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The job shop scheduling problem (JSSP) is a notoriously difficult problem in combinatorial
optimization. In terms of the objective function, most existing research has been focused on
the makespan criterion. However, in contemporary manufacturing systems, due-date-related
performances are more important because they are essential for maintaining a high service
reputation. Therefore, in this study we aim at minimizing the total weighted tardiness in JSSP.
Considering the high complexity, a hybrid differential evolution (DE) algorithm is proposed for
the problem. To enhance the overall search efficiency, a neighborhood property of the problem is
discovered, and then a tree search procedure is designed and embedded into the DE framework.
According to the extensive computational experiments, the proposed approach is efficient in
solving the job shop scheduling problem with total weighted tardiness objective.

1. Introduction

The job shop scheduling problem (JSSP) has been known as a very stubborn combinatorial
optimization problem since the 1950s. In terms of computational complexity, JSSP is NP-
hard in the strong sense [1]. Therefore, even for very small JSSP instances, it is by no means
easy to guarantee the optimal solution. In recent years, the metaheuristics—such as genetic
algorithm (GA) [2, 3], tabu search (TS) [4, 5], particle swarm optimization (PSO) [6, 7], and
ant colony optimization (ACO) [8, 9]—have clearly become the research focus in practical
optimization methods for solving JSSPs.

Remarkably, most recent research concentrates on the hybridization of two or more
heuristics to solve JSSP. For example, ACO is hybridized with TS in [10]; GA is hybridized
with VND (variable neighborhood decent) in [11]; a hybrid algorithm based on PSO, VNS
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(variable neighborhood search), and SS (scatter search) is proposed in [12] for solving
a biobjective JSSP. The underlying motivation for constructing hybrid algorithms is that
different searchmechanisms and neighborhood structures are usually complementary to each
other (i.e., when one fails, the other may be effective). Therefore, a combination of several
optimizers is likely to promote the probability of finding optimal solutions. A common
strategy is to hybridize an algorithm good at large-scale exploration (diversification)with an
algorithm good at fine-scale exploitation (intensification), which provides reliable searching
ability for tackling complex solution spaces.

In a general JSSP instance, a set of n jobs J = {Jj}nj=1 are to be processed on a set of m
machinesM = {Mk}mk=1 under the following basic assumptions.

(i) There is no machine breakdown.

(ii) No preemption of operations is allowed.

(iii) The transportation time and the setup time can be neglected.

(iv) Each machine can process at most one job at a time.

(v) Each job may be processed by at most one machine at a time.

Each job has a fixed processing route which traverses all the machines in a
predetermined order, and the manufacturing process of a job on a machine is called an
operation. The duration time of each operation is fixed and known. Besides, a preset due
date dj and a preset weightwj are given for each job. Due date is the preferred latest finishing
time of a job, so completion after this specific time will result in losses such as a worsened
reputation in customers. Weights reflect the importance level of the orders from different
customers, larger values suggesting higher strategic importance. If we use Cj to denote the
completion time of job j, the objective function of JSSP can bemakespan (Cmax = maxnj=1{Cj}),
maximum lateness (Lmax = maxnj=1{Cj − dj}), total weighted tardiness (TWT =

∑n
j=1 wjTj ,

where Tj = max{0, Cj − dj}), number of tardy jobs (U =
∑n

j=1 Uj , where Uj = 1 if Cj > dj and
Uj = 0 otherwise), and so forth.

Up till now, most research on JSSP has been focused on the makespan criterion.
However, due-date-related performances are becoming more significant in the make-to-
order manufacturing environment nowadays. In this sense, the total weighted tardiness
measure better reflects the critical factors that affect the profits of a firm. Meanwhile, from the
theoretical perspective, total weighted tardiness is more difficult to optimize than makespan.
According to the concepts of computational complexity, minimizing Cmax is only a special
case of minimizing TWT, which means the complexity of solving JSSP with total weighted
tardiness objective is much greater than that of solving JSSP with makespan objective. Below
we will use the abbreviation “TWT-JSSP” to denote the job shop scheduling problem with
total weighted tardiness objective.

The rest of this paper is organized as follows. Section 2 provides a brief review on
existing solution methods for TWT-JSSP and the differential evolution algorithm. Section 3
discusses the mathematical model of TWT-JSSP and a neighborhood property. Section 4
describes the design of a hybrid differential evolution algorithm for solving TWT-JSSP.
Section 5 presents the computational results. Finally, Section 6 concludes the paper.
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2. Literature Review

2.1. Existing Algorithms for TWT-JSSP

The contributions on TWT-JSSP are relatively rare in the literature. The only exact solution
methodology is the branch-and-bound algorithm proposed by Singer and Pinedo [13], while
all the following surveyed methods belong to the heuristic category.

Reference [14] presents efficient dispatching rules for sequencing the operations in
TWT-JSSP, themost powerful one being the ATC (apparent tardiness cost) rule. In [15, 16], the
authors propose modified shifting bottleneck heuristics, in which the subproblems are solved
by dispatching rules (the basic ATC rule or the BATCS rule for complex job shops). The large
step random walk (LSRW) algorithm is designed in [17] and aimed at the TWT-JSSP with
release times (Jm|rj |

∑
wjTj). References [2, 3] present hybrid genetic algorithms for TWT-

JSSP. Reference [18] presents a rolling horizon approach for TWT-JSSP, in which each time
window is scheduled with a modified shifting bottleneck heuristic. Reference [19] presents
a tabu search algorithm for the generalized TWT-JSSP with release times and precedence
constraints. Recently, a new meta-heuristic called electromagnetic algorithm (EM) [20] has
been explored and tested on TWT-JSSP.

