϕ
n(M) < ∞, so,

lim
m,n→∞

Ω
(
Tnx0, T

mx0, T
lx0

)
= 0. (2.27)
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By Part (c) of Lemma 1.1{Tnx0} is a G-Cauchy sequence. Since X is G-complete, {Tnx0}
converges to a point u ∈ X. Let n ∈ N be fixed. By lower semicontinuity of Ω,

Ω(Tnx0, T
mx0, u) ≤ lim inf

p→∞
Ω(Tnx0, T

mx0, T
px0) ≤ ε, m > n,

Ω
(
Tnx0, u, T

lx0

)
≤ lim inf

p→∞
Ω(Tnx0, T

px0, T
mx0) ≤ ε, l ≥ n.

(2.28)

Assume that u/= Tu. Since Tnx0 ≤ Tn+1x0,

0 < inf
{
Ω(Tnx0, u, T

nx0) + Ω
(
Tnx0, u, T

n+1x0

)
+ Ω

(
Tnx0, T

n+2x0, u
)
: n ∈ N

}
≤ 3ε, (2.29)

for every ε > 0, which is a contraction. Therefore, we have u = Tu.
Uniqueness: let v be another fixed point of T , then

Ω(u, u, v) = Ω
(
Tu, T2u, Tv

)
≤ ϕ(Ω(u, Tu, v)) < Ω(u, u, v), (2.30)

which is a contraction. Therefore, fixed point u is unique. Now, if v = Tv, we have,

Ω(v, v, v) = Ω
(
Tv, T2v, T3v

)
≤ ϕ

(
Ω
(
v, Tv, T2v

))
= ϕ(Ω(v, v, v)). (2.31)

So Ω(v, v, v) = 0.

Corollary 2.4. Let the assumptions of Theorem 2.3 hold and

Ω
(
Tmx, Tm+1x, Tmw

)
≤ ϕ(Ω(x,Tx,w)) ∀m ∈ N, x ≤ Tx, w ∈ X, (2.32)

then T has a unique fixed point.

Proof. From Theorem 2.3, Tm has a unique fixed point u. However,

Tu = T(Tmu) = Tm+1u = TmTu, (2.33)

so Tu is also a fixed point of Tm. Since the fixed point of Tm is unique, it must be the case that
Tu = u.

Corollary 2.5. Let the assumptions of Theorem 2.3 hold and T : X → X satisfies,

Ω
(
Tx, T2x, Tx

)
≤ ϕ(Ω(x, Tx, x)) ∀x ≤ Tx. (2.34)

Then T has a unique fixed point.

Proof. Take w = x, and apply Theorem 2.3.
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Theorem 2.6. Let (X, ≤) be a partially ordered space. Suppose that there exists a G-metric on X
such that (X, G) is a complete G-metric space, Ω is an Ω-distance on X, and T is a non-decreasing
mapping from X into itself. Let X be Ω-bounded. Suppose that

Ω
(
Tx, T2x, Tw

)
≤ k

(
Ω
(
x, T2x, Tw

)
+ Ω(x, Tx, Tx)

)
, (2.35)

where x ≤ Tx,w ∈ X, k ∈ [0, 1/3). Also for every x ∈ X,

inf
{
Ω
(
x, y, x

)
+ Ω

(
x, y, Tx

)
+ Ω

(
x, T2x, y

)
: x ≤ Tx

}
> 0, (2.36)

for every y ∈ X with y /= Ty. If there exists an x0 ∈ X with x0 ≤ Tx0, then T has a unique fixed point
say u and Ω(u, u, u) = 0.

Proof. Let x0 ∈ X be an arbitrary point, and define the sequence xn by xn = Tnx0. By (2.35)
and for all t ≥ 0,

Ω(xn, xn+1, xn+t) ≤ k(Ω(xn−1, xn+1, xn+t) + Ω(xn−1, xn, xn)). (2.37)

But by Part (a) of Definition 3,

Ω(xn−1, xn+1, xn+t) ≤ Ω(xn−1, xn, xn) + Ω(xn, xn+1, xn+t). (2.38)

Hence,

Ω(xn, xn+1, xn+t) ≤ k[2Ω(xn−1, xn, xn) + Ω(xn, xn+1, xn+t)], (2.39)

which implies,

Ω(xn, xn+1, xn+t) ≤ 2k
1 − k

Ω(xn−1, xn, xn). (2.40)

