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The problem of stochastic finite-time guaranteed cost control is investigated for Markovian
jumping singular systems with uncertain transition probabilities, parametric uncertainties, and
time-varying norm-bounded disturbance. Firstly, the definitions of stochastic singular finite-
time stability, stochastic singular finite-time boundedness, and stochastic singular finite-time
guaranteed cost control are presented. Then, sufficient conditions on stochastic singular finite-
time guaranteed cost control are obtained for the family of stochastic singular systems. Designed
algorithms for the state feedback controller are provided to guarantee that the underlying
stochastic singular system is stochastic singular finite-time guaranteed cost control in terms of
restricted linear matrix equalities with a fixed parameter. Finally, numerical examples are given to
show the validity of the proposed scheme.

1. Introduction
Singular systems are also referred to as descriptor systems or generalized state-space systems
and describe a larger family of dynamic systems. The singular systems are applied to handle
mechanical systems, electric circuits, interconnected systems, and so forth; see more practical
examples in [1, 2] and the references therein. Many control problems have been extensively
investigated, and results in state-space systems have been extended to singular systems,
such as stability, stabilization, and robust control; for instance, see the references in [3–10].
Meanwhile, Markovian jumping systems are referred to as a special family of hybrid systems
and stochastic systems, which are very appropriate to model plants whose structure is subject
to random abrupt changes, such as stochastic failures and repairs of the components, changes
in the interconnections of subsystems, and sudden environment changes; see the references
in [11, 12]. The existing results for Markovian jumping systems include a large of variety of
problems such as stochastic Lyapunov stability [13–16], sliding mode control [17, 18], the
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H∞ control [19, 20], the H∞ filtering [12, 21], and so forth; for more results, the readers are
to refer to [22–24] and the references therein.

In many practical applications, on the other hand, many concerned problems are the
practical ones which described system state which does not exceed some bound over a time
interval. Compared with classical Lyapunov asymptotical stability on which most results in
the literature concentrated, finite-time stability (FTS) or short-time stability was studied to
deal with the transient behavior of systems in finite time interval. Some earlier results on
FTS can be found in [25–28]. Some appealing results were obtained to guarantee finite-time
stability, finite-time boundedness, and finite-time stabilization of different systems including
linear systems, nonlinear systems, and stochastic systems; for instance, see the papers in
[29–35] and the references therein. However, to date and to the best of our knowledge,
the problems of stochastic singular finite-time guaranteed cost control analysis of stochastic
singular systems have not been investigated, although some studies on stochastic singular
systems have been conduced recently; see the references [8–11, 15, 18]. We investigate finite-
time guaranteed cost control of one class of continuous-time stochastic singular systems. Our
results are totally different from those previous results. This motivates us for the study.

It is well known that linear matrix inequalities (LMIs) have viewed as a powerful
formulation and design technique for a variety of linear control problems. Thus reducing
a control design problem to an LMI can be considered as a practical solution to this
problem [36]. At present, it is an important tool to address stability and stabilization, roust
control, the H∞ filtering, guaranteed cost control, and so forth; see the references [2, 4–
11, 13, 15] and the references therein. The novelty of our study is that stochastic finite-time
stability, stochastic finite-time bounded and stochastic finite-time guaranteed cost control are
investigated for one family of Markovian jumping singular systems with uncertain transition
probabilities, parametric uncertainties, and time-varying norm-bounded disturbance. The
main contribution of this paper is that sufficient conditions on stochastic singular finite-time
guaranteed cost control are obtained for the class of stochastic singular systems and, a state
feedback controller is designed to guarantee that the underlying stochastic singular system
is stochastic singular finite-time guaranteed cost control in terms of restrict LMIs with a fixed
parameter.

The rest of this paper is organized as follows. In Section 2 the problem formulation and
some preliminaries are introduced. The results on stochastic singular finite-time guaranteed
cost control are given in Section 3. Section 4 presents numerical examples to demonstrate the
validity of the proposed methodology. Some conclusions are drawn in Section 5.

Notations
Throughout the paper, R

n and R
n×m denote the sets of n component real vectors and n × m

real matrices, respectively. The superscript T stands for matrix transposition or vector. E{·}
denotes the expectation operator with respect to some probability measure P. In addition,
the symbol ∗ denotes the transposed elements in the symmetric positions of a matrix, and
diag{· · · } stands for a block-diagonal matrix. λmin(P) and λmax(P) denote the smallest and
the largest eigenvalue of matrix P , respectively. Matrices, if their dimensions are not explicitly
stated, are assumed to be compatible for algebraic operations.

2. Problem Formulation
Let the dynamics of the class of Markovian jumping singular systems be described by the
following:

E(rt)ẋ(t) = [A(rt) + ΔA(rt)]x(t) + [B(rt) + ΔB(rt)]u(t) + [G(rt) + ΔG(rt)]w(t), (2.1)
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where x(t) ∈ R
n is system state, u(t) ∈ R

m is system input, E(rt) is a singular matrix with
rankE(rt) = ri < n; {rt, t ≥ 0} is continuous-time Markovian stochastic process taking values
in a finite space M := {1, 2, . . . ,N} with transition matrix Γ = (πij)N×N and the transition
probabilities are described as follows:

Pij = Pr
(
rt+Δ = j | rt = i

)
=

⎧
⎨

⎩

πijΔ + o(Δ), if i /= j,

1 + πijΔ + o(Δ), if i = j,
(2.2)

where limΔ→ 0 o(Δ)/Δ = 0, πij satisfies πij ≥ 0 (i /= j), and πii = −∑N
j=1, j /= iπij for all i, j ∈ M;