Although these algorithms are effective, they have not fully utilized the inherent
properties of TWT-JSSP. Hence, they will not perform satisfactorily when faced with large-
scale instances of the problem. Exploring the structural properties (including neighborhood
properties) of TWT-JSSP is an important research direction, which also constitutes the
motivation of this study.

2.2. The Differential Evolution Algorithm

The differential evolution (DE) algorithm, whichwas first proposed by Storn and Price [21] in
the mid-1990s, is a relatively new evolutionary optimizer. Characterized by a novel mutation
operator, the algorithm has been found to be a powerful tool for continuous function
optimization [22]. Due to its easy implementation, quick convergence and robustness, the
DE algorithm is becoming increasingly popular in recent years. A wide range of successful
applications have been reported, such as the design of fixed-structure robust controllers [23],
space trajectory optimization [24], multiarea economic dispatch [25], and exergoeconomic
analysis and optimization [26].

Despite the low computational complexity, DE has also been shown to have some
weaknesses. In particular, DE is good at exploring the search space and locating the promising
region, but it is slow at exploiting the high-quality solutions [27]. Recently, some researchers
try to improve the performance of DE by hybridizing it with other local search-based
algorithms. In [28], the authors propose the 2-Opt based DE (2-Opt DE) which is inspired
by 2-Opt algorithms to accelerate DE. They show that 2-Opt DE can outperform the original
DE in terms of solution accuracy and convergence speed. In [29], the authors incorporate
the orthogonal design method into DE to accelerate its convergence rate. They show that the
proposed approach outperforms the classical DE in terms of the quality, speed, and stability
of the final solutions.

Due to its continuous feature, the traditional DE algorithm cannot be directly applied
to scheduling problems with inherent discrete nature. Indeed, in canonical DE, each solution
is represented by a vector of floating-point numbers. But for scheduling problems, each
solution is a permutation of integers. To address this issue, two kinds of approaches can be
identified in the literature.
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(1) A transformation scheme is established to convert permutations into real numbers
and vice versa [30, 31]. In this way, we only need to add a few lines to the encoding
and decoding procedures, and it is not necessary to change the implementation
of DE itself. The advantage is that the search mechanism of DE is well preserved,
while the disadvantage is the redundancy in the mapping from real to permutation
spaces.

(2) The mutation and crossover operators in DE are modified to suit the permutation
representation [32, 33]. Clearly, the difficulty is how to redesign these operators
such that the characteristics of high-quality solutions can be inherited and
exploited. The design of operators should be problem dependent and thus requires
a specific analysis of the optimization problem. Therefore, the lack of generality is
a disadvantage of this approach.

Despite the success on permutation flow shop scheduling problems, the application
of DE to JSSP has rarely been reported. The job shop model is more complex because
the processing sequences of each machine need to be optimized separately. To tackle such
a difficult problem, we design a tree-based local search module which can enhance the
exploitation ability of DE. To our knowledge, this is the first attempt that DE is applied to
TWT-JSSP.

3. The Mathematical Model and Neighborhood
Properties of TWT-JSSP

3.1. The Mathematical Model and Its Duality

We utilize the concept of disjunctive graph for formulating TWT-JSSP [34]. In the graph
G(N,A,E), N = O ∪ {0} = {0, 1, 2, . . . , n × m} is the set of nodes, where O = {1, . . . , n × m}
corresponds to the operation set of the JSSP instance. Node 0 stands for a dummy operation
which starts before all the real operations, while the starting time and the processing time of
this dummy operation are both zero. A is the set of conjunctive arcs, and each conjunctive
arc indicates the processing order of two operations belonging to the same job. Meanwhile,
node 0 is connected with the first operation of each job with a separate conjunctive arc. In
other words, if we use F(O) to denote the set of the first operations of all jobs, then for all
fj ∈ F(O), (0, fj) ∈ A. E =

⋃
k∈M Ek is the set of disjunctive arcs, where Ek represents the

disjunctive arcs related with machine k. Each disjunctive arc connects two operations that
should be processed by the same machine, but the processing order of the two operations is
yet to be determined.

Under the disjunctive graph representation, TWT-JSSP can be described as a mixed-
integer linear disjunctive programming model:

min TWT(S) =
∑

uj∈U(O)

wujTuj

s.t. (a) si1 + pi1 � si2 ∀(i1, i2) ∈ A,

(b)
(
si1 + pi1 � si2

) ∨ (si2 + pi2 � si1
) ∀〈i1, i2〉 ∈ Ek, k = 1, . . . , m,

(c) Tuj � suj + puj − duj ∀uj ∈ U(O),

(d) Tuj � 0 ∀uj ∈ U(O).

(3.1)
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In the above formulation, si denotes the starting time of operation i, and the decision
variable S is a vector consisting of the starting times of all the operations. pi denotes the
required processing time of operation i. For the dummy operation 0, we set s0 = p0 = 0.
uj represents the last operation of job j, and thus U(O) = {u1, u2, . . . , un} denotes the set of
ultimate operations of all the jobs. For any operation i, di andwi, respectively, denote the due
date and the weight of the job to which operation i belongs. For the ultimate operation uj of
job j, Tuj is the tardiness of job j.

