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We present an intensity-based model with counterparty risk. We assume the default intensity
of firm depends on the stochastic interest rate driven by the jump-diffusion process and the
default states of counterparty firms. Furthermore, we make use of the techniques in Park (2008)
to compute the conditional distribution of default times and derive the explicit prices of bond and
CDS. These are extensions of the models in Jarrow and Yu (2001).

1. Introduction

As credit securities are actively traded and the financial market becomes complex, the
valuation of credit securities has called formore effectivemodels according to the realmarket.
Until now, there have been mainly two basic models: the structural model and the reduced-
form model. In the first model, the firm’s default is governed by the value of its assets and
debts, while the default in the reduced-formmodel is governed by the exogenous factor.

The structural approachwas pioneered byMerton [1], then extended by Black and Cox
[2] and Longstaff and Schwartz [3], assuming the default before the maturity date and others.
In the above models, the asset process was all driven by the Brownian motion. Since the asset
value may suffer a sudden drop for the reason of some events in the economy, Zhou [4]
provided a jump-diffusion model with credit risk in which jump amplitude followed a log-
normal distribution and valuated defaultable securities. In his model, Zhou gave the explicit
expressions of defaultable securities’ prices when the default occurred at the maturity date T ,
but only gave a tractably simulating approach when the firm defaulted before time T . For the
first-passage-time models of credit risk with jump-diffusion process, Steve and Amir [5] and
Zhang and Melnik [6] used the approach of Brownian bridge to estimate the jump-diffusion
process and priced barrier options. Kou and Wang [7] and Kou et al. [8] made use of the
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Laplace transform to valuate the credit risk after estimating the jump-diffusion process with
an infinitesimal generator. For the problem of the valuation of credit derivatives involving
jump-diffusion process, it is still difficult to get explicit results in the event of defaulting before
the maturity date, despite using the above approaches. However, it is more convenient to use
reduced-form approach for valuating the credit risk in such situation.

Comparing with the structural approach, the reduced-form approach is flexible and
tractable in the real market. It is pioneered by Jarrow et al. [9] and Duffie and Singleton
[10]. They introduced exogenous mechanism of firm’s default. Their models considered the
default as a random event which is controlled by a exogenous intensity process.

Davis and Lo [11] firstly proposed the model of credit contagion to account for
concentration risk in large portfolios of defaultable securities (DLModel). Later,motivated by
a series of events such as the South Korean banking crisis, Long Term Capital Management’s
potential default and so on, Jarrow and Yu [12] thought the traditionally structural and
reduced-formmodels were full of problems because they all ignored the firm’s specific source
of credit risk. They made use of the Davis’s contagious model and introduced the concept of
counterparty risk which is from the default of firm’s counterparties. In their models, they
paid more attention to the primary-secondary framework in which the intensity of default
was influenced by the economy-wide state variables and the default state of the counterparty.
Later, there are also other similar applications such as Leung and Kwork [13], Bai et al. [14]
and so on. In recent years, some authors applied this into portfolio credit securities such as Yu
[15] and Leung and Kwok [16]. Nevertheless, the stochastic interest rate in the above models
still was driven by diffusion processes.

At present, aggregate credit risk is still one of themost pervasive threats in the financial
markets, which is from the contagious risk caused by business counterparties. In this paper,
we mainly discuss the pricing of defaultable securities in primary-secondary framework,
extending the models in Jarrow and Yu [12]. We consider that the macroeconomic variables
contain the risk-free interest rate which shows the interaction between credit risk and market
risk. However, the interest rate may drop suddenly due to some events in the modern
economy. Therefore, we allow the stochastic interest rate to follow a jump-diffusion process
rather than the continuous diffusion process in Jarrow and Yu [12]. Thus, our model not only
reflects the real market much better, but more precisely to identify the impact of counterparty
risk on the valuation of credit securities. Moreover, we apply the techniques in Park [17] to
the pricing of bond and CDS, so that we avoid solving the PDEs.

2. Model

2.1. The Setting of Model

Let (Ω,F, {Ft}T
∗

t=0, P) be the filtered probability space satisfying the usual conditions, where
F = FT ∗ , T∗ is large enough but finite and P is an equivalent martingale measure under which
discounted securities’ prices are martingales.

