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We consider a branch-and-reduce approach for solving generalized linear multiplicative pro-
gramming. First, a new lower approximate linearization method is proposed; then, by using
this linearization method, the initial nonconvex problem is reduced to a sequence of linear
programming problems. Some techniques at improving the overall performance of this algorithm
are presented. The proposed algorithm is proved to be convergent, and some experiments are
provided to show the feasibility and efficiency of this algorithm.

1. Introduction

In this paper, the following generalized linear multiplicative programming is considered:

min
p0∏

i=1

(
cT0ix + d0i

)γ0i

s.t.
pj∏

i=1

(
cTjix + dji

)γji ≤ βj , j = 1, . . . , m,

x ∈ X0 = [l, u] ⊂ Rn,

(P)

where cji = (cji1, cji2, . . . , cjin)
T ∈ Rn, dji ∈ R, and βj ∈ R, γji ∈ R, βj > 0 and for all x ∈ X0,

cTjix + dji > 0, j = 0, . . . , m, i = 1, . . . , pj .
Since a large number of practical applications in various fields can be put into problem

(P), including VLSI chip design [1], decision tree optimization [2], multicriteria optimization
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problem [3], robust optimization [4], and so on, this problem has attracted considerable
attention in the past years.

It is well known that the product of affine functions need not be (quasi) convex, thus
the problem can have multiple locally optimal solutions, many of which fail to be globally
optimal, that is, problem (P) is multiextremal [5].

In the last decade, many solution algorithms have been proposed for globally solving
special forms of (P). They can be generally classified as outer-approximation method [6],
decomposition method [7], finite branch and bound algorithms [8, 9], and cutting plane
method [10]. However, the global optimization algorithms based on the general form (P)
have been little studied. Recently, several algorithms were presented for solving problem (P)
[11–15].

The aim of this paper is to provide a new branch-and-reduce algorithm for globally
solving problem (P). Firstly, by using the property of logarithmic function, we derive an
equivalent problem (Q) of the initial problem (P), which has the same optimal solution
as the problem (P). Secondly, by utilizing the special structure of (Q), we present a new
linear relaxation technique, which can be used to construct the linear relaxation programming
problem for (Q). Finally, the initial nonconvex problem (P) is systematically converted into a
series of linear programming problems. The solutions of these converted problems can be as
close as possible to the globally optimal solution of (Q) by successive refinement process.

The main features of this algorithm: (1) the problem investigated in this paper has
a more general form than those in [6–10]; (2) a new linearization method for solving the
problem (Q) is proposed; (3) these generated linear relaxation programming problems are
embedded within a branch and bound algorithm without increasing the number of variables
and constraints; (4) some techniques are proposed to improve the convergence speed of our
algorithm.

This paper is organized as follows. In Section 2, an equivalent transformation
and a new linear relaxation technique are presented for generating the linear relaxation
programming problem (LRP) for (Q), which can provide a lower bound for the optimal value
of (Q). In Section 3, in order to improve the convergence speed of our algorithm, we present
a reducing technique. In Section 4, the global optimization algorithm is described in which
the linear relaxation problem and reducing technique are embedded, and the convergence
of this algorithm is established. Numerical results are reported to show the feasibility of our
algorithm in Section 5.

2. Linear Relaxation Problem

Without loss of generality, assume that, for 0 ≤ i ≤ Tj , γji > 0, Tj+1 ≤ i ≤ pj , γji < 0, j = 0, . . . , m,
i = 1, . . . , pj .

By using the property of logarithmic function, the equivalent problem (Q) of (P) can
be derived, which has the same optimal solution as (P),

min φ0(x) =
T0∑

i=1

γ0i ln
(
cT0ix + d0i

)
+

p0∑

i=T0+1

γ0i ln
(
cT0ix + d0i

)

s.t. φj(x) =
Tj∑

i=1

γji ln
(
cTjix + dji

)
+

pj∑

i=Tj+1

γji ln
(
cTjix + dji

)
≤ ln βj ,

x ∈ X0 = [l, u] ⊂ Rn, j = 1, . . . , m.