From the perspective of disjunctive graphs, finding a feasible solution to JSSP is
equivalent to determining the directions of all the disjunctive arcs such that, for any 〈i1, i2〉 ∈
E, only one of the two disjunctive inequalities in constraint (b) is satisfied. Now, let us
suppose the directions of all disjunctive arcs have been determined, and we use σ to denote
the set of directed disjunctive arcs. In this situation, the problem (3.1) becomes a linear
programming model, that is,

min TWTσ(S) =
∑

uj∈U(O)

wujTuj

s.t. (a) si2 − si1 � pi1 ∀(i1, i2) ∈ A,

(b) si2 − si1 � pi1 ∀(i1, i2) ∈ σ,

(c) Tuj − suj � puj − duj ∀uj ∈ U(O),

(d) Tuj � 0 ∀uj ∈ U(O).

(3.2)

As suggested by [19], the dual problem of the linear program (3.2) is a maximum cost
flow problem:

max TCσ(F) =
∑

(i1,i2)∈A∪σ
pi1Fi1,i2 +

∑

uj∈U(O)

(
puj − duj

)
Fuj ,0

s.t. (e) Fuj ,0 � wuj ∀uj ∈ U(O),

(f)
∑

ξ:(ξ,i)∈A∪σ
Fξ,i −

∑

ζ:(i,ζ)∈A∪σ∪U
Fi,ζ = 0 ∀i ∈ O,

(g) Fi1,i2 � 0 ∀(i1, i2) ∈ A ∪ σ ∪U.

(3.3)

In the above formulation, Fi1,i2 represents the flow over the arc (i1, i2); U =
{(u1, 0), (u2, 0), . . . , (un, 0)} = {(uj, 0)}nj=1 is a newly defined arc set, each arc pointing from
the last operation of job j to node 0; TC denotes the total cost of the flows.

Theorem 3.1. For the maximum cost flow problem (3.3), there exists an optimal solution F∗ which
satisfies the following: each node (except node 0) has at most one incoming arc with nonzero flow.

Proof. See Appendix A.

3.2. A Neighborhood Property for the Swap of Adjacent Operations

We know from the previous subsection that, given a feasible σ (i.e., the directions of all
disjunctive arcs), the schedule is determined, and meanwhile, a network flow graph is
associated with the current schedule. The task of neighborhood search is to modify certain
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parts of σ to get σ ′, so that the total weighted tardiness can be reduced, that is, TWTmin
σ ′ <

TWTmin
σ (or equivalently, TCmax

σ ′ < TCmax
σ ).

Definition 3.2 (block). A sequence of operations in a critical path is called a block if (3.1)
it contains at least two operations and (3.2) the sequence includes a maximum number of
operations that are consecutively processed by the same machine.

If we want to improve the schedule under the current σ, we should only consider
modifying the disjunctive arcs that satisfy the following two conditions: (1) the arc belongs
to a certain block and (2) the arc carries positive flow in the dual network. The latter condition
implies that this disjunctive arc is on the critical path of at least one tardy job, so altering this
arc can possibly reduce the TWT.

Now we consider whether swapping two adjacent operations in a block can really
improve the TWT. Under a given σ, suppose the operations (1, 2, . . . , z) constitute a block in
the corresponding schedule, and the associated network flows are partially shown in Figure 1.
The amount of flow on the outgoing disjunctive arc of operation i is denoted by xi and
suppose xi > 0, for all i = 1, 2, . . . , z − 1. We assume this dual solution satisfies the condition
described in Theorem 3.1, that is, each node can have at most one incoming arc with positive
flow. In this case, the input flows of these nodes all come from the input disjunctive arcs, so
the input conjunctive arcs of these nodes must carry zero flow and thus they are not marked
in the figure. However, each of the nodes can still have an outgoing arc with positive flow.
For simplicity, these outgoing arcs with possibly positive flow are drawn in solid arrows in
the figure, and the amount of flow is denoted by Fi � 0, respectively.

After executing the SWAP operator, we can construct a new feasible solution to the
dual problem by adjusting the amount of flows on each arc. In the new network, the flow
on the outgoing disjunctive arc of operation i is denoted by yi. In order to enable accurate
analysis, we keep all the Fi values constant in the process of adjusting the local flows within
the block (so that the flow equilibrium outside the considered scope will not be affected).

Theorem 3.3. Suppose a block with consecutive positive flows contains the following operations:
(1, 2, . . . , α, β, . . . , z). If the condition

Fα

pα
�

Fβ

pβ
(3.4)

is satisfied, then swapping the two operations α and β will not lead to improvement on the objective
function (TWT).

Proof. See Appendix B.

Therefore, the function of Theorem 3.3 is that it helps to exclude some nonimproving
moves in the local search process, so that the optimization efficiency can be improved.
However, such a greedy mechanism must be combined with a large-scale randomized search
(like DE) in order not to get trapped by local optima.

4. The Hybrid DE Algorithm for TWT-JSSP

4.1. The DE Optimization Framework

Like other evolutionary optimizers, DE is a population-based stochastic global optimizer.
In DE, each individual in the population is represented by a D-dimensional real vector
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Fα−1 Fα Fβ

1

SW
A
P(
α
,β
)

xα−1 xα xβ

yα−1 yαyβ

α − 1 α β z. . .

1 . . .

. . .