On (Ω,F, {Ft}T
∗

t=0, P), there is an Rd-valued process X = (X1, . . . , Xd), where {Xi}di=1
are Markov processes and represent d economy-wide state variables. Beside these, there are
n companies with n point processes {Ni}ni=1(Ni

0 = 0)which represent the default processes of
n companies, respectively. When Ni first jumps from 0 to 1, we call the company i defaults
and denote τi be the default time of company i. Thus, Ni

t = 1{τi≤t}, where 1{·} is the indicator
function.
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The filtration F is generated by the state variables and the default processes of n
companies as follows

Ft = FX
t ∨H1

t ∨ · · · ∨ Hn
t , (2.1)

where

FX
t = σ(Xs, 0 ≤ s ≤ t), Hi

t = σ
(
Ni

s, 0 ≤ s ≤ t
)
. (2.2)

Denote that

Ht = H1
t ∨ · · · ∨Hn

t , H−i
t = H1

t ∨ · · · ∨Hi−1
t ∨Hi+1

t ∨ · · · ∨ Hn
t . (2.3)

We assume the default time τi (i = 1, . . . , n) possesses a strictly positive FX
T ∗ ∨ H−i

T ∗-adapted
intensity process λi

t satisfying
∫ t
0 λ

i
sds < ∞, P -a.s. for all t ∈ [0, T∗]. The intensity process λi

t

shows the local default probability in the sense that the default probability of company i over
a small interval (t, t + Δt) is equal to λi

tΔt. These Ni, 1 ≤ i ≤ n generate the defaults of n
companies. Their intensity processes λi, 1 ≤ i ≤ n depend on state variables and the default
states of all other companies. Due to the counterparty risk, {τi}ni=1 may no longer be assumed
independent conditionally on FX .

2.2. Primary-Secondary Framework

We divide n firms into two mutually exclusive types: l primary firms and n − l secondary
firms. Primary firms’ default processes only depend on state variables, while secondary firms’
default processes depend on the state variables and the default states of the primary firms.
This model was proposed by Jarrow and Yu [12]. Now, we provide some assumptions of the
model.

Assumption 1 (economy-wide state variables). The state variable Xt may contain the risk-free
spot rate rt or other economical variables in the economy environment which may impact on
the default probability of the companies.

Assumption 2 (the default times). On (Ω,F, {Ft}T
∗

t=0, P), we add several independent unit
exponential random variables {Ei, 1 ≤ i ≤ l} which are independent of X under probability
measure P . The default times of l primary firms can be defined as

τi = inf

{
t :

∫ t

0
λi
sds ≥ Ei

}
, 1 ≤ i ≤ l, (2.4)
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where λi
t is adapted toFX

t . Then, we add another series independent unit exponential random
variables {Ej , l + 1 ≤ j ≤ n}which are independent of X and τi, 1 ≤ i ≤ l. The default times of
n − l secondary firms can be defined as

τj = inf

{
t :

∫ t

0
λ
j
sds ≥ Ej

}
, 1 + l ≤ j ≤ n, (2.5)

where λj
t is adapted to FX

t ∨H1
t ∨ · · · ∨Hl

t.

Assumption 3 (the default probability). BecauseEi (1 ≤ i ≤ l) is independent of state variables
X, the conditional and unconditional survival probability distributions of primary firm i are
given by

P
(
τi > t | FX

T ∗

)
= exp

(
−
∫ t

0
λi
sds

)
, (2.6)

P
(
τi > t

)
= E

[
exp

(
−
∫ t

0
λi
sds

)]
, t ∈ [0, T∗]. (2.7)

Similarly, since Ej (1+ l ≤ j ≤ n) is independent of X and τi, 1 ≤ i ≤ l, we have the conditional
and unconditional survival probability distributions of secondary firm j

P
(
τj > t | FX

T ∗ ∨ H1
T ∗ ∨ · · · ∨ Hl

T ∗

)
= exp

(
−
∫ t

0
λ
j
sds

)
,

P
(
τj > t

)
= E

[
exp

(
−
∫ t

0
λ
j
sds

)]
, t ∈ [0, T∗].

(2.8)

Assumption 4 (the default intensity). Because the Primary firms’ default processes only de-
pend on macrovariables, we denote their default intensities by

λi
t = Λi

0,t, 1 ≤ i ≤ l. (2.9)

In addition, secondary firms’ default processes depend on the macrovariables and the default
processes of the primary firms. We denote the intensities by

λ
j
t = Λj

0,t + Σl
k=1Λ

j

k,t1{τk≤t}, 1 + l ≤ j ≤ n, (2.10)

where Λj

k,t
is adapted to FX

T ∗ for all k. Λi
0,t and Λj

0,t can be constants or stochastic processes
which are correlated with the state variables.