ΔA(rt), ΔB(rt), and ΔG(rt) are uncertain matrices and satisfy

[ΔA(rt),ΔB(rt),ΔG(rt)] = F(rt)Δ(rt)[E1(rt), E2(rt), E3(rt)], (2.3)

where Δ(rt) is an unknown, time-varying matrix function and satisfies

ΔT (rt)Δ(rt) ≤ I, ∀rt ∈ M. (2.4)

Moreover, the disturbance w(t) ∈ R
p satisfies

∫T

0
wT(t)w(t)dt < d2, d > 0, (2.5)

and the matrices A(rt), B(rt), and G(rt) are coefficient matrix and of appropriate dimension
for all rt ∈ M. In addition, we make the following assumption on uncertain transition
probabilities in stochastic singular system (2.1).

Assumption 1. The jump rates of the visited modes from a given mode i are assumed to satisfy

0 < πi ≤ πij ≤ πi, ∀i, j ∈ M, i /= j, (2.6)

where πi and πi are known parameters for each mode or may represent the lower and upper
bounds when all the jump rates are known, that is,

0 < πi = min
i, j∈M

{
πij /= 0, i /= j

} ≤ πi = max
i, j∈M

{
πij /= 0, i /= j

}
. (2.7)

Moreover, letNi denote the number of visited modes from i including the mode itself.
Consider a state feedback controller

u(t) = K(rt)x(rt), (2.8)

where {K(rt), rt = i ∈ M} is a set of matrices to be determined later. The system (2.1)with the
controller (2.8) can be written by the form of the control system as follows:

E(rt)ẋ(t) = A(rt)x(t) +G(rt)w(t), (2.9)

where A(rt) = A(rt) + ΔA(rt) + [B(rt) + ΔB(rt)]K(rt) and G(rt) = G(rt) + ΔG(rt).
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Definition 2.1 (see [12, regular and impulse free]). (i) The singular system with Markovian
jumps (2.9) with u(t) = 0 is said to be regular in time interval [0, T] if the characteristic
polynomial det(sE(rt) −A(rt)) is not identically zero for all t ∈ [0, T].

(ii) The singular systems with Markovian jumps (2.9) with u(t) = 0 is said to be
impulse free in time interval [0, T], if deg(det(sE(rt) −A(rt))) = rank(E(rt)) for all t ∈ [0, T].

Definition 2.2 (stochastic singular finite-time stability (SSFTS)). The closed-loop singular
system with Markovian jumps (2.9) with w(t) = 0 is said to be SSFTS with respect to
(c1, c2, T, R(rt)), with c1 < c2 and R(rt) > 0, if the stochastic system is regular and impulse
free in time interval [0, T] and satisfies

E
{
xT (0)ET (rt)R(rt)E(rt)x(0)

} ≤ c21 =⇒ E
{
xT (t)ET (rt)R(rt)E(rt)x(t)

}
< c22, ∀t ∈ [0, T].

(2.10)

Definition 2.3 (stochastic singular finite-time boundedness (SSFTB)). The closed-loop singu-
lar system with Markovian jumps (2.9) which satisfies (2.5) is said to be SSFTB with respect
to (c1, c2, T, R(rt), d), with c1 < c2 and R(rt) > 0, if the stochastic system is regular and impulse
free in time interval [0, T] and condition (2.10) holds.

Remark 2.4. SSFTB implies that not only is the dynamical mode of the stochastic singular
system finite-time bounded but also the whole mode of the stochastic singular system is
finite-time bounded in that the static mode is regular and impulse free.

Definition 2.5 (see [11, 13]). Let V (x(t), rt = i, t > 0) be the stochastic function; define its weak
infinitesimal operator L of stochastic process {(x(t), rt = i), t ≥ 0} by

LV (x(t), rt = i, t) = Vt(x(t), i, t) + Vx(x(t), i, t)ẋ(t, i) +
N∑

j=1

πijV
(
x(t), j, t

)
. (2.11)

Associated with this system (2.9) is the cost function

JT (rt) = E

{∫T

0

[
xT (t)R1(rt)x(t) + uT (t)R2(rt)u(t)

]
dt

}

, (2.12)

where R1(rt) and R2(rt) are two given symmetric positive definite matrices for all rt = i ∈ M.

Definition 2.6. There exists a controller (2.8) and a scalar ψ0 such that the closed-
loop stochastic singular system with Markovian jumps (2.9) is SSFTB with respect to
(c1, c2, T, R(rt), d) and the value of the cost function (2.12) satisfies JT (rt) < ψ0 for all rt ∈ M;
then stochastic singular system (2.9) is said to be stochastic singular finite-time guaranteed
cost control. Moreover, ψ0 is said to be a stochastic singular guaranteed cost bound, and
the designed controller (2.8) is said to be a stochastic singular finite-time guaranteed cost
controller for stochastic singular system (2.9).

In the paper, our main aim is to concentrate on designing a state feedback controller of
the form (2.8) that renders the closed-loop stochastic singular system with Markovian jumps
(2.9) stochastic singular finite-time guarantee cost control.
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Lemma 2.7 (see [36]). For matrices Y, D, andH of appropriate dimensions, where Y is a symmetric
matrix, then

Y +DF(t)H +HTFT (t)DT < 0 (2.13)

holds for all matrix F(t) satisfying FT (t)F(t) ≤ I for all t ∈ R, if and only if there exists a positive
constant ε, such that the following equality holds:

Y + εDDT + ε−1HTH < 0. (2.14)

3. Main Results

This section deals with the guaranteed cost SSFTB analysis and design for the closed-loop
singular system with Markovian jumps (2.9).