(Q)
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Thus, for solving problem (P), we may solve its equivalent problem (Q) instead.
Toward this end, we present a branch-and-reduce algorithm. In this algorithm, the principal
aim is to construct linear relaxation programming problem (LRP) for (Q), which can provide
a lower bound for the optimal value of (Q).

Suppose that X = [x, x] represents either the initial rectangle of problem (Q), or
modified rectangle as defined for some partitioned subproblem in a branch and bound
scheme. The problem (LRP) can be realized through underestimating every function φj(x)
with a linear relaxation function φl

j(x) (j = 0, . . . , m). All the details of this linearization
method for generating relaxations will be given below.

Consider the function φj(x) (j = 0, . . . , m). Let φj1(x) =
∑Tj

i=1 γji ln(c
T
jix + dji), and

φj2(x) =
∑pj

i=Tj+1
γji ln(cTjix + dji), then, φj1(x) and φj2(x) are concave function and convex

function, respectively.
First, we consider the function φj1(x). For convenience in expression, we introduce the

following notations:

Xji = cTjix + dji =
n∑

t=1

cjitxt + dji,

Xji =
n∑

t=1

min
{
cjitxt, cjitxt

}
+ dji,

Xji =
n∑

t=1

max
{
cjitxt, cjitxt

}
+ dji,

Kji =
ln
(
Xji

)
− ln

(
Xji

)

Xji −Xji

,

fji(x) = ln
(
cTjix + dji

)
= ln

(
Xji

)
,

hji(x) = ln
(
Xji

)
+Kji

(
Xji −Xji

)
= ln

(
Xji

)
+Kji

(
n∑

t=1

cjitxt + dji −Xji

)
.

(2.1)

By Theorem 1 in [11], we can derive the lower bound function φl
j1(x) of φj1(x) as

follows:

φl
j1(x) =

Tj∑

i=1

γjihji(x) ≤
Tj∑

i=1

γjifji(x) = φj1(x). (2.2)

Second, we consider function φj2(x) (j = 0, . . . , m). Since φj2(x) is a convex function,
by the property of the convex function, we have

φj2(x) ≥ φj2(xmid) +∇φj2(xmid)T (x − xmid) = φl
j2(x), (2.3)
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where xmid = (1/2)(x + x),

∇φj2(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γj,Tj+1cj,Tj+1,1

cTj,Tj+1x + dj,Tj+1
+

γj,Tj+2cj,Tj+2,1

cTj,Tj+2x + dj,Tj+2
+ · · · +

γj,pj cj,pj ,1

cTj,pj x + dj,pj

...
γj,Tj+1cj,Tj+1,n

cTj,Tj+1x + dj,Tj+1
+

γj,Tj+2cj,Tj+2,n

cTj,Tj+2x + dj,Tj+2
+ · · · +

γj,pj cj,pj ,n

cTjpj x + djpj

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.4)

Finally, from (2.2) and (2.3), for all x ∈ X, we have

φl
j(x) = φl

j1(x) + φl
j2(x) ≤ φj(x). (2.5)

Theorem 2.1. For all x ∈ X, consider the functions φj(x) and φl
j(x), j = 0, . . . , m. Then, the

difference between φl
j(x) and φj(x) satisfies

φj(x) − φl
j(x) −→ 0, as

∥∥x − x
∥∥ −→ 0, (2.6)

where ‖x − x‖ = max{xi − xi | i = 1, . . . , n}.

Proof. Let Δ1 = φj1(x) − φl
j1(x),Δ

2 = φj2(x) − φl
j2(x). Since φj(x) − φl

j(x) = φj1(x) − φl
j1(x) +

φj2(x) − φl
j2(x) = Δ1 + Δ2, we only need to prove Δ1 → 0,Δ2 → 0 as ‖x − x‖ → 0.