Assumption 5 (the risk-free interest rate). The risk-free interest rate rt in this framework is
stochastic which may follow CIR model, HJM model, Vasicek model or their extensions. It
has effect on the defaults of n companies.
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3. The Pricing of Credit Securities

In this section, we price the defaultable bonds and credit default swap (CDS) in the primary-
secondary framework satisfying Assumption 1 to Assumption 5. To obtain some explicit
results, we give another specific assumptions. We assume that the state variable Xt only
contains the risk-free spot rate rt and the default of a firm is correlated with the default-free
term structure. Namely, we will present a one-factor model for credit risk. Furthermore, we
mainly consider single counterparty. There are one primary firm and one secondary firm in
our pricing model. Counterparty risk may occur when secondary firm holds large amounts
of debt issued by the primary firm.

We suppose that the risk-free interest rate follows the jump-diffusion process

drt = α(K − rt)dt + σdWt + qtdYt, (3.1)

whereWt is a standard Brownianmotion on the probability space (Ω,F, P) and Yt is a Possion
process under P with intensity μ. qt is a deterministic function and α, σ, K are constants. We
assume Wt and Yt are mutually independent.

Remark 3.1. In fact, from Park [17], we know (3.1) has the explicit solution as follows:

rt = r0e
−αt + αK

∫ t

0
e−α(t−s)ds + σ

∫ t

0
e−α(t−s)dWs +

∫ t

0
qse

−α(t−s)dYs. (3.2)

Moreover, in accordancewith the properties ofWs and Ys, we can check that rt is aFr-Markov
process, which plays an important role in the following.

3.1. Defaultable Bonds’ Pricing

We first give some general pricing formulas for bonds in the primary-secondary framework
described in Section 2.2. Suppose that the face value of bond i (i = 1, . . . , n) is 1 dollar.
Under the equivalent martingale measure P , the default-free and defaultable bond’s prices
are, respectively, given by

p(t, T) = Et

[
exp

(
−
∫T

t

rsds

)]
, (3.3)

V i(t, T) = Et

[
e−

∫T
t rsds

(
βi1{τi≤T} + 1{τi>T}

)]
, (3.4)

where Et[·] represents the conditional expectation with respect to Ft, βi is the recovery rate
of defaultable bond i, and T(< T∗) is the maturity date.

Lemma 3.2 (see [12]). The defaultable bond price can also be expressed as

V i(t, T) = βip(t, T) + 1{τi>t}
(
1 − βi

)
Et

[
exp

(
−
∫T

t

(
rs + λi

s

)
ds

)]
, t ≤ T. (3.5)
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In the following, we only consider the case with two firms. Firm A is the primary firm
whose default is independent of the default risk of secondary firm B but depends on the
interest rate r, while firm B’s default is correlated with the state of firm A and the risk-free
interest rate. One assumes their intensity processes, respectively, satisfy some linear relations
below:

λA
t = bA0 + bA1 rt, (3.6)

λB
t = bB0 + bB1 rt + b1{τA≤t}, (3.7)

where bA0 , b
A
1 , b

B
0 , b

B
1 , and b are positive constants.

Remark 3.3. The interest rate rt in our model is an extension of Vasicek model. It may cause
negative intensity. We use the similar method in Jarrow and Yu [12] to avoid this case. We can
assume λA

t = max{bA0 + bA1 rt, 0}, λB
t = max{bB0 + bB1 rt + b1{τA≤t}, 0}, we will discuss it in other

paper.

We price the bonds issued by firm A and firm B. To be convenient, we use time-t
forward interest rate instead of time-0 forward interest rate in (3.2). Let f(0, u) = r0e−αu, then
for u ≥ t, (3.2) can be expressed as

ru = f(0, u) +

(∫ t

0
+
∫u

t

)
αKeα(v−u)dv +

(∫ t

0
+
∫u

t

)
σeα(v−u)dWv +

(∫ t

0
+
∫u

t

)
qve

α(v−u)dYv

= f(t, u) +
∫u

t

αKeα(v−u)dv +
∫u

t

σeα(v−u)dWv +
∫u

t

qve
α(v−u)dYv,

(3.8)

where

f(t, u) = f(0, u) +
∫ t

0
αKeα(v−u)dv +

∫ t

0
σeα(v−u)dWv +

∫ t

0
qve

α(v−u)dYv. (3.9)

Now, we present an important theorem in the pricing process of credit securities.