Theorem 3.1. The closed-loop singular system with Markovian jumps (2.9) is SSFTB with respect
to (c1, c2, T, R(rt), d), if there exist a scalar α ≥ 0, a set of nonsingular matrices {P(i), i ∈ M}
with P(i) ∈ R

n×n, sets of symmetric positive definite matrices {Q1(i), i ∈ M} with Q1(i) ∈ R
n×n,

{Q2(i), i ∈ M} with Q2(i) ∈ R
p×p, and for all rt = i ∈ M such that

E(i)PT (i) = P(i)ET (i) ≥ 0, (3.1a)

⎡

⎣A(i)PT (i) + P(i)A
T
(i) + Γ(i) G(i)

∗ −Q2(i)

⎤

⎦ < 0, (3.1b)

P−1(i)E(i) = ET (i)R1/2(i)Q1(i)R1/2(i)E(i), (3.1c)

max
i∈M

{λmax(Q1(i))}c21 +max
i∈M

{λmax(Q2(i))}d2 < min
i∈M

{λmin(Q1(i))}c22e−αT (3.1d)

hold, where Γ(i) =
∑N

j=1πijP(i)P
−1(j)E(j)PT(i)+P(i)[R1(i)+KT(i)R2(i)K(i)]PT(i)−αE(i)PT(i).

Moreover, a stochastic singular finite-time guaranteed cost bound for the stochastic singular system
can be chosen as ψ0 = eαTmaxi∈M{λmax(Q1(i))c21} +maxi∈M{λmax(Q2(i))d2}.

Proof. Firstly, we prove that the singular system with Markovian jumps (2.9) is regular and
impulse free in time interval [0, T]. By Schur complement and noting condition (3.1b), we
have

A(i)PT (i) + P(i)A
T
(i) + (πii − α)E(i)PT (i) < −

N∑

j=1, j /= 1

πijP(i)P−1(j
)
E
(
j
)
PT (i) ≤ 0. (3.2)



6 Mathematical Problems in Engineering

Now, we choose nonsingular matricesM(i) andN(i) such that

M(i)E(i)N(i) = diag{Iri , 0}, M(i)A(i)N(i) =

[
A11(i) A12(i)

A21(i) A22(i)

]

,

M(i)P(i)N−T (i) =

[
P11(i) P12(i)

P21(i) P22(i)

]

.

(3.3)

Then, we have

E(i) =M−1(i)diag{Iri , 0}N−1(i), P(i) =M−1(i)

[
P11(i) P12(i)

P21(i) P22(i)

]

NT (i). (3.4)

From (3.1a) and (3.4), one can obtain

(
M−1(i)diag{Iri , 0}N−1(i)

)(

M−1(i)

[
P11(i) P12(i)

P21(i) P22(i)

]

NT (i)

)T

=

(

M−1(i)

[
P11(i) P12(i)

P21(i) P22(i)

]

NT (i)

)(
M−1(i)diag{Iri , 0}N−1(i)

)T ≥ 0.

(3.5)

Computing the above condition (3.5) and noting that P(i) is nonsingular matrix, one can
obtain from (3.3) and (3.4) that P11(i) = PT11(i) ≥ 0, P21(i) = 0 and det(P22(i))/= 0 for all i ∈ M.
Thus, we have

E(i)PT (i) = P(i)ET (i) =M−1(i)

[
P11(i) 0

0 0

]

M−T(i) ≥ 0. (3.6)

Pre- and post-multiplying (3.2) by M(i) and MT (i), respectively, and noting the equality
(3.6), this results in the following matrix inequality:

[
� �

� A22(i)PT22(i) + P22(i)A
T
22(i)

]

< 0, (3.7)

where the star �will not be used in the following discussion. By Schur complement, we have
A22(i)PT

22(i) + P22(i)A
T
22(i) < 0. Therefore A22(i) is nonsingular, which implies that the closed-

loop continuous-time singular system with Markovian jumps (2.9) is regular and impulse
free in time interval [0, T].

Let us consider the quadratic Lyapunov-Krasovskii functional candidate as
V (x(t), i) = xT (t)P−1(i)E(i)x(t) for stochastic singular system (2.9). Computing LV the
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derivative of V (x(t), i) along the solution of system (2.9) and noting the condition (3.1a),
we obtain

LV (x(t), i)

= ξT (t)

⎡

⎢
⎣
P−1(i)A(i) +A

T
(i)P−T (i) +

N∑

j=1

πijP
−1(j

)
E
(
j
) − αP−1(i)E(i) P−1(i)G(i)

∗ 0

⎤

⎥
⎦ξ(t),

(3.8)

where ξ(t) = [xT (t), wT (t)]T . Pre- and postmultiplying (3.1b) by diag{P−1(i), I} and
diag{P−T (i), I}, respectively, we obtain

⎡

⎢⎢⎢⎢
⎣

P−1(i)A(i) +A
T
(i)P−T (i) +

N∑

j=1

πijP
−1(j

)
E
(
j
)

+R1(i) +KT (i)R2(i)K(i) − αP−1(i)E(i) P−1(i)G(i)

∗ −Q2(i)

⎤

⎥⎥⎥⎥
⎦
< 0. (3.9)