First, consider Δ1. By the definition of Δ1, we have

Δ1 = φj1(x) − φl
j1(x) =

Tj∑

i=1

γji
(
fji(x) − hji(x)

)
. (2.7)

Furthermore, by Theorem 1 in [11], we know that fji(x) − hji(x) → 0 as ‖x − x‖ → 0. Thus,
we have Δ1 → 0 as ‖x − x‖ → 0.

Second, consider Δ2. From the definition of Δ2, it follows that

Δ2 = φj2(x) − φl
j2(x)

= φj2(x) − φj2(xmid) − ∇φj2(xmid)T (x − xmid)

= ∇φj2(ξ)
T (x − xmid) − ∇φj2(xmid)T (x − xmid)

≤
∥∥∥∇2φj2

(
η
)∥∥∥‖ξ − xmid‖‖x − xmid‖,

(2.8)
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where ξ, η are constant vectors, which satisfy φj2(x) − φj2(xmid) = ∇φj2(ξ)
T (x − xmid) and

∇φj2(ξ) −∇φj2(xmid) = ∇2φj2(η)
T (ξ − xmid), respectively. Since ∇2φj2(x) is continuous, and X

is a compact set, there exists some M > 0 such that ‖∇2φj2(x)‖ ≤ M. From (2.8), it implies
that Δ2 ≤ M‖x − x‖2. Furthermore, we have Δ2 → 0 as ‖x − x‖ → 0.

Taken together above, it implies that φj(x)−φl
j(x) = Δ1 +Δ2 → 0 as ‖x − x‖ → 0, and

the proof is complete.

From Theorem 2.1, it follows that the function φl
j(x) can approximate enough the

function φj(x) as ‖x − x‖ → 0.
Based on the above discussion, the linear relaxation programming problem (LRP) of

(Q) over X can be obtained as follows:

min φl
0(x)

s.t. φl
j(x) ≤ ln βj , j = 1, . . . , m,

x ∈ X =
[
x, x

] ⊂ Rn.

(LRP)

Obviously, the feasible region for the problem (Q) is contained in the new feasible
region for the problem (LRP), thus, the minimum V (LRP) of (LRP) provides a lower bound
for the optimal value V (Q) of problem (Q) over the rectangle X, that is V (LRP) ≤ V (Q).

3. Reducing Technique

In this section, we pay our attention on how to form the new reducing technique for eliminate
the region in which the global minimum of (Q) does not exist.

Assume that UB is the current known upper bound of the optimal value φ∗
0 of the

problem (Q). Let

αt =
T0∑

i=1

γ0iK0ic0it +∇φj2(xmid)t, t = 1, . . . , n,

T =
T0∑

i=1

γ0i
[
ln
(
X0i

)
+K0id0i −K0iX0i

]
+ φ02(xmid) − ∇φ02(xmid)Txmid,

ρk = UB −
n∑

t=1,t /= k

min
{
αtxt, αtxt

} − T, k = 1, . . . , n.

(3.1)

The reducing technique is derived as in the following theorem.

Theorem 3.1. For any subrectangle X = (Xt)n×1 ⊆ X0 with Xt = [xt, xt]. If there exists some index
k ∈ {1, 2, . . . , n} such that αk > 0 and ρk < αkxk, then there is no globally optimal solution of (Q)
overX1; if αk < 0 and ρk < αkxk, for some k, then there is no globally optimal solution of (Q) overX2,
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where

X1 =
(
X1

t

)

n×1
⊆ X, with X1

t =

⎧
⎪⎨

⎪⎩

Xt, t /= k,
(
ρk
αk

, xk

]⋂
Xt, t = k,

X2 =
(
X2

t

)

n×1
⊆ X, with X2

t =

⎧
⎪⎨

⎪⎩

Xt, t /= k,
[
xk,

ρk
αk

)⋂
Xt, t = k.