Let r = 2k/(1 − k), then r < 1 and by repeated application of (2.40), we have

Ω(xn, xn+1, xn+t) ≤ rnΩ(x0, x1, x1). (2.41)

Now, for any l > m > n withm = n + k and l = m + t (k, t ∈ N), we have,

Ω(xn, xm, xl) ≤ Ω(xn, xn+1, xn+1) + Ω(xn+1, xn+2, xn+2)

+ Ω(xn+2, xn+3, xn+3) + · · · + Ω(xm−1, xm, xl)

≤
(
rn + rn+1 + · · · + rm−1

)
Ω(x0, x1, x1)

≤ rn

1 − r
Ω(x0, x1, x1).

(2.42)
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So,

lim
m,n,l→∞

Ω(xn, xm, xl) = 0. (2.43)

By Part (3) of Lemma 1.1, xn is aG-Cauchy sequence. SinceX isG-complete, xn converges to a
point u ∈ X. Now, similar to proving Theorem 2.1, T has a unique fixed point andΩ(u, u, u) =
0.

Corollary 2.7. Let the assumptions of Theorem 2.6 hold and

Ω
(
Tmx, Tm+2x, Tmw

)
≤ k

(
Ω
(
x, Tm+2x, Tmw

)
+ Ω(x, Tmx, Tmx)

)
(2.44)

where k ∈ [0, 1/3), then T has a unique fixed point.

Proof. The argument is similar to that used in the proof of Corollary 2.4.

3. Applications

In this section, we give an existence theorem for a solution of a class of integral equations.
Denote by Λ the set of all functions λ : [0,+∞) → [0,+∞) satisfying the following
hypotheses:

(i) λ is a Lebesgue-integrable mapping on each compact of [0,+∞),

(ii) for every ε > 0, we have
∫ε
0 λ(s)ds > 0,

(iii) ‖λ‖ < 1, where ‖λ‖ denotes to the norm of λ.

Now, we have the following results.

Theorem 3.1. Let (X, ≤) be a partially ordered space. Suppose that there exists a G-metric on X
such that (X, G) is a completeG-metric space andΩ is anΩ-distance onX and T is a non-decreasing
mapping from X into itself. Let X be Ω-bounded. Suppose that

Ω
(
Tx, T2x, Tw

)
≤
∫Ω(x,Tx,w)

0
α(s)ds, (3.1)

where α ∈ Λ. Also, suppose that for every x ∈ X

inf
{
Ω
(
x, y, x

)
+ Ω

(
x, y, Tx

)
+ Ω

(
x, T2x, y

)
: x ≤ Tx

}
> 0, (3.2)

for every y ∈ X with y /= Ty. If there exists an x0 ∈ X with x0 ≤ Tx0, then T has a unique fixed point.

Proof. Define φ : [0,+∞) → [0,+∞) by φ(t) =
∫ t
0 α(s)ds. It is clear that φ is nondecreasing

and continuous. From (iii), we have

φ(t) =
∣∣φ(t)

∣∣ =

∣∣∣∣∣

∫ t

0
λ(s)ds

∣∣∣∣∣
≤
∫ t

0
|λ(s)|ds ≤ ‖λ‖t < t. (3.3)
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Also, note that

φ2(t) = φ
(
φ(t)

) ≤ ‖λ‖φ(t) ≤ ‖λ‖2t. (3.4)

In general, we have φn(t) ≤ ‖λ‖nt. Thus, we have

∞∑

n=1

φn(t) ≤
∞∑

n=1

‖λ‖nt = ‖λ‖t
1 − ‖λ‖ < +∞. (3.5)

Therefore φ satisfies all the hypotheses of Definition 6. By inequality (3.1), we have
Ω(Tx, T2x, Tw) ≤ φ(Ω(x, Tx,w). Therefore by Theorem 2.3, T has a unique fixed point.