Theorem 3.4. Suppose that rt follows (3.1) and Rt,T =
∫T
t rsds be the cumulative interest from time

t to T . Let Et[e−aRt,T ] = g(a, t, T) for all a ∈ R, then one obtains

g(a, t, T) = exp

(∫T

t

[
−af(t, u) + 1

2
σ2a2c2T (u) + μ

(
e−aqucT (u) − 1

)]
du − aK(T − t) + aKcT (t)

)
,

(3.10)

where

cv(u) = − 1
α

(
eα(u−v) − 1

)
, 0 ≤ v, u ≤ T. (3.11)
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Proof. The proving ideas are similar to Jarrow and Yu [12] and Park [17]. Since rt follows
(3.1), it has an explicit expression as (3.8). Then, we have

−a
∫T

t

rudu = −
∫T

t

af(t, u)du −
∫T

t

du

∫u

t

aαKeα(v−u)dv

−
∫T

t

du

∫u

t

σaeα(v−u)dWv −
∫T

t

du

∫u

t

qvae
α(v−u)dYv

� h1(t, T) + h2(t, T) + h3(t, T) + h4(t, T),

(3.12)

where a ∈ R and

h1(t, T) = −a
∫T

t

f(t, u)du, (3.13)

h2(t, T) = −
∫T

t

du

∫u

t

aαKeα(v−u)dv = −aK(T − t) − aK

α

(
eα(t−T) − 1

)
, (3.14)

h3(t, T) = −
∫T

t

du

∫u

t

σaeα(v−u)dWv, (3.15)

h4(t, T) = −
∫T

t

du

∫u

t

qvae
α(v−u)dYv. (3.16)

By the Markov property of r, we have

Et

[
e−aRt,T

]
= E

[
e−aRt,T | rt

]
. (3.17)

Hence, we mainly need to obtain E[eh3(t,T) | rt] and E[eh4(t,T) | rt]. By Fübini’s theorem, (3.15)
and (3.16) become

h3(t, T) = −
∫T

t

dWv

∫T

v

σaeα(v−u)du = −
∫T

t

σacT (v)dWv,

h4(t, T) = −
∫T

t

dYv

∫T

v

qvae
α(v−u)du = −

∫T

t

aqvcT (v)dYv,

(3.18)

where cT (v) is given by (3.11). Moreover, h3(t, T) follows the normal distribution with mean

0 and variance σ2a2
∫T
t c2T (v)dv. Therefore, by the independent increments of the diffusion

process,

E
[
exp(A + B)

]
= exp

(
(Var[A] + Var[B])

2

)
. (3.19)
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So

E
[
eh3(t,T)

]
= exp

(
1
2
σ2a2

∫T

t

c2T (v)dv

)
. (3.20)

In addition, using the results in Park [17], based on independent increments for the jump
process,

E
[
eh4(t,T)

]
= exp

(
μ

∫T

t

(
e−aqvcT (v) − 1

)
dv

)
. (3.21)

We substitute (3.13), (3.14), (3.20) and (3.21) into Et[e−aRt,T ] and deduce (3.10).

Thus, from Lemma 3.2 and Theorem 3.4, we can derive the pricing formulas of
defaultable bonds.

Theorem 3.5. In the primary-secondary framework described as above, the bonds issued by firm A
and B have the same maturity date T and recovery rate βA = βB = 0. If the intensity processes λA

t and
λB
t satisfy (3.6) and (3.7) and no defaults occur up to time t, then the time-t price of bond issued by

primary firm A is

VA(t, T) = g
(
1 + bA1 , t, T

)
exp

(
−bA0 (T − t)

)
(3.22)

and the time-t price of bond issued by secondary firm B is

VB(t, T) = g
(
1 + bB1 , t, T

)
e−(b

B
0 +b)(T−t) + be−(K+KbB1 +b

B
0 +b)T+(1+b

B
0 +b

A
0 +b

B
1 +b

A
1 )t

·
∫T

t

e−(1+b
B
1 +b

A
1 )

∫s
t f(t,u)du+(b−bA1 K−bA0 )s+(1+bB1 +bA1 )Kcs(t)+(1+bB1 )(K−r0)d(s,T,0)−f1(t,s)+M(s)ds,

(3.23)

where for for all k, v, u ∈ [0, T], cv(u) is defined as (3.11)

d(k, v, u) = − 1
α
eαu

(
e−αv − e−αk

)
, (3.24)

f1(t, s) =
∫ t

0
σ
(
1 + bB1

)
d(s, T, u)dWu +

∫ t

0

(
1 + bB1

)
qud(s, T, u)dYu, (3.25)

M(s) =
∫T

s

[
1
2
σ2

(
1 + bB1

)2
c2T (u) + μ

(
e−(1+b

B
1 )qucT (u) − 1

)]
du

+
∫ s

t

1
2
σ2

[(
1 + bB1 + bA1

)
cs(u) +

(
1 + bB1

)
d(s, T, u)

]2
du

+
∫ s

t

μ
[
e−qu((1+b

B
1 +b

A
1 )cs(u)+(1+b

B
1 )d(s,T,u)) − 1

]
du.