Noting that R1(i) and R2(i) are two symmetric positive definite matrices for all i ∈ M, thus,
from (3.8) and (3.9), we have

E{LV (x(t), i)} < αE{V (x(t), i)} +wT (t)Q2(i)w(t). (3.10)

Further, (3.10) can be rewritten as

E
{
e−αtLV (x(t), i)

}
< e−αtwT (t)Q2(i)w(t). (3.11)

Integrating (3.11) from 0 to t, with t ∈ [0, T] and noting that α ≥ 0, we obtain

e−αtE{V (x(t), i)} < E{V (x(0), i = r0)} +
∫ t

0
e−ατwT(τ)Q2(i)w(τ)dτ. (3.12)

Noting that α ≥ 0, t ∈ [0, T], and condition (3.1c), we have

E
{
xT (t)P−1(i)E(i)x(t)

}
= E{V (x(t), i)}

< eαtE{V (x(0), i = r0)} + eαt
∫ t

0
e−ατwT (τ)Q2(i)w(τ)dτ

≤ eαt
{
max
i∈M

{λmax(Q1(i))}c21 +max
i∈M

{λmax(Q2(i))}d2
}
.

(3.13)
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Taking into account that

E
{
xT (t)P−1(i)E(i)x(t)

}
= E

{
xT (t)ET (i)R1/2(i)Q1(i)R1/2(i)E(i)x(t)

}

≥ min
i∈M

{λmin(Q1(i))}E
{
xT (t)ET (i)R(i)E(i)x(t)

}
,

(3.14)

we obtain

E
{
xT (t)ET (i)R(i)E(i)x(t)

}
≤ max

i∈M

{
λmax

(
Q−1

1 (i)
)}

E
{
xT (t)P(i)E(i)x(t)

}

< eαT
maxi∈M{λmax(Q1(i))}c21 +maxi∈M{λmax(Q2(i))}d2

mini∈M{λmin(Q1(i))} .

(3.15)

Therefore, it follows that condition (3.1d) implies E{xT (t)ET(rt)R(rt)E(rt)x(t)} ≤ c22 for all
t ∈ [0, T].

Once again from (3.8) and (3.9), we can easily obtain

LV (x(t), i) < αV (x(t), i) +wT (t)Q2(i)w(t) −
[
xT (t)R1(i)x(t) + uT (t)R2(i)u(t)

]
. (3.16)

Further, (3.16) can be represented as

L
[
e−αtV (x(t), i)

]
< e−αtwT (t)Q2(i)w(t) − e−αt

[
xT (t)R1(i)x(t) + uT (t)R2(i)u(t)

]
. (3.17)

Integrating (3.17) from 0 to T , we have

∫T

0
e−αt

[
xT (t)R1(i)x(t) + uT (t)R2(i)u(t)

]
dt

<

∫T

0
e−αtwT(t)Q2(i)w(t)dt −

∫T

0
L
[
e−αtV (x(t), i)

]
dt.

(3.18)

Using the Dynkin formula and the fact that the system (2.9) is regular and impulse free, we
obtain

E

{∫T

0
e−αt

[
xT (t)R1(i)x(t) + uT (t)R2(i)u(t)

]
dt

}

<

∫T

0
e−αtwT (t)Q2(i)w(t)dt − E

{∫T

0
L
[
e−αtV (x(t), i)

]
dt

}

.

(3.19)
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Noting that α ≥ 0 and R1(i) and R2(i) are two given symmetric positive definite matrices for
all i ∈ M, thus, we have

JT (i) = E

{∫T

0

[
xT (t)R1(i)x(t) + uT (t)R2(i)u(t)

]
dt

}

≤ eαTE
{∫T

0
e−αt

[
xT (t)R1(i)x(t) + uT (t)R2(i)u(t)

]
dt

}

< eαT
{∫T

0
e−αtwT (t)Q2(i)w(t)dt − E

{∫T

0
L
[
e−αtV (x(t), i)

]
dt

}}

≤ eαT
{
max
i∈M

{λmax(Q1(i))}c21 +max
i∈M

{λmax(Q2(i))}d2
}
.

(3.20)

Thus, one can obtain that the cost function

JT (i) < ψ0 = eαT
{
max
i∈M

{λmax(Q1(i))}c21 +max
i∈M

{λmax(Q2(i))}d2
}

(3.21)

holds for all i ∈ M. This completes the proof of the theorem.

Corollary 3.2. The singular system with Markovian jumps (2.9) with w(t) = 0 is SSFTS with
respect to (c1, c2, T, R(rt)), if there exist a scalar α ≥ 0, a set of nonsingular matrices {P(i), i ∈ M}
with P(i) ∈ R

n×n, a set of symmetric positive definite matrices {Q1(i), i ∈ M} with Q1(i) ∈ R
n×n,

and for all rt = i ∈ M such that (3.1a), (3.1c) and

A(i)PT (i) + P(i)A
T
(i) + Γ(i) < 0, (3.22a)

max
i∈M

{λmax(Q1(i))}c21 < min
i∈M

{λmin(Q1(i))}c22e−αT (3.22b)

hold, where Γ(i) =
∑N

j=1πijP(i)P
−1(j)E(j)PT(i)+P(i)[R1(i)+KT(i)R2(i)K(i)]PT(i)−αE(i)PT(i).

Moreover, a guaranteed cost bound for stochastic singular system can be chosen as ψ0 =
max{eαTλmax(Q1(i))c21, i ∈ M}.

By Lemma 2.7, Theorem 3.1, and using matrix decomposition novelty, we can obtain
the following theorem.