. . . zα − 1 αβ

Fα−1 FαFβ

Fβ+1

xβ+1

yβ+1

Fβ+1

β + 1

β + 1

Figure 1: Illustration of the neighborhood operation SWAP(α, β).

xi = (xi,1, xi,2, . . . , xi,D), i = 1, . . . , SN, where SN is the population size. In each iteration, DE
employs the mutation and crossover operators to generate new candidate solutions and then
applies a one-to-one selection policy to determine whether the offspring or the parent can
survive to the next generation. This process is repeated until a preset termination criterion is
met.

The standard DE algorithm can be described as follows.

Step 1 (Initialization). Randomly generate a population of SN solutions, {x1, . . . , xSN}.

Step 2 (Mutation). For i = 1, . . . , SN, generate a mutant solution vi as follows:

vi = xbest + F × (xr1 − xr2), (4.1)

where xbest denotes the best solution in the current population; r1 and r2 are randomly
selected from {1, . . . , SN} such that r1 /= r2 /= i; F > 0 is a weighting factor.

Step 3 (Crossover). For i = 1, . . . , SN, generate a trial solution ui as follows:

ui,j =

⎧
⎨

⎩

vi,j if ξj � CR or j = rj ,

xi,j otherwise,

(
j = 1, . . . , D

)
(4.2)

where rj is an index randomly selected from {1, . . . , D} to guarantee that at least one
dimension of the trial solution ui differs from its parent xi; ξj is a random number generated
from the uniform distribution U[0, 1]; CR ∈ [0, 1] is the crossover parameter.

Step 4 (Selection). If ui is better than xi, let xi = ui.

Step 5. If the termination condition is not satisfied, go back to Step 2.
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According to the algorithm description, DE has three important parameters, that is,
SN, F, and CR. In order to ensure a good performance of DE, the setting of these parameters
should be reasonably adjusted based on specific optimization problems.

It is worth noting that there exist other variants of the DE algorithm with respect
to the mutation and crossover method [35]. In fact, the above procedure is noted as
“DE/best/1/bin” in the literature. If we change the mutation policy, we can obtain the
“DE/rand/1/∗” variant: vi = xr1 +F× (xr2 −xr3)where the base solution (xr1) is also randomly
chosen from the population.

4.2. The Encoding and Decoding Schemes

The encoding scheme used here is based on the random key representation and the smallest
position value (SPV) rule. Each solution is described by n ×m continuous values, and in the
decoding process, this set of values will be transformed to a permutation of operations by the
SPV rule.

Formally, let xi = (xi,1, xi,2, . . . , xi,n×m) denote the ith solution, where xi,d is the position
value of the ith solution with respect to the dth dimension (d = 1, . . . , n × m). To decode
a solution, the SPV rule is applied to sort the position values within a solution and then
determine the relative positions of the corresponding operations. This process is exemplified
in Table 1 for a problem containing 6 operations (suppose N = {1, . . . , 6}). In this example,
the smallest position value (−0.99) resides in the second dimension, and thus, the operation
“2” comes first in the resulting sequence (the third row of the table). After sorting all these
dimension values constituting solution xi, the operation sequence πi = (2, 5, 4, 1, 6, 3) can be
obtained.

Then, the decoded operation sequence πi can be used to build an active schedule for
TWT-JSSP. The detailed schedule building algorithm is described as follows.

Input. An operation sequence π .

Step 1. Let Q(1) = O = {1, . . . , nm} (the set of all operations), R(1) = F(O) = {f1, . . . , fn} (the
set of first operations of each job). Set t = 1.

Step 2. Find the operation i∗ = argmini∈R(t){ri + pi}, and let m∗ be the index of the machine
on which this operation should be processed. Use B(t) to denote all the operations from R(t)
which should be processed on machine m∗.

Step 3. Delete from B(t) the operations that satisfy ri � ri∗ + pi∗ .

Step 4. Find the operation ô which belongs to B(t) and meanwhile ranks first in π . Schedule
operation ô on machine m∗ at the earliest possible time.

Step 5. Let Q(t + 1) = Q(t) \ {ô}, R(t + 1) = R(t) \ {ô} ∪ {JS(ô)}, where JS(ô) is the immediate
job successor of operation ô.

Step 6. If Q(t + 1)/= ∅, set t ← t + 1 and go to Step 2. Otherwise, the decoding procedure is
terminated.

In the above description, the release time ri equals the completion time of the
immediate job predecessor of operation i. So (ri + pi) is the earliest possible completion time
of operation i. Q(t) represents the set of operations yet to be scheduled at iteration t, while
R(t) represents the set of ready operations (whose job predecessors have all been scheduled)
at iteration t.
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Table 1: Illustration of the decoding process using SPV.

Dim. d 1 2 3 4 5 6

xi,d 1.80 −0.99 3.01 0.72 −0.45 2.22
πi,d 2 5 4 1 6 3

4.3. The Local Search Module Based on Tree Search

As mentioned in Section 2.2, DE alone does not have satisfactory “exploitation” ability. In
order to cope with complex search spaces, it is usually required that a local search module
be embedded into the general framework of DE. In this paper, we devise a tree-based
local search optimizer by borrowing ideas from the filter-and-fan algorithm in [36]. In each
iteration of DE, the local search is carried out for the best e% of solutions in the current
population immediately after the selection phase. Thus, e is an important parameter for
adjusting the frequency of local search and achieving a balance between exploration and
exploitation.