(3.26)
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Proof. Firstly, from Lemma 3.2 and Theorem 3.4, we can easily show that (3.22) holds.
Secondly, according to Lemma 3.2, (3.7), and the properties of conditional expectation, we
obtain the price of bond issued by firm B at time t

V B(t, T) = Et

[
exp

(
−
∫T

t

(
rs + λB

s

)
ds

)]

= Et

[
exp

(
−bB0 (T − t) −

(
1 + bB1

)
Rt,T − b

(
T − τA

)
1{τA≤T}

)]

= Et

[
exp

(
−bB0 (T − t) −

(
1 + bB1

)
Rt,T

)
· E

[
exp

(
−b

(
T − τA

)
1{τA≤T}

)
| Ft ∨ Fr

T ∗

]]
.

(3.27)

By (2.6), the property of conditional expectation and the law of integration by parts, we check
that

E
[
exp

(
−b

(
T − τA

)
1{τA≤T}

)
| Ft ∨ Fr

T ∗

]

=

(∫T

t

+
∫∞

T

)
e−b(T−s)1{s≤T}d

(
1 − e−b

A
0 (s−t)−bA1 Rt,s

)

= e−b(T−t)
(
1 + b

∫T

t

e−(b
A
0 −b)(s−t)−bA1 Rt,sds

)
.

(3.28)

Hence,

VB(t, T) = e−(b
B
0 +b)(T−t)Et

[
e−(1+b

B
1 )Rt,T

]
+ be−(b

B
0 +b)T+(b

B
0 +b

A
0 )t

·
∫T

t

e−(b
A
0 −b)sEt

[
e−(1+b

B
1 +b

A
1 )Rt,s−(1+bB1 )Rs,T

]
ds,

(3.29)

where (3.29) involves the interchange of the expectation and the integral. Further, using the
law of iterated conditional expectations, we have

Et

[
e−(1+b

B
1 +b

A
1 )Rt,s · e−(1+bB1 )Rs,T

]

= Et

[
e−(1+b

B
1 +b

A
1 )Rt,s · Es

[
e−(1+b

B
1 )Rs,T

]]

= Et

[
e−(1+b

B
1 +b

A
1 )Rt,s · g

(
1 + bB1 , s, T

)]

� Et

[
eI
]
.

(3.30)
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Denote 1 + bB1 + bA1 = m1 and 1 + bB1 = m2. Then, from Theorem 3.4, we show that

I � −m1

∫ s

t

rudu −m2

∫T

s

f(s, u)du −m2K(T − s) +Km2cT (s)

+
∫T

s

[
1
2
σ2m2

2c
2
T (u) + μ

(
e−m2qucT (u) − 1

)]
du

� I1 + I2,

(3.31)

where

I1 = −m1

∫ s

t

rudu −m2

∫T

s

f(s, u)du,

I2 =
∫T

s

[
1
2
σ2m2

2c
2
T (u) + μ

(
e−m2qucT (u) − 1

)]
du

−m2K(T − s) +Km2cT (s).

(3.32)

Again, by (3.9), we have

−m2

∫T

s

f(s, u)du = −
∫T

s

m2f(0, u)du −
∫T

s

du

∫ s

0
m2αKeα(v−u)dv

−
∫T

s

du

∫ s

0
σm2e

α(v−u)dWv −
∫T

s

du

∫ s

0
m2qve

α(v−u)dYv

� h′
1(s, T) + h′

2(s, T) + h′
3(s, T) + h′

4(s, T),

(3.33)

where

h′
1(s, T) = −m2

∫T

s

f(0, u)du,

h′
2(s, T) = −

∫T

s

du

∫s

0
m2αKeα(v−u)dv,

h′
3(s, T) = −

∫T

s

du

∫s

0
σm2e

α(v−u)dWv,

h′
4(s, T) = −

∫T

s

du

∫s

0
m2qve

α(v−u)dYv.

(3.34)

We easily check that

h′
1(s, T) = −m2r0d(s, T, 0),

h′
2(s, T) = −m2KcT(s) +m2Kd(s, T, 0),

(3.35)
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where d(s, T, u) is given by (3.24). Moreover, using Fübini’s theorem, we obtain

h′
3(s, T) = −

∫ s

0
σm2d(s, T, u)dWu,

h′
4(s, T) = −

∫ s

0
m2qud(s, T, u)dYu.

(3.36)

Therefore, we give a different expression below:

−m2

∫T

s

f(s, u)du = −m2r0d(s, T, 0) −m2KcT(s) +m2Kd(s, T, 0)

−
∫ s

0
σm2d(s, T, u)dWu −

∫ s

0
m2qud(s, T, u)dYu.