Theorem 3.3. There exists a state feedback controller u = K(rt)x(t) with K(rt) =
LT (rt)P−T(rt), rt = i ∈ M such that the closed-loop stochastic singular system with Markovian
jumps (2.9) is SSFTB with respect to (c1, c2, T, R(rt), d), if there exist a scalar α ≥ 0, a set of positive
matrices {X(i), i ∈ M}withX(i) ∈ R

n×n, a set of symmetric positive definite matrices {Q2(i), i ∈ M}
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with Q2(i) ∈ R
p×p, and a set of matrices {Y (i), i ∈ M} with Y (i) ∈ R

n×(n−ri), two sets of positive
scalars {σi, i ∈ M} and {εi, i ∈ M}, for all rt = i ∈ M such that (3.1d) and

0 ≤ E(i)PT (i) = P(i)ET (i) = E(i)N(i)X(i)NT (i)ET (i) ≤ σiI, (3.23a)

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ω11(i) G(i) P(i) L(i) Ω15(i) Ui

∗ −Q2(i) 0 0 ET3 (i) 0

∗ ∗ −R−1
1 (i) 0 0 0

∗ ∗ ∗ −R−1
2 (i) 0 0

∗ ∗ ∗ ∗ −εiI 0

∗ ∗ ∗ ∗ ∗ −Wi

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0
(3.23b)

hold, whereΩ11(i) = P(i)AT(i)+L(i)BT(i)+(P(i)AT(i) + L(i)BT (i))T +εiF(i)FT(i)−[(Ni−1)πi+
α]P(i)ET(i), Ω15(i) = P(i)ET1 (i) + L(i)E

T
2 (i), Ui = [

√
πiP(i), . . . ,

√
πiP(i)],Wi = diag{PT (1) +

P(1)−σ1I, . . . , PT (i−1)+P(i−1)−σi−1I, PT (i+1)+P(i+1)−σi+1I, . . . , PT (N)+P(N)−σNI}, P(i) =
E(i)N(i)X(i)NT(i) +M−1(i)Y (i)ΥT(i),M(i)E(i)N(i) = diag{Iri , 0}, Υ(i) = N(i)[0, In−ri]

T , and
Q1(i) = R−1/2(i)MT(i)X−1(i)M(i)R−1/2(i). Moreover, X(i) and Y (i) are from the form (3.35).
Furthermore, a stochastic singular finite-time guaranteed cost bound for stochastic singular system
can be chosen as

ψ0 = eαT
{
max
i∈M

{
λmax

(
R−1/2(i)MT (i)X−1(i)M(i)R−1/2(i)

)}
c21

+max
i∈M

{
λmax(Q2(i))d2

}}
.

(3.24)

Proof. We firstly prove that condition (3.23b) implies condition (3.1b). By condition (3.23a),
we have

P−1(j
)
E
(
j
) ≤ σjP−1(j

)
P−T(j

)
, ∀j ∈ M. (3.25)

Using Assumption 1, we obtain

πiiP(i)ET (i) = −
N∑

j=1, j /= i

πijP(i)ET (i) ≤ −(Ni − 1)πiP(i)E
T (i), (3.26a)

N∑

j=1, j /= i

πijσjP
−1(j

)
P−T(j

) ≤
N∑

j=1, j /= i

πiσjP
−1(j

)
P−T(j

)
. (3.26b)
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Thus the inequality

N∑

j=1, j /= i

πijP(i)P−1(j
)
E
(
j
)
PT (i) ≤

N∑

j=1, j /= i

πijσjP(i)P−1(j
)
P−T(j

)
PT (i)

≤
N∑

j=1, j /= i

πiσjP(i)P−1(j
)
P−T(j

)
PT (i)

≤ UiV
−1
i UT

i

(3.27)

holds, whereUi = [
√
πiP(i), . . . ,

√
πiP(i)] and

Vi = diag
{
σ−1
1 PT (1)P(1), . . . , σ−1

i−1P
T (i − 1)P(i − 1), σ−1

i+1P
T (i + 1)P(i + 1), . . . , σ−1

N PT (N)P(N)
}
.

(3.28)

Noting that the inequality σ−1
i PT (i)P(i) ≥ PT (i) + P(i) − σiI holds for each i ∈ M. Thus we

have

N∑

j=1, j /= i

πijP(i)P−1(j
)
E
(
j
)
PT (i) ≤ UiW

−1
i UT

i , (3.29)

where Wi = diag{PT (1) + P(1) − σ1I, . . . , PT (i − 1) + P(i − 1) − σi−1I, PT (i + 1) + P(i + 1) −
σi+1I, . . . , P

T (N) + P(N) − σNI}.
Therefore, a sufficient condition for (3.1b) to guarantee is that

Ξ(i) :=

[
Ψ(i) G(i)

∗ −Q2(i)

]

< 0, (3.30)

where Ψ(i) = A(i)PT(i) + P(i)A
T
(i) + P(i)[R1(i) +KT (i)R2(i)K(i)]PT(i) +UiW

−1
i UT

i − [(Ni −
1)πi + α]E(i)P

T(i).
Noting that

Ξ(i) =

[
Ψ0(i) + P(i)

(
R1(i) +KT (i)R2(i)K(i)

)
PT (i) +UiW

−1
i UT

i G(i)

∗ −Q2(i)

]

+ Ξ1(i), (3.31)

where

Ξ1(i) =

⎡

⎣
(ΔA(i) + ΔB(i)K(i))PT (i) +

(
(ΔA(i) + ΔB(i)K(i))PT(i)