In order to improve a selected solution, the proposed tree search algorithm generates
compound neighborhoods for the solution based on the SWAP operator. The algorithm
searches in a breadth-first manner, but unlike the beam search heuristic, each tree node
represents a complete schedule rather than a partial schedule. The tree is gradually expanded
by applying the SWAP operator iteratively. In each trial, the pair of operations to be swapped
is randomly chosen from the critical blocks in the current schedule. To avoid repeated search,
the reverse of the previous SWAP operator is prohibited. For example, if the current schedule
is obtained by swapping (α, β), then a swap on (β, α) (if it is in the critical block again) should
be tabooed in the immediate expansion from the current node. In the search process, we can
utilize the relevant neighborhood property (Theorem 3.3) to promote the efficiency. In other
words, when the theorem predicts that a certain move will not lead to improvement, then the
action is canceled and another neighborhood move will be tried.

The proposed tree search algorithm is heuristic in nature, because it is computationally
infeasible to enumerate all the possible swaps of the critical operations. Indeed, the algorithm
only makes η2 trails for each solution other than the “root” solution. Meanwhile, we need
to apply a pruning strategy in the breadth-first search process in order to control the
computational time. In particular, only the η1 best solutions on each level of the tree will be
exploited in the subsequent trials. We implement the tree search algorithm using the queue
data structure as follows.

Input. A selected base solution σ.

Step 1. Let l = 1. Create an empty queue.

Step 2. Try applying the SWAP operator on η1 different locations in the critical blocks of σ.
Let the produced η1 solutions enter the queue. Denote the best solution among these by σ∗.

Step 3. Perform the following steps for η1 times.

(3.1) Take out the first solution in the queue, denoted by σf .

(3.2) Try applying the SWAP operator on η2 different locations in the critical blocks of
σf . Let the produced η2 solutions enter the queue.
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Step 4. Retain the best η1 solutions in the queue, and delete the rest η1(η2 − 1) ones. Denote
the currently best solution in the queue as σ∗

l
. If TWT(σ∗

l
) < TWT(σ∗), let σ∗ = σ∗

l
.

Step 5. Let l ← l + 1. If l < L, go back to Step 3.

Step 6. Output σ∗.

According the above description, the tree has η1 nodes on level 1, each of which will
be expanded to η2 nodes on level 2. Thus, there are totally η1 × η2 nodes on level 2. However,
only the best η1 nodes among these have a chance to be exploited and further expanded to
level 3, while the rest will be abandoned. In this way, the number of nodes being considered
on each level is controlled at η1 ×η2 and will not increase exponentially. After expanding to L
levels, the algorithm is terminated.

For example, if we set η1 = 3, η2 = 2, and L = 4, the entire tree structure may look like
Figure 2. The starting solution is denoted by σ0. On each level from l = 2, three promising
solutions are expanded further while the other three are discarded. The best solution found
by this local search endeavor may appear on the last level.

The complexity of the tree search algorithm can be briefly analyzed as follows. There
are roughly η1 × L solutions that need to be expanded in the tree search process. For
each expansion, the algorithm should first find the critical paths related with the tardy
jobs. According to the Bellman’s algorithm [37], this can be done in O(nm) time. Then,
the neighborhood operator has to be applied for approximately η1η2 × L times in the tree
search process. Therefore, the computational complexity of the algorithm can be described as
O(η1Lnm + η1η2L).

Compared with the extensive exploration behavior of DE, the proposed tree search
algorithm works in a greedy manner. First, each neighborhood move is performed on the
critical blocks of the corresponding schedule, because only such moves are possible to
produce improvements. Second, the neighborhood property is utilized to exclude some
unpromising moves when there are more than η2 candidates to choose from. Third, on each
level of the tree, only η1 best solutions from the totally η1 × η2 will be further considered.
These features make the tree search algorithm extremely concentrated, which provides
a complementary mechanism to DE’s search process. Thus, using the tree search as an
embedded local search module is beneficial for enhancing the exploitation capability and
the overall performance of the hybrid DE.

5. The Computational Results

5.1. The Test Problems and Parameter Setting

In order to test the performance of the proposed hybrid DE (abbreviated as HDE hereinafter),
randomly generated TWT-JSSP instances with different sizes are used in the computational
experiment. For a specific problem size, the processing route of each job is a random
permutation of the m machines, and the required processing time of each operation follows
a uniform distribution U[1, 99] and takes only integer values. The due date of each job
is set based on the total processing time of the job as dj = �u × f × ∑

i∈Oj
pi. In this

expression, u ∼ U[1, 1.1 × max{1, n/m}] is a random number uniformly distributed in the
interval [1, 1.1 × max{1, n/m}], and Oj denotes the set of operations that constitute job j.
f ∈ {1.1, 1.3, 1.5} is a coefficient that reflects the tightness level of the due date setting. The
weight of each job (integer values) follows a uniform distribution, that is, U[1, 10].
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l = 1

l = 2

l = 3

l = 4

σ0

σ11 σ12 σ13

σ21 σ22 σ23 σ24 σ25 σ26

σ31 σ32 σ33 σ34 σ35 σ36

σ41 σ42 σ43 σ45 σ46σ∗
44

Figure 2: A possible tree structure under η1 = 3, η2 = 2, and L = 4.