(3.2)

Proof. First, we show that for all x ∈ X1, φ0(x) > UB. Consider the kth component xk of x.
Since xk ∈ (ρk/αk, xk], it follows that

ρk
αk

< xk ≤ xk. (3.3)

From αk > 0, we have ρk < αkxk. For all x ∈ X1, by the above inequality and the definition of
ρk, it implies that

UB −
n∑

t=1,t /= k

min
{
αtxt, αtxt

} − T < αkxk, (3.4)

that is

UB <
n∑

t=1,t /= k

min
{
αtxt, αtxt

}
+ αkxk + T

≤
n∑

t=1

αtxt + T = φl
0(x).

(3.5)

Thus, for all x ∈ X1, we have φ0(x) ≥ φl
0(x) > UB ≥ φ∗

0, that is, for all x ∈ X1, φ0(x) is always
greater than the optimal value φ∗

0 of the problem (Q). Therefore, there cannot exist globally
optimal solution of (Q) over X1.

For all x ∈ X2, if there exists some k such that αk < 0 and ρk < αkxk, from arguments
similar to the above, it can be derived that there is no globally optimal solution of (Q) over
X2.

4. Algorithm and Its Convergence

In this section, based on the former results, we present a branch-and-reduce algorithm to
solve the problem (Q). There are three fundamental processes in the algorithm procedure: a
reducing process, a branching process, and an updating upper and lower bounds process.

Firstly, based on Section 3, when some conditions are satisfied, the reducing process
can cut away a large part of the currently investigated feasible region in which the global
optimal solution does not exist.
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The second fundamental process iteratively subdivides the rectangle X into two
subrectangles. During each iteration of the algorithm, the branching process creates a more
refined partition that cannot yet be excluded from further consideration in searching for a
global optimal solution for problem (Q). In this paper we choose a simple and standard
bisection rule. This branching rule is sufficient to ensure convergence since it drives the
intervals shrinking to a singleton for all the variables along any infinite branch of the branch
and bound tree. Consider any node subproblem identified by rectangle X = {x ∈ Rn | xi ≤
xi ≤ xi,= 1, . . . , n} ⊆ X0. This branching rule is as follows.

(i) Let p = arg max{xi − xi | i = 1, . . . , n}.
(ii) Let γ = (xp + xp)/2.

(iii) Let

X =
{
x ∈ Rn | xi ≤ xi ≤ xi, i /= p, xp ≤ xp ≤ γ

}
,

X =
{
x ∈ Rn | xi ≤ xi ≤ xi, i /= p, γ ≤ xp ≤ xp

}
.

(4.1)

By this branching rule, the rectangle X is partitioned into two subrectangles X and X.
The third process is to update the upper and lower bounds of the optimal value of (Q).

This process needs to solve a sequence of linear programming problems and to compute the
objective function value of (Q) at the midpoint of the subrectangle X for the problem (Q). In
addition, some bound tightening strategies are applied to the proposed algorithm.

The basic steps of the proposed algorithm are summarized as follows. In this
algorithm, let LB(Xk) be the optimal value of (LRP) over the subrectangle X = Xk, and xk =
x(Xk) be an element of corresponding argmin. Since φl

j(x) (j = 0, . . . , m) is a linear function,

for convenience in expression, assume that it is expressed as follows φl
j(x) =

∑n
t=1 ajtxt + bj ,

where ajt, bj ∈ R. Thus, we have minx∈Xφl
j(x) =

∑n
t=1 min{ajtxt, ajtxt} + bj .

4.1. Algorithm Statement

Step 1 (initialization). Let the set all active node Q0 = {X0}, the upper bound UB = +∞, the
set of feasible points F = ∅, some accuracy tolerance ε > 0 and the iteration counter k = 0.

Solve the problem (LRP) for X = X0. Let LB0 = LB(X0) and x0 = x(X0). If x0 is a
feasible point of (Q), then let

UB = φ0

(
x0
)
, F = F

⋃{
x0
}
. (4.2)

If UB < LB0 + ε, then stop: x0 is an ε-optimal solution of (Q). Otherwise, proceed.