)T ΔG(i)

∗ 0

⎤

⎦

=

[
F(i)

0

]

Δ(i)
[
E12(i)PT (i) E3(i)

]
+

[
P(i)ET12(i)

ET3 (i)

]

ΔT (i)
[
FT (i) 0

]
,

(3.32)
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andΨ0(i) = Ã(i)PT(i)+P(i)ÃT(i)− [(Ni −1)πi +α]P(i)E
T(i), E12(i) = E1(i)+E2(i)K(i), Ã(i) =

A(i) + B(i)K(i).
By Lemma 2.7, we have

Ξ(i) ≤
[
Ψ0(i) + P(i)

(
R1(i) +KT (i)R2(i)K(i)

)
PT (i) +UiW

−1
i UT

i G(i)

∗ −Q2(i)

]

+ εi

[
F(i)FT (i) 0

∗ 0

]

+ ε−1i

[
P(i)ET12(i)

ET3 (i)

]
[
E12(i)PT (i) E3(i)

]

=

[
Ψ0(i) + εiF(i)FT (i) G(i)

∗ −Q2(i)

]

−ΛiΓ−1(i)ΛT
i ,

:= Ξ(i),

(3.33)

where Γ(i) = diag{−R−1
1 (i),−R−1

2 (i),−εiI,−Wi} and Λi =
[
P(i) P(i)KT (i) P(i)ET12(i) Ui

0 0 ET3 (i) 0

]
.

By Schur complement, Ξ(i) < 0 holds if and only if the following inequality:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω11(i) G(i) P(i) P(i)KT (i) P(i)ET12(i) Ui

∗ −Q2(i) 0 0 ET3 (i) 0

∗ ∗ −R−1
1 (i) 0 0 0

∗ ∗ ∗ −R−1
2 (i) 0 0

∗ ∗ ∗ ∗ −εiI 0

∗ ∗ ∗ ∗ ∗ −Wi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0 (3.34)

holds, where Ω11(i) = Ã(i)PT(i) + P(i)ÃT(i) + εiF(i)FT(i) − [(Ni − 1)πi + α]P(i)ET(i) and
Ã(i) = A(i) + B(i)K(i).

Thus, let L(i) = P(i)KT (i), and noting that E(i)PT(i) = P(i)ET(i), from (3.34), it is easy
to obtain that condition (3.23b) implies condition (3.1b).

Noting that E(i) is a singular matrix with rankE(i) = ri for every fixed rt = i ∈ M,
thus there exist two nonsingular matrices M(i) and N(i), which satisfy M(i)E(i)N(i) =
diag{Iri , 0}. Let P(i) = M(i)P(i)N−T(i); by the proof of Theorem 3.1, we obtain that P(i) is



Mathematical Problems in Engineering 13

of the following form
[
P11(i) P12(i)
0 P22(i)

]
, where P11(i) ≥ 0, P12(i) ∈ R

r×(n−ri), P22(i) ∈ R
(n−ri)×(n−ri).

Denote Υ(i) =N(i)[0, In−ri]
T . Then we have rankΥ(i) = n − ri, E(i)Υ(i) = 0 and

P(i) =M−1(i)

[
P11(i) P12(i)

0 P22(i)

]

NT (i)

=

(

M−1(i)

[
Iri 0

0 0

]

N−1(i)

)(
N(i)X(i)NT (i)

)
+
(
M−1(i)Y (i)

)([
0 In−ri

]
NT (i)

)

= E(i)N(i)X(i)NT (i) +M−1(i)Y (i)ΥT (i),
(3.35)

where X(i) = diag{P11(i),Θ(i)} and Y (i) = [PT12(i), P
T
22(i)]

T .
Let Q1(i) = R−1/2(i)MT(i)X−1(i)M(i)R−1/2(i), one can see that P(i) =

E(i)N(i)X(i)NT(i) + M−1(i)Y (i)ΥT(i) satisfies P(i)ET(i) = E(i)PT(i) =
E(i)N(i)X(i)NT(i)ET(i) and (3.1c) holds.

From the proof of Theorem 3.1 and noting that Q1(i) =
R−1/2(i)MT(i)X−1(i)M(i)R−1/2(i), we can obtain JT (i) < ψ0 =
eαT{maxi∈M{λmax(R−1/2(i)MT (i)X−1(i)M(i)R−1/2(i))}c21 + maxi∈M{λmax(Q2(i))}d2} for
all i ∈ M. This completes the proof of the theorem.

By Theorem 3.1, Corollary 3.2, and Theorem 3.3, we have the following corollary.

Corollary 3.4. There exists a state feedback controller u = K(rt)x(t) with K(rt) =
LT (rt)P−T(rt), rt = i ∈ M such that the closed-loop stochastic singular system with Markovian
jumps (2.9) with w(t) = 0 is SSFTS with respect to (c1, c2, T, R(rt)), if there exist a scalar α ≥ 0, a
set of positive matrices {X(i), i ∈ M} with X(i) ∈ R

n×n, and a set of matrices {Y (i), i ∈ M} with
Y (i) ∈ R

n×(n−ri), two sets of positive scalars {σi, i ∈ M} and {εi, i ∈ M}, for all rt = i ∈ M such that
(3.22b), (3.23a) and