In order to reduce random errors in the computation, we randomly generate 5 different
instances for each due date tightness and scale. In particular, 10 problem sizes (from 100
operations to 500 operations) and 3 due date levels (f = 1.5 for loose due dates, f = 1.3,
for moderate due dates and f = 1.1 for tight due dates) are tested, so the total number of
instances is 150. The first two columns of Tables 2, 3 and 4 list the scales of the 10 instance
sets. We compare the performance of the proposed HDE with the hybrid genetic algorithm
GLS for TWT-JSSP [2]. The algorithms have been implemented using Visual C++ 2010 and
tested on a platform of Intel Core i5-750 2.67GHz, 3GB RAM, and Windows 7.

In this experiment, the parameters of HDE are set as follows.

(i) The DE parameters: SN = 50, F ∼ U(0.5, 1.0) (the “dither” strategy [38]), CR = 0.9.

(ii) The local search parameters: e% = 50%, η1 = 18, η2 = 9, L = 14.

(iii) Termination criterion: the best-so-far solution has not been updated for 50
generations (or controlled by the external computational time limit).

5.2. The Results and Discussions

The computational results are processed in the following way before listed in Tables 2, 3 and
4. For each instance i, HDE and GLS are, respectively, run for 10 independent times. The
best objective value obtained in the 10 runs by algorithm a (a ∈ {HDE,GLS}) is denoted by
TWTi

b(a), the worst denoted by TWTi
w(a), and the mean denoted by TWTi

m(a).
Next, we can calculate the relative objective values by taking TWTi

b(HDE) as reference:
RTWTi

b(a) = TWTi
b(a)/TWTi

b(HDE), RTWTi
w(a) = TWTi

w(a)/TWTi
b(HDE), RTWTi

m(a) =
TWTi

m(a)/TWTi
b(HDE).

Finally, when the above steps have been performed for each instance in the
considered instance set, we calculate the average relative values (over this set) as
RTWTb(a) = (1/5)

∑5
i=1 RTWTi

b(a), RTWTw(a) = (1/5)
∑5

i=1 RTWTi
w(a), and RTWTm(a) =

(1/5)
∑5

i=1 RTWTi
m(a). In this way, the computational results are summarized in the tables

with respect to each instance set.
Meanwhile, with respect to the first instance of each set under f = 1.3 (marked with

“#-1” where # represents the index of instance sets), we record the average computational
time (over 10 independent runs) of the two algorithms and plot the data as bar graphs in
Figure 3.
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Table 2: The computational results under loose due dates (f = 1.5).

Instance
set no. Size (n ×m)

HDE GLS

RTWTb RTWTw RTWTm RTWTb RTWTw RTWTm

1 10 × 10 1.000 1.150 1.021 1.002 1.187 1.052
2 20 × 5 1.000 1.128 1.085 1.004 1.136 1.073
3 10 × 20 1.000 1.149 1.099 1.008 1.144 1.117
4 20 × 10 1.000 1.129 1.065 1.010 1.113 1.098
5 20 × 15 1.000 1.120 1.054 1.000 1.118 1.075
6 50 × 6 1.000 1.126 1.072 1.017 1.103 1.087
7 20 × 20 1.000 1.115 1.034 1.013 1.119 1.068
8 40 × 10 1.000 1.119 1.062 1.027 1.122 1.076
9 50 × 10 1.000 1.103 1.027 1.015 1.130 1.100
10 100 × 5 1.000 1.121 1.078 1.026 1.126 1.092

Table 3: The computational results under moderate due dates (f = 1.3).

Instance
set no. Size (n ×m)

HDE GLS

RTWTb RTWTw RTWTm RTWTb RTWTw RTWTm

1 10 × 10 1.000 1.181 1.090 1.085 1.248 1.124
2 20 × 5 1.000 1.146 1.099 1.084 1.266 1.151
3 10 × 20 1.000 1.165 1.117 1.010 1.205 1.144
4 20 × 10 1.000 1.200 1.153 1.005 1.306 1.178
5 20 × 15 1.000 1.218 1.101 1.094 1.279 1.154
6 50 × 6 1.000 1.164 1.115 1.095 1.252 1.139
7 20 × 20 1.000 1.184 1.110 1.087 1.324 1.167
8 40 × 10 1.000 1.166 1.086 1.086 1.214 1.118
9 50 × 10 1.000 1.147 1.096 1.010 1.262 1.130
10 100 × 5 1.000 1.195 1.086 1.080 1.329 1.159

Table 4: The computational results under tight due dates (f = 1.1).

Instance
set no. Size (n ×m)

HDE GLS

RTWTb RTWTw RTWTm RTWTb RTWTw RTWTm

1 10 × 10 1.000 1.235 1.112 1.092 1.249 1.123
2 20 × 5 1.000 1.207 1.113 1.083 1.253 1.158
3 10 × 20 1.000 1.262 1.115 1.028 1.343 1.132
4 20 × 10 1.000 1.235 1.135 1.091 1.318 1.181
5 20 × 15 1.000 1.252 1.139 1.033 1.274 1.179
6 50 × 6 1.000 1.213 1.119 1.061 1.329 1.180
7 20 × 20 1.000 1.219 1.126 1.099 1.329 1.195
8 40 × 10 1.000 1.180 1.124 1.097 1.367 1.216
9 50 × 10 1.000 1.194 1.137 1.023 1.359 1.213
10 100 × 5 1.000 1.256 1.162 1.010 1.324 1.209
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Figure 3: Comparison of computational time.

The following comments can be made according to the results displayed in Tables 2–4
and Figure 3.

(1) For most instances, the gap between the best and the worst solutions obtained by
HDE is smaller than the gap obtained by GLS, which implies that HDE performs
more robustly in different executions and for different scheduling instances.