(3.37)

Then, from (3.12) and (3.37), we find that

I1 = −m1

∫ s

t

rudu −m2

∫T

s

f(s, u)du

= −m1

∫ s

t

f(t, u)du −m1K(s − t) +m1Kcs(t) +m2(K − r0)d(s, T, 0)

−m2KcT(s) −
∫ t

0
σm2d(s, T, u)dWu −

∫ t

0
m2qud(s, T, u)dYu

−
∫ s

t

σ(m1cs(u) +m2d(s, T, u))dWu −
∫s

t

qu(m1cs(u) +m2d(s, T, u))dYu.

(3.38)

In addition, applying (3.19) and the results in Park [17], we have

E
[
e−

∫s
t σ(m1cs(u)+m2d(s,T,u))dWu

]
= exp

(
1
2
σ2

∫ s

t

(m1cs(u) +m2d(s, T, u))2du
)
,

E
[
e−

∫s
t qu(m1cs(u)+m2d(s,T,u))dYu

]
= exp

(
μ

∫ s

t

[
e−qu(m1cs(u)+m2d(s,T,u)) − 1

]
du

)
.

(3.39)
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Therefore, combining (3.39) and (3.31), we obtain

Et

[
eI
]
= eI2Et

[
eI1

]

(i)
= exp

(
−
(
1 + bB1 + bA1

)∫ s

t

f(t, u)du − bA1 Ks +
(
1 + bB1 + bA1

)
Kt −

(
1 + bB1

)
KT

)

· exp
[(

1 + bB1 + bA1

)
Kcs(t) +

(
1 + bB1

)
(K − r0)d(s, T, 0) − f1(t, s)

]

· Et

[
e−

∫s
t σ[(1+b

B
1 +b

A
1 )cs(u)+(1+b

B
1 )d(s,T,u)]dWu

]
· Et

[
e−

∫s
t qu[(1+b

B
1 +b

A
1 )cs(u)+(1+b

B
1 )d(s,T,u)]dYu

]

(ii)
= exp

(
−
(
1 + bB1 + bA1

)∫ s

t

f(t, u)du − bA1 Ks +
(
1 + bB1 + bA1

)
Kt −

(
1 + bB1

)
KT

)

· exp
[(

1 + bB1 + bA1

)
Kcs(t) +

(
1 + bB1

)
(K − r0)d(s, T, 0) − f1(t, s)

]

· exp
[
1
2
σ2

∫ s

t

[(
1 + bB1 + bA1

)
cs(u) +

(
1 + bB1

)
d(s, T, u)

]2
du

]

· exp
[
μ

∫ s

t

[
e−qu((1+b

B
1 +b

A
1 )cs(u)+(1+b

B
1 )d(s,T,u)) − 1

]
du

]

· exp
[∫T

s

[
1
2
σ2

(
1 + bB1

)2
c2T (u) + μ

(
e−(1+b

B
1 )qucT (u) − 1

)]
du

]
,

(3.40)

where (i) follows from the independence of Wu and Yu and the property of conditional
expectation and (ii) holds from the Markov property and the independent increment
property of Wu and Yu. Finally, we substitute Et[eI] into (3.29) and obtain (3.23). The proof
is completed.

3.2. CDS’s Pricing

Firm C holds a bond issued by the reference firm A with the maturity date T1. To decrease
the possible loss, firm C buys protection with the maturity date T2 (T2 ≤ T1) from firm B on
condition that firm C gives the payments to firm B at a fixed swap rate in time while firm
B promises to make up firm C for the loss caused by the default of firm A at a certain rate.
Each party has the obligation to make payments until its own default. The source of credit
risk may be from three parties: the issuer of bond, the buyer of CDS and the seller of CDS.

In the following, we consider a simple situation which only contains the risk from
reference firm A and firm B. At the same time, to make the calculation convenient, we
suppose the recovery rate of the bond issued by firm A is zero and the face value is 1 dollar.
In the event of firmA’s default, firm B compensates firm C for 1 dollar if he does not default,
otherwise 0 dollar. There are four cases for the defaults of firm A and firm B.
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Case 1. The defaults of firm A and firm B are mutually independent conditional on the risk-
free interest rate.

Case 2. Firm A is the primary party whose default only depends on the risk-free interest
rate (the only economy state variable) and the firm B is the secondary party whose default
depends on the risk-free interest rate and the default state of firm A.

Case 3. Firm B is the primary party and the firm A is the secondary party.

Case 4. The defaults of firm A, and firm B are mutually contagious (looping default).