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Φ11(i) P(i) L(i) Φ14(i) Ui

∗ −R−1
1 (i) 0 0 0

∗ ∗ −R−1
2 (i) 0 0

∗ ∗ ∗ −εiI 0

∗ ∗ ∗ ∗ −Wi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0 (3.36)

holds, where Φ11(i) = P(i)AT(i) + L(i)BT(i) + (P(i)AT(i) + L(i)BT (i))T + εiF(i)FT(i) − [(Ni −
1)πi − α]P(i)ET(i), Φ14(i) = P(i)ET1 (i) + L(i)E

T
2 (i). Furthermore, the other matrical variables are

the same as Theorem 3.3, and a guaranteed cost bound for the stochastic singular system can be chosen
as

ψ0 = max
{
eαTλmax

(
R−1/2(i)MT (i)X−1(i)M(i)R−1/2(i)

)
c21, i ∈ M

}
. (3.37)



14 Mathematical Problems in Engineering

Remark 3.5. It is easy to check that condition (3.1d) and (3.22b) can be guaranteed by
imposing the conditions, respectively,

η1I < R
1/2(i)M−1(i)X(i)M−T (i)R1/2(i) < I, (3.38a)

η3I < Q2(i) < η2I, (3.38b)

[
e−αTc22 − d2η2 c1

c1 η1

]

> 0, (3.38c)

η1I < R
1/2(i)M−1(i)X(i)M−T (i)R1/2(i) < I, (3.39a)

[
e−αTc22 c1

c1 η1

]

> 0. (3.39b)

In addition, conditions (3.23b) and (3.36) are not strict LMIs; however, once we fix parameter
α, conditions (3.23b) and (3.36) can be turned into LMIs-based feasibility problem.

Remark 3.6. From the above discussion, one can see that the feasibility of conditions stated
in Theorem 3.3 and Corollary 3.4 can be turned into the following LMIs-based feasibility
problem with a fixed parameter α, respectively,

min c22

X(i), Y (i), L(i), Q2(i), εi, σi, η1, η2, η3

s.t. (3.23a), (3.23b), and (3.38a)–(3.38c)

(3.40)

min c22

X(i), Y (i), L(i), εi, σi, η1

s.t. (3.23a), (3.36), and (3.39a)-(3.39b).

(3.41)

Remark 3.7. If α = 0 is a solution of feasibility problem (3.41), then the closed-loop stochastic
singular system with Markovian jumps (2.9) with w(t) = 0 is SSFTS with respect to
(c1, c2, T ,R(rt)) and is also stochastically stable.
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4. Numerical Examples

Example 4.1. Consider a two-mode Markovian jumping singular system (2.1) with

Mode 1.

E(1) =

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 0

⎤

⎥
⎥
⎦, A(1) =

⎡

⎢
⎢
⎣

2.6 1 1

−1 3 0

−1 −1 0

⎤

⎥
⎥
⎦, B(1) =

⎡

⎢
⎢
⎣

0 1 2

1 −1 0

0 0 1

⎤

⎥
⎥
⎦,

F(1) =

⎡

⎢
⎢
⎣

0.5 0 0

0 0.1 1

0 1 0

⎤

⎥
⎥
⎦, E1(1) =

⎡

⎢
⎢
⎣

0.03 0 0.2

0.01 0.2 0

0.3 0 0.1

⎤

⎥
⎥
⎦,

E2(1) =

⎡

⎢⎢
⎣

0.06 0 0.02

0.01 0.1 0

0.04 0 0.5

⎤

⎥⎥
⎦, E3(1) =

⎡

⎢⎢
⎣

0.01

0.01

0

⎤

⎥⎥
⎦, G(1) =

⎡

⎢⎢
⎣

0

0

0.1

⎤

⎥⎥
⎦,

(4.1)

Mode 2.

E(2) =

⎡

⎢⎢
⎣

1 0 0

0 1 0

0 0 0

⎤

⎥⎥
⎦, A(2) =

⎡

⎢⎢
⎣

2 0 1

0 0 1

0 1 −1

⎤

⎥⎥
⎦, B(2) =

⎡

⎢⎢
⎣

0.5 0.1 0

1 1 0

0 1 0

⎤

⎥⎥
⎦,

F(2) =

⎡

⎢
⎢
⎣

0.1 0 0

0 0.1 0

0 0 0

⎤

⎥⎥
⎦, E1(2) =

⎡

⎢⎢
⎣

0.02 0 0.2

0.01 0.2 0

0.1 0 0.5

⎤

⎥⎥
⎦,

E2(2) =

⎡

⎢⎢
⎣

0.04 0 0.01

0.01 0.1 0

0.3 0 0.1

⎤

⎥⎥
⎦, E3(2) =

⎡

⎢⎢
⎣

0.04

0.01

0.3

⎤

⎥⎥
⎦, G(2) =

⎡

⎢⎢
⎣

0

0

0.1

⎤

⎥⎥
⎦,

(4.2)

and d = 2,Δ(i) = diag{r1(i), r2(i), r3(i)}, where rj(i) satisfies |rj(i)| ≤ 1 for all i = 1, 2 and
j = 1, 2, 3.

The switching between the two modes is described by the transition rate matrix Γ =
[ π11 π12
π21 π22 ]. The lower and upper bounds parameters of πij for all i, j ∈ M are given in Table 1.
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Table 1: Partially known rate parameters.