(2) When the due dates are tighter (f = 1.3 or 1.1), we find that the solution quality
of GLS is considerably inferior to that of HDE. This is because under tight due
dates, many jobs are prone to be tardy, and the optimization difficulty increases
systematically. In this situation, the proposed tree search mechanism exhibits
greater advantage. The search is more effective because the neighborhood moves
are conducted on the critical blocks and a part of unpromisingmoves are eliminated
with simple calculations. To certain extent, HDE has overcome the blindness of
traditional local search, and thus it can access the high-quality solutions with larger
probability.

(3) By comparing the computational time, we see that, for most instances, the con-
sumed time of HDE is less than that of GLS. More remarkably, the increasing speed
of computational time with instance size is slower on the part of HDE. This is
because the mutation and crossover based on random key representation in HDE
is more efficient than the crossover and mutation based on operation sequence
representation in GLS. Meanwhile, the phenomenon also verifies the fact that the
tree-based local search is able to accelerate the convergence of DE (note that the
termination criterion of HDE is decided by the convergence status).

5.3. Influence of the Parameter Settings

The following experiments are designed for observing the impact of parameter settings on the
final solution quality of HDE. A 10 × 10 instance with f = 1.3 is used in these experiments.
The termination criterion adopted here is an exogenously given computational time limit.
When one parameter is being tested, the other parameters are all fixed at their recommended
values given in Section 5.1.
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The population size (SN) is one of the key parameters for the HDE algorithm. If
SN is large, many solutions need to be maintained in the population, which increases the
computational burden of solution decoding and evaluation. If SN is small, more generations
can be implemented within the DE framework, but the limited population diversity will
impair the effectiveness of mutation and crossover. Therefore, under a given computational
time limit, the selection of SN can influence the overall optimization performance. In this
experiment, we fix the available computational time at three different levels and then identify
the most suitable value of SN in each scenario. The time limit is set as 20 sec (tight),
40 sec (moderate), and 60 sec (loose), respectively. The computational results are displayed
in Figure 4, where the vertical axis gives the average objective value obtained from 20
independent executions of the proposed HDE under each SN.

According to the results, the selection of SN has a noticeable impact on the solution
quality. Generally, the solution quality will deteriorate if SN is either too small or too large.
But the best SN varies with different time constraints. If the time budget is tight or moderate,
the best population size is 40 ∼ 50. If the time resource is abundant, the best population size
is 60 ∼ 70. Thus, setting SN = 50 is reasonable for ordinary uses.

Another important parameter for HDE is e%, the percentage of solutions that undergo
the local search process. A reasonable selection of ewill result in an effective balance between
exploration and exploitation. The computational results for this experiment are displayed in
Figure 5.

According to the results, the setting of e has a considerable impact on the solution
quality, especially when the computational time is scarce (20 sec). A small e means that only
a few solutions in each generation can be improved by the local search, which has little effect
on the entire population. A large e suggests that too much time is consumed on local search,
which may reduce the normal function of DE.

The best setting of e under each constraint level is 70 (for tight time budget), 60 (for
moderate time budget) and 40 (for loose time budget). When the exogenous restriction on
computational time is tight, DE has to rely on frequent local search to find good solutions.
This is because, in the short term, the tree-based local search is more efficient than DE’s
mechanism (mutation and crossover) in improving a solution. However, the price to pay
is possibly a premature convergence of the optimization process due to the greedy nature of
the tree search. On the other hand, when the computational time is sufficient, DE will prefer
a larger number of generations to conduct a systematic exploration of the solution space. In
this case, the local search need not be used very frequently, otherwise the steady searching
process may be disturbed. Overall, a recommended value for e is 50.

Finally, we focus on the local search parameters η1, η2, and L. Following the suggestion
of [36], we fix the relationship between η1 and η2 as η1 = 2η2 and then test the influence
of L and η1 on the final solution quality. The tested ranges are L ∈ {8, 10, 12, . . . , 24}, η1 ∈
{10, 12, 14, . . . , 26}, with a step size of 2, which leads to 81 combinations. Again, we choose
the first instance of each set (#-1) under f = 1.3 for this experiment. The computational time
limit is set as 0.6 nmsec for an n ×m instance. The results are displayed as relative values in
Figure 6.

The following comments can be made according to the results.

(1) The tree search parameters produce a remarkable effect on the final solutions of
HDE, which confirms that such a local search optimizer is effective in improving the
performance of DE. When L and η1 both take small values, the tree search process
does not have chance to examine a sufficient number of neighborhood solutions
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before termination, which results in solution quality decline. On the other hand,
when L and η1 are both set large, the overall performance also worsens because the
exploitation is consuming too much time and crowds out the exploration process
of DE.

(2) The value of L (representing the depth of the search tree) and the value of
η1 (representing the width of the search tree) should be coordinated in order
to guarantee satisfactory solution quality. When the tree is growing too wide
(resp., deep) but not sufficiently deep (resp., wide), the overall effectiveness will
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deteriorate. Based on the experiments, the recommended settings are L = 14 and
η1 = 18 (thus η2 = 9).