Step 2 (updating the upper bound). Select the midpoint xk
mid of Xk; if xk

mid is feasible to (Q),
then F = F ∪ {xk

mid}. Let the upper bound UB = min{φ0(xk
mid),UB} and the best known

feasible point x∗ = arg minx∈Fφ0(x).
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Step 3 (branching and reducing). Using the branching rule to partition Xk into two new

subrectangles, and denote the set of new partition rectangles as X
k
. For each X ∈ X

k
,

utilize the reducing technique of Theorem 3.1 to reduce box X, and compute the lower
bound φl

j(x) of φj(x) over the rectangle X. If for j = 1, . . . , m, there exists some j such that

minx∈Xφl
j(x) > ln βj , or for j = 0, minx∈Xφl

0(x) > UB, then the corresponding subrectangle X

will be removed from X
k
, that is, X

k
= X

k \X, and skip to the next element of X
k
.

Step 4 (bounding). If X
k
/= ∅, solve (LRP) to obtain LB(X) and x(X) for each X ∈ X

k
. If

LB(X) > UB, set X
k
= X

k \ X; otherwise, update the best available solution UB, F and x∗

if possible, as in the Step 2. The partition set remaining is now Qk = (Qk \ Xk)
⋃
X

k
, and a

new lower bound is LBk = infX∈QkLB(X).

Step 5 (convergence checking). Set

Qk+1 = Qk \ {X | UB − LB(X) ≤ ε,X ∈ Qk}. (4.3)

If Qk+1 = ∅, then stop: UB is the ε-optimal value of (Q), and x∗ is an ε-optimal solution.
Otherwise, select an active node Xk+1 such that Xk+1 = arg minX∈Qk+1LB(X), xk+1 = x(Xk+1).
Set k = k + 1, and return to Step 2.

4.2. Convergence Analysis

In this subsection, we give the global convergence properties of the above algorithm.

Theorem 4.1 (convergence). The above algorithm either terminates finitely with a globally ε-
optimal solution, or generates an infinite sequence {xk} which any accumulation point is a globally
optimal solution of (Q).

Proof. When the algorithm is finite, by the algorithm, it terminates at some step k ≥ 0. Upon
termination, it follows that

UB − LBk ≤ ε. (4.4)

From Step 1 and Step 5 in the algorithm, a feasible solution x∗ for the problem (Q) can be
found, and the following relation holds

φ0(x∗) − LBk ≤ ε. (4.5)

Let v denote the optimal value of problem (Q). By Section 2, we have

LBk ≤ v. (4.6)
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Since x∗ is a feasible solution of problem (Q), φ0(x∗) ≥ v. Taken together above, it implies
that

v ≤ φ0(x∗) ≤ LBk + ε ≤ v + ε, (4.7)

and so x∗ is a global ε-optimal solution to the problem (Q) in the sense that

v ≤ φ0(x∗) ≤ v + ε. (4.8)

When the algorithm is infinite, by [5], a sufficient condition for a global optimization
to be convergent to the global minimum, requires that the bounding operation must be
consistent and the selection operation is bound improving.

A bounding operation is called consistent if at every step any unfathomed partition
can be further refined, and if any infinitely decreasing sequence of successively refined
partition elements satisfies

lim
k→∞

(UB − LBk) = 0, (4.9)

where LBk is a computed lower bound in stage k and UB is the best upper bound at iteration
k not necessarily occurring inside the same subrectangle with LBk. Now, we show that (4.9)
holds.

Since the employed subdivision process is rectangle bisection, the process is
exhaustive. Consequently, from Theorem 2.1 and the relationship V (LRP) ≤ V (Q), the
formulation (4.9) holds, this implies that the employed bounding operation is consistent.

A selection operation is called bound improving if at least one partition element where
the actual lower bound is attained is selected for further partition after a finite number
of refinements. Clearly, the employed selection operation is bound improving because the
partition element where the actual lower bound is attained is selected for further partition in
the immediately following iteration.

From the above discussion, and Theorem IV.3 in [5], the branch-and-reduce algorithm
presented in this paper is convergent to the global minimum of (Q).