Now, we make use of the results in previous sections to price the CDS in Case 2. We
assume firm A is the primary party and the firm B is the secondary party. Denoted the swap
rate by a constant c and interest rate by rt, let the default times of firm A and B be τA with
the intensity λA and τB with the intensity λB, respectively.

Theorem 3.6. Suppose the risk-free interest rate rt satisfies (3.1) and the intensities λA and λB satisfy
(3.6) and (3.7), respectively. Then, the swap rate c has the following expression:

c =
VB(0, T2) − e−(b

B
0 +b

A
0 )T2g

(
1 + bB1 + bA1 , 0, T2

)
∫T2
0 g(1, 0, s)ds

, (3.41)

where g(·, ·, ·) and VB(0, T2) are given by Theorems 3.4 and 3.5, respectively.

Proof. Firstly, the time-0 market value of buyer C’s payments to seller B is

E

[∫T2

0
ce−

∫s
0 rududs

]
= c

∫T2

0
E
[
e−R0,s

]
ds, (3.42)

where R0,s is defined as Theorem 3.4.
Secondly, the time-0 market value of firm B’s promised payoff in case of firm A’s

default is

E
[
1{τA≤T2}e

− ∫T2
0 rudu1{τB>T2}

]
. (3.43)

Thus, in accordance with the arbitrage-free principle, we obtain

c =
E
[
1{τA≤T2}e

− ∫T2
0 rudu1{τB>T2}

]

∫T2
0 E

[
e−R0,s

]
ds

. (3.44)
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Further, we can use the properties of conditional expectation to simplify (3.44) as follows:

c =
E
[
E
[
1{τA≤T2} | Fr

T ∗ ∨ HB
T ∗
]
e−

∫T2
0 rudu1{τB>T2}

]

∫T2
0 E

[
e−R0,s

]
ds

=
E
[
1{τB>T2}e

− ∫T2
0 rudu

]
− E

[
1{τA>T2}e

− ∫T2
0 rudu1{τB>T2}

]

∫T2
0 E

[
e−R0,s

]
ds

=
VB(0, T2) − E

[
1{τA>T2}e

− ∫T2
0 (ru+λBu )du

]

∫T2
0 E

[
e−R0,s

]
ds

,

(3.45)

where the last one is obtained by (3.4). Note that VB(0, T2) can be obtained by (3.23) and
E[e−R0,s ] = g(1, 0, s) by Theorem 3.4. We substitute (3.7) into the above expectation term

E

[
1{τA>T2} exp

(
−
∫T2

0

(
ru + λB

u

)
du

)]

= E

[
1{τA>T2} exp

(
−
∫T2

0

(
bB0 +

(
1 + bB1

)
ru + b1{τA≤u}

)
du

)]

= E

[
1{τA>T2} exp

(
−bB0 T2 −

(
1 + bB1

)∫T2

0
rudu − b

(
T2 − τA

)
1{τA≤T2}

)]

= E
[
1{τA>T2}e

−bB0 T2−(1+bB1 )R0,T2

]

(i)
= E

[
E
[
1{τA>T2} | Fr

T ∗
]
e−b

B
0 T2−(1+bB1 )R0,T2

]

(ii)
= E

[
e−b

B
0 T2−(1+bB1 )R0,T2−

∫T2
0 λAu du

]

(iii)
= e−(b

B
0 +b

A
0 )T2E

[
e−(1+b

B
1 +b

A
1 )

∫T2
0 rudu

]

(iv)
= e−(b

B
0 +b

A
0 )T2g

(
1 + bB1 + bA1 , 0, T2

)
,

(3.46)

where (i) involves the property of conditional expectation, (ii) follows from (2.6), and (iv)
follows from Theorem 3.4. Now, substituting these results into (3.45) , we show (3.41) holds.
The proof is complete.

Remark 3.7. Themodel in Case 1 can be considered a special case of primary-secondarymodel
and the price of CDS can be derived by the similar method. The pricing of CDS in Case 4 will
be discussed in another paper. In Case 3, if λA

t and λB
t satisfy the below relations:

λA
t = bA0 + bA1 rt + b1{τB≤t},

λB
t = bB0 + bB1 rt,

(3.47)
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where bA0 , b
A
1 , b

B
0 , b

B
1 , and b are positive constants, then the swap rate

c =
g
(
1 + bB1 , 0, T2

)
e−b

B
0 T2 − e−(b

B
0 +b

A
0 )T2g

(
1 + bB1 + bA1 , 0, T2

)
∫T2
0 g(1, 0, s)ds

, (3.48)

where g(·, ·, ·) are given by Theorem 3.4. The deriving process is similar to Theorem 3.6, so
we omit it.