6. Conclusion

In this paper, we propose a hybrid differential evolution algorithm for the job shop
scheduling problem with the objective of minimizing total weighted tardiness. Based on
the mathematical programming models, we show a neighborhood property for the swap of
adjacent operations in a critical block, which can be used to exclude some nonimproving
neighborhood moves. Then, a tree-based local optimizer is designed and embedded into
the DE algorithm in order to promote the exploitation function. The tree search algorithm
generates compound neighborhood for the selected solution and therefore it helps DE to
exploit the relatively high-quality solutions. Finally, the computational results verify the
effectiveness and efficiency of the proposed hybrid approach.

The future research can be carried out from the following aspects.

(1) It is worthwhile to investigate the new and more effective neighborhood properties
for TWT-JSSP. This could provide a deeper insight into the inherent nature of TWT-
JSSP and facilitate the design of metaheuristics like DE.

(2) It is worthwhile to consider other encoding schemes and mutation/crossover
mechanisms of the DE algorithm (such as the discrete DE), which may be more
suitable for the application of the neighborhood properties.
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Appendices

A. Proof of Theorem 3.1

Proof. We prove the theorem by construction.
First, it is noticeable that the unit cost of each arc in A ∪ σ is equal to the processing

time of the operation that is connected to the tail of the arc, that is, ci1,i2 = pi1 , which means the
largest cost path from node 0 to node uj is exactly the same as the critical path from operation
0 to operation uj , and the total cost of this path equals the length of the critical path.

Then, because constraint (f) requires that the total input flow should equal the total
output flow for every node, a feasible solution F to this problemmust be composed of several
cycle flows. However, we know that G(N,A ∪ σ) does not contain any cycles, so each cycle
in F must contain at least one arc from U. On the other hand, we can see that the arcs in U
all point to the same node 0, and because a cycle cannot include duplicate nodes, it is clear
that each cycle in F contains at most one arc from U. Finally, it is concluded that each cycle
contains exactly one arc fromU.

Based on the previous discussions, we can construct an optimal solution F∗ by the
following steps.

Step 1. Initialize the flow on each arc to be 0, and let j = 1.

Step 2. Find the unique critical path from operation 0 to uj , denoted by P ∗(0, uj) (the
uniqueness is guaranteed by a simple rule detailed in the following).

Step 3. If the total unit cost (i.e., length) of the path P ∗(0, uj) plus the unit cost of arc (uj, 0) is
greater than 0, then add a flow amount of wuj to arc (uj, 0) and each arc in P ∗(0, uj) (notice
that the capacity limit for arc (uj, 0) is wuj ).

Step 4. Set j ← j + 1. If j � n, then return to Step 2; otherwise, terminate the algorithm.

In such a constructed solution F∗, each node except 0 has at most one positive-flow
incoming arc. This is because the flows are only distributed on the arcs belonging to critical
paths, and meanwhile, only one critical path is considered from node 0 to any other node i.

The last issue is how to maintain the uniqueness of the critical path to a certain node.
Here we use a rule called “machine predecessor first.” Indeed, when looking for a critical path
from 0 to uj , we begin from uj and move backward. In each step, we must select an operation
whose completion time equals the starting time of the current operation i from its immediate
job predecessor JP(i) and its immediate machine predecessor MP(i). Then, if CJP(i) = si and
CMP(i) = si both hold, the rule requires that the machine predecessor should be selected as the
next current operation. This tie-breaking rule guarantees the uniqueness of the critical path
to any node.

B. Proof of Theorem 3.3

Proof. As Figure 1 shows, the flows in the initial network are denoted by xi (xi > 0), so we
have the flow equilibrium condition:

xα−1 = Fα + xα,

xα = Fβ + xβ,

xβ = Fβ+1 + xβ+1.

(B.1)
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Nowwe are swapping the operations α and β. After the SWAP operation is performed,
the flows on the relevant arcs are denoted by y. So the following equilibrium equations must
be satisfied:

yα−1 = Fβ + yβ,

yβ = Fα + yα,

yα = Fβ+1 + yβ+1.

(B.2)

It is noticed that, in order to keep the equilibrium of the remaining nodes α − a (1 �
a < α) and β + b (1 < b � z − β), we have yα−a = xα−a and yβ+b−1 = xβ+b−1.

Solving (B.2) together with (B.1) yields

yβ = xα−1 + xβ − xα,

yα = xβ.
(B.3)

We can ensure yβ � 0, because Theorem 3.1 implies xα−1 � xα.
The difference in the total cost of the flows {yi} and the original flows {xi} is

ΔC = C
(
y
) − C(x) =

β∑

i=α

piyi −
β∑

i=α

pixi

= pαxβ + pβ
(
xα−1 + xβ − xα

) − pαxα − pβxβ

= pβ(xα−1 − xα) − pα
(
xα − xβ

)

= pβFα − pαFβ.

(B.4)

Since the flows outside this block are all kept unchanged, the difference in the total
cost of the whole network resulted from executing SWAP(α, β) is the same as ΔC calculated
for this subnetwork, that is, TC(y) − TC(x) = C(y) − C(x).

Therefore, if ΔC � 0, then TCmax
σ ′ � TC(y) � TC(x) = TCmax

σ (σ denotes the original
set of directed disjunctive arcs while σ ′ denotes the new arc set obtained after performing
SWAP(α, β)). The last “=” is because we assume the original network is related with the
optimal solution to the dual problem under σ. In fact, TCmax

σ = TWTmin
σ and TCmax

σ ′ = TWTmin
σ ′ .

So it concludes that, when ΔC � 0 (⇔ Fα/pα � Fβ/pβ), swapping α and β will not improve
the current solution (TWTmin

σ ′ � TWTmin
σ ).
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