Now, our aim is to give an existence theorem for a solution of the following integral
equation:

u(t) =
∫1

0
K(t, s, u(s))ds + g(t), t ∈ [0, 1]. (3.6)

Let X = C([0, 1]) be the set of all continuous functions defined on [0, 1]. Define

G : X ×X ×X −→ R
+ (3.7)

by

G
(
x, y, z

)
= max

{∥∥x − y
∥∥, ‖x − z‖,∥∥y − z

∥∥}, (3.8)

where ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}. Then (X,G) is a complete G-metric space. Let Ω = G.
Then Ω is an Ω-distance on X.

Define an ordered relation ≤ on X by

x ≤ y iff x(t) ≤ y(t), ∀t ∈ [0, 1]. (3.9)

Then (X,≤) is a partially ordered set. Now, we prove the following result.

Theorem 3.2. Suppose the following hypotheses hold.

(a) K : [0, 1] × [0, 1] × R
+ → R

+ and g : R
+ → R

+ are continuous.

(b) K is nondecreasing in its first coordinate and g is nondecreasing.

(c) There exist a continuous function G : [0, 1] × [0, 1] → [0,+∞] such that

|K(t, s, u) −K(t, s, v)| ≤ G(t, s)|u − v|, (3.10)

for each comparable u, v ∈ R
+ and each t, s ∈ [0, 1].

(d) supt∈[0,1]
∫1
0 G(t, s)ds ≤ r for some r < 1.

Then the integral equation (3.6) has a solution u ∈ C([0, 1]).
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Proof. Define T : C([0, 1]) → C([0, 1]) by

Tx(t) =
∫1

0
K(t, s, x(s))ds + g(t), t ∈ [0, 1]. (3.11)

By hypothesis (b), we have that T is nondecreasing.
Now, if

inf
{
Ω
(
x, y, x

)
+ Ω

(
x, y, Tx

)
+ Ω

(
x, T2x, y

)
: x ≤ Tx

}
= 0, (3.12)

for y ∈ C([0, 1]) with y /= Ty, then for each n ∈ N there exists xn ∈ C([0, 1]) with xn ≤ Txn

such that

Ω
(
xn, y, xn

)
+ Ω

(
xn, y, Txn

)
+ Ω

(
xn, T

2xn, y
)
≤ 1

n
. (3.13)

So, we have

Ω
(
xn, y, Txn

)
= max

{∥∥xn − y
∥∥, ‖xn − Txn‖,

∥∥y − Txn

∥∥} ≤ 1
n
. (3.14)

Therefore, for each t ∈ [0, 1], we have

lim
n→+∞

xn(t) = y(t),

lim
n→+∞

Txn(t) = y(t).
(3.15)

By the continuity of K, we have

y(t) = lim
n→+∞

Txn(t)

=
∫1

0
K

(
t, s, lim

n→+∞
xn(s)

)
ds + g(t)

=
∫1

0
K
(
t, s, y(s)

)
ds + g(t) = Ty(t).

(3.16)

Thus, we have y = Ty, a contradiction. Thus,

inf
{
Ω
(
x, y, x

)
+ Ω

(
x, y, Tx

)
+ Ω

(
x, T2x, y

)
: x ≤ Tx

}
> 0. (3.17)
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Define φ : [0,+∞) → [0,+∞) by φ(t) = rt. For x ∈ C([0, T])with x ≤ Tx, we have

Ω
(
Tx, T2x, Tx

)
= sup

t∈[0,1]

∣
∣
∣Tx(t) − T2x(t)

∣
∣
∣

= sup
t∈[0,1]

∣
∣
∣
∣
∣

∫1

0
K(t, s, x(s)) −K(t, s, Tx(s))ds

∣
∣
∣
∣
∣

≤ sup
t∈[0,1]

∫1

0
|K(t, s, x(s)) −K(t, s, Tx(s))|ds

≤ sup
t∈[0,1]

∫1

0
G(t, s)|x(s) − Tx(s)|ds

≤ sup
t∈[0,1]

|x(t) − Tx(t)| sup
t∈[0,1]

∫T

0
G(t, s)ds

= Ω(x, Tx, x) sup
t∈[0,1]

∫1

0
G(t, s)ds

≤ rΩ(x, Tx, x)

= φ(Ω(x, Tx, x)).

(3.18)

Moreover, take x0 = 0, then x0 ≤ Tx0. Thus all the required hypotheses of Corollary 2.5 are
satisfied. Thus there exists a solution u ∈ C([0, T]) of the integral equation (3.6).
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