Remark 3.8. In our models, to make the expressions comparatively simple, we all assume that
the recovery rates are zero.When the relevant recovery rates are nonzero constant, the pricing
formulas are still easily obtained from Lemma 3.2 because we can get p(t, T) = g(1, t, T) from
Theorem 3.4. We omit the process.

4. Conclusion

This paper gives the pricing formulas of defaultable bonds and CDSs. In our model, we
consider the case that the default intensity is correlated with the risk-free interest rate
following jump-diffusion process and the counterparty’s default, which is more realistic. We
involve the jump risk of risk-free interest rate in the pricing, generalizing the contagious
model in Jarrow and Yu [12].

In fact, we only consider the comparatively simple situation. We can further study the
more general model. For example, we consider the case that the relevant recovery rates are
stochastic and the interest rate satisfies more general jump-diffusion process. Moreover, the
model in this paper is actually one-factor model with one state variable, while we can discuss
multifactor models in which there are several state variables. In a word, the contagious model
of credit securitywith counterparty risk is very necessary to be further discussed in the future.

Acknowledgments

The authors gratefully acknowledge the support from theNational Basic Research Program of
China (973 Program no. 2007CB814903) and thank the reviewers for their valued comments.

References

[1] R. C. Merton, “On the pricing of corporate debt: the risk structure of interest rates,” Journal of Finance,
vol. 29, pp. 449–470, 1974.

[2] F. Black and J. C. Cox, “Valuing corporate securities: some effects of bond indenture provisions,”
Journal of Finance, vol. 31, pp. 351–367, 1976.

[3] F. A. Longstaff and E. S. Schwartz, “A simple approach to valuing risky fixed and floating rate debt,”
Journal of Finance, vol. 50, pp. 789–819, 1995.

[4] C. S. Zhou, A Jump-Diffusion Approach to Modeling Credit Risk and Valuing Defaultable Securities, Federal
Reserve Board, Washington, DC, USA, 1997.

[5] A. K. Steve and F. A. Amir, “Using Brownian bridge for fast simulation of jump-diffusion processes
and barrier options,” Journal of Derivatives, pp. 43–54, 2002.

[6] D. Zhang and R. V. N.Melnik, “First passage time formultivariate jump-diffusion processes in finance
and other areas of applications,” Applied Stochastic Models in Business and Industry, vol. 25, no. 5, pp.
565–582, 2009.



16 Mathematical Problems in Engineering

[7] S. G. Kou and H. Wang, “First passage times of a jump diffusion process,” Advances in Applied
Probability, vol. 35, no. 2, pp. 504–531, 2003.

[8] S. G. Kou, G. Petrella, and H. Wang, “Pricing path-dependent options with jump risk via Laplace
transforms,” Kyoto Economic Review, vol. 74, pp. 1–23, 2005.

[9] R. A. Jarrow, D. Lando, and S. Turnbull, “A Markov model for the term structure of credit risk
spreads,” Working paper, Conell University, 1994.

[10] D. Duffie and K. J. Singleton, “Modeling term structures of defaultable bonds,” Working paper,
Stanford University Business School, 1995.

[11] M. Davis and V. Lo, “Infectious defaults,” Quantitative Finance, pp. 382–387, 2001.
[12] R. A. Jarrow and F. Yu, “Counterparty risk and the pricing of defaultable securities,” Journal of Finance,

vol. 56, no. 5, pp. 1765–1799, 2001.
[13] S. Y. Leung and Y. K. Kwork, “Credit default swap valuation with counterparty risk,” Kyoto Economic

Review, vol. 74, no. 1, pp. 25–45, 2005.
[14] Y.-F. Bai, X.-H. Hu, and Z.-X. Ye, “A model for dependent default with hypberbolic attenuation effect

and valuation of credit default swap,” Applied Mathematics and Mechanics. English Edition, vol. 28, no.
12, pp. 1643–1649, 2007.

[15] F. Yu, “Correlated defaults in intensity-based models,” Mathematical Finance. An International Journal
of Mathematics, Statistics and Financial Economics, vol. 17, no. 2, pp. 155–173, 2007.

[16] K. S. Leung and Y. K. Kwok, “Counterparty risk for credit default swaps: Markov chain interacting
intensities model with stochastic intensity,” Asia-Pacific Financial Markets, vol. 16, no. 3, pp. 169–181,
2009.

[17] H. S. Park, “The survival probability of mortality intensity with jump-diffusion,” Journal of the Korean
Statistical Society, vol. 37, no. 4, pp. 355–363, 2008.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