Parameters Lower bound Upper bound
π12 1 1.1
π21 2 2.2

Then, we choose R1(1) = R1(2) = R2(1) = R2(2) = R(1) = R(2) = I3, T = 1.5, c1 = 1,
α = 2. Using the LMI control toolbox of Matlab, we can obtain from Theorem 3.3 that the
optimal value c2 = 20.6686, ψ0 = 426.2786, and

X(1) =

⎡

⎢⎢
⎣

0.0946 −0.0244 0

−0.0244 0.0748 0

0 0 0.5271

⎤

⎥⎥
⎦, X(2) =

⎡

⎢⎢
⎣

0.0544 −0.0025 0

−0.0025 0.0806 0

0 0 0.5271

⎤

⎥⎥
⎦,

Y (1) =

⎡

⎢⎢
⎣

−0.0181
−0.0025
0.1558

⎤

⎥⎥
⎦, Y (2) =

⎡

⎢⎢
⎣

−0.1182
0.0329

0.3341

⎤

⎥⎥
⎦,

L(1) =

⎡

⎢⎢
⎣

0.1041 −0.9367 −0.8087
−0.9746 0.9310 0.0596

0.0383 −0.0023 −0.4082

⎤

⎥⎥
⎦, L(2) =

⎡

⎢⎢
⎣

−0.3732 −0.0971 0.0419

−0.8239 −0.9822 0.0579

−0.1311 −0.9817 −0.0439

⎤

⎥⎥
⎦,

η1 = 0.0541, η2 = 0.6948, η3 = 0.2301,

ε1 = 0.1571, ε2 = 0.5278, σ1 = 0.1110,

σ2 = 0.0809, Q2(1) = 0.6920, Q2(2) = 0.6875.

(4.3)

Then, we can obtain the following state feedback controller gains:

K(1) =

⎡

⎢⎢
⎣

−2.4102 −13.8074 0.2455

−7.3133 10.0632 −0.0146
−9.6821 −2.4455 −2.6195

⎤

⎥⎥
⎦, K(2) =

⎡

⎢⎢
⎣

−8.1944 −10.3144 −0.3925
−8.6928 −11.2534 −2.9386
0.5215 0.7875 −0.1313

⎤

⎥
⎥
⎦. (4.4)

Furthermore, let R1(1) = R1(2) = R2(1) = R2(2) = R(1) = R(2) = I3, T = 1.5, c1 = 1; by
Theorem 3.3, the optimal bound with minimum value of c22 relies on the parameter α. We can
find feasible solution when 0.37 ≤ α ≤ 12.92. Figure 1 shows the optimal value with different
value of α. When α = 1.4, it yields the optimal value c2 = 18.3686 and ψ0 = 337.0518. Then, by
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Figure 1: The local optimal bound of c2.

using the program fminsearch in the optimization toolbox of Matlab starting at α = 1.4, the
locally convergent solution can be derived as

K(1) =

⎡

⎢⎢
⎣

−2.9698 −17.3253 0.4007

−9.0355 12.3614 −0.0178
−11.8034 −2.3818 −3.3381

⎤

⎥⎥
⎦, K(2) =

⎡

⎢⎢
⎣

−10.4290 −12.9186 −1.0405
−16.3971 −19.4281 −4.6741
2.9505 4.3393 −0.3515

⎤

⎥⎥
⎦, (4.5)

with α = 1.4217 and the optimal value c2 = 18.3341 and ψ0 = 336.0016.

Remark 4.2. From the above example and Remark 3.6, condition (3.23b) in Theorem 3.3 is not
strict in LMI form; however, one can find the parameter α by an unconstrained nonlinear
optimization approach, which a locally convergent solution can be obtained by using the
program fminsearch in the optimization toolbox of Matlab.

Example 4.3. Consider a two-mode stochastic singular system (2.1) with w(t) = 0 and

A(1) =

⎡

⎢⎢
⎣

−2.6 1 1

−1 3 0

1 −1 0

⎤

⎥⎥
⎦, A(2) =

⎡

⎢⎢
⎣

−1 0 1

0 0 1

0 1 −1

⎤

⎥⎥
⎦. (4.6)

In addition, the transition rate matrix and the other matrices parameters are the same as
Example 4.1.

Then, let R1(1) = R1(2) = R2(1) = R2(2) = R(1) = R(2) = I3, T = 1.5, c1 = 1. By
Corollary 3.4, the optimal bound with minimum value of c22 relies on the parameter α. We can
find feasible solution when 0 ≤ α ≤ 13.37. Thus the above system is stochastically stable, and
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when α = 0, it yields the optimal value c2 = 2.7682, ψ0 = 7.6608, and the following optimized
state feedback controller gains

K(1) =

⎡

⎢
⎢
⎣

−0.3633 −7.2605 0.1285

−3.7567 6.3517 0.0046

−4.2329 −0.6284 −2.0607

⎤

⎥
⎥
⎦, K(2) =

⎡

⎢
⎢
⎣

−3.7840 −7.5189 −0.0097
−4.1361 −9.5627 −2.6484
0.0089 0.0198 −0.0046

⎤

⎥
⎥
⎦. (4.7)

5. Conclusions

In this paper, we deal with the problem of stochastic finite-time guaranteed cost control
of Markovian jumping singular systems with uncertain transition probabilities, parametric
uncertainties, and time-varying norm-bounded disturbance. Sufficient conditions on stochas-
tic singular finite-time guaranteed cost control are obtained for the class of stochastic singular
systems. Designed algorithms for the state feedback controller are provided to guarantee
that the underlying stochastic singular system is stochastic singular finite-time guaranteed
cost control in terms of restricted linear matrix equalities with a fixed parameter. Numerical
examples are also presented to illustrate the validity of the proposed results.
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