5. Numerical Experiments

In this section, some numerical experiments are reported to verify the performance of the
proposed algorithm. The algorithm is coded in Matlab 7.1. The simplex method is applied to
solve the linear relaxation programming problems. The test problems are implemented on a
Pentium IV (3.06GHZ)microcomputer, and the convergence tolerance is set at ε = 1.0e − 4 in
our experiments.
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Example 5.1 (see [12, 15]).

min (x1 + x2 + 1)2.5(2x1 + x2 + 1)1.1(x1 + 2x2 + 1)1.9

s.t. (x1 + 2x2 + 1)1.1(2x1 + 2x2 + 2)1.3 ≤ 50,

1 ≤ x1 ≤ 3, 1 ≤ x2 ≤ 3.

(5.1)

Example 5.2 (see [15]).

min (2x1 + x2 − x3 + 1)−0.2(2x1 − x2 + x3 + 1)(x1 + 2x2 + 1)0.5

s.t. (3x1 − x2 + 1)0.3(2x1 − x2 + x3 + 2)−0.1 ≤ 10,

(1.2x1 + x2 + 1)−1(2x1 + 2x2 + 1)0.5 ≤ 12,

(x1 + x2 + 2)0.2(1.5x1 + x2 + 1)−2 ≤ 15,

1 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 2, 1 ≤ x3 ≤ 2.

(5.2)

Example 5.3 (see [12, 15]).

min (x1 + x2 + x3)(2x1 + x2 + x3)(x1 + 2x2 + 2x3)

s.t. (x1 + 2x2 + x3)1.1(2x1 + 2x2 + x3)1.3 ≤ 100,

1 ≤ x1 ≤ 3, 1 ≤ x2 ≤ 3, 1 ≤ x3 ≤ 3.

(5.3)

Example 5.4 (see [13, 16]).

min (−x1 + 2x2 + 2)(4x1 − 3x2 + 4)(3x1 − 4x2 + 5)−1(−2x1 + x2 + 3)−1

s.t. x1 + x2 ≤ 1.5,

x1 − x2 ≤ 0,

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

(5.4)

Example 5.5 (see [11, 15]).

min (2x1 + x2 + 1)1.5(2x1 + x2 + 1)2.1(0.5x1 + 2x2 + 1)0.5

s.t. (x1 + 2x2 + 1)1.2(2x1 + 2x2 + 2)0.1 ≤ 18,

(1.5x1 + 2x2 + 1)(2x1 + 2x2 + 1)0.5 ≤ 25,

1 ≤ x1 ≤ 3, 1 ≤ x2 ≤ 3.

(5.5)
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Table 1: Computational results of test problems (2.2)–(4.9).

Example Methods Optimal solution Optimal value Iter Time

1
[12] (1.0, 1.0) 997.661265160 49 0
[15] (1.0, 1.0) 997.6613 5 0.0984
ours (1.0, 1.0) 997.6613 1 0.0160

2 [15] (1.0, 2.0, 1.0) 3.7127 10 0.2717
ours (1.0, 2.0, 1.0) 3.7127 1 0.0150

3
[12] (1.0, 1.0, 1.0) 60.0 64 0
[15] (1.0, 1.0, 1.0) 60.0 1 0.0126
ours (1.0, 1.0, 1.0) 60.0 1 0.0148

4
[13] (0.0, 0.0) 0.533333333 3 0
[16] (0.0, 0.0) 0.533333 16 0.05
ours (0.0, 0.0) 0.5333 2 0.0221

5
[11] (1.0, 1.0) 275.074284 1 0
[15] (1.0, 1.0) 275.0743 1 0.0105
ours (1.0, 1.0) 275.0743 1 0.0102

The results of problems (2.2)–(4.9) are summarized in Table 1, where the following
notations have been used in row headers: Iter: number of algorithm iterations; Time:
execution time in seconds.

The results in Table 1 show that our algorithm is both feasible and efficient.
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