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An adaptive backstepping fuzzy-immune controller for a class of chaotic systems is proposed.
An adaptive backstepping fuzzy method and adaptive laws are used to approximate nonlinear
functions and the unknown upper bounds of uncertainty, respectively. The proposed adaptive
backstepping fuzzy-immune controller guarantees the stability of a class of chaotic systems while
maintaining good tracking performance. The fuzzy-immune algorithm is used for mathematical
calculations. The intelligence algorithm consists of the adaptive backstepping fuzzy method and a
novel fuzzy-immune scheme which generates optimal parameters for the control schemes. Finally,
two simulation examples are given to illustrate the effectiveness of the proposed approach.

1. Introduction

Adaptive fuzzy logic controllers provide a systematic and efficient framework for incorporat-
ing linguistic fuzzy information from human experts. In [1], an adaptive fuzzy logic control
theory was derived for a class of uncertain nonlinear single-input single-output (SISO)
systems. Moreover, many scientists have since dedicated a lot of effort to solving the adaptive
fuzzy control problem of uncertain nonlinear systems [2–10]. Furthermore, the stability of
uncertain nonlinear systems has been addressed by the integration of fuzzy logic control
and the adaptive laws. [11–20]. Subsequently, several methodologies have been instituted
for controlling nonlinear systems [20–29]. The primary advantage of adaptive fuzzy control
scheme is insensitive to internal uncertainty and external disturbances. Adaptive fuzzy
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control approaches only can perform desired performance for a simple class of nonlinear
systems. If nonlinear systems without satisfying the matching conditions, the adaptive fuzzy
control methodologies cannot be implemented.

In the past decade, many adaptive fuzzy control schemes have been developed
by combining the backstepping technique [30–32]. The primary advantage of adaptive
backstepping fuzzy control is that the matching conditions are not needed. Backstepping
is based on the nonlinear stabilization technique of adding an integrator. Adaptive
backstepping fuzzy control schemes can provide a systematic framework for tracking or
regulation strategies [33–40].

In the past decade, the research area of controlling chaos has received increasing
attention. Chaos is a complex nonlinear dynamical system, and it is commonly difficult
to exactly predict the behavior of a chaotic system. Recently, many successful methods
for controlling chaos have been developed [3, 8]. In the present study, we propose an
adaptive backstepping fuzzy-immune controller for a class of chaotic systems. Based on
the backstepping algorithm, the fuzzy methodology augmented by an immune algorithm
is proposed as a new evolution algorithm, which maintains the advantages of simplicity and
easy handling. The four main contributions are (1) an adaptive backstepping fuzzy-immune
tracking controller for a class of chaotic systems is proposed, (2) the controller does not
require a priori knowledge of the sign of the control coefficient, (3) a novel fuzzy-immune
algorithm is used to find the optimal solution, and (4) a correct term can be used to eliminate
disturbance.

The rest of this paper is organized as follows. In Section 2, system statement and
description of fuzzy systems for chaotic system are presented. The adaptive backstepping
fuzzy controller technique and a novel fuzzy-immune mechanism are discussed in Section 3.
The results of simulations for chaotic systems are presented to confirm the validity of the
proposed control scheme in Section 4. Finally, the conclusions are given in Section 5.

2. System Statement and Description of Fuzzy Systems for
Chaotic System

In this paper, we consider a class of chaotic systems that can be shown in strict-feedback
systems with nonlinear functions and disturbances

ẋ1 = x2 + d1(t),

ẋ2 = x3 + d2(t),

...

ẋn = fn(xn(t)) + gn(xn(t))u(t) + dn(t),

y = x1,

(2.1)

where xn(t) = [x1(t), . . . , xn(t)]T ∈ Rn, fn(xn(t)) and gn(xn(t)) are smooth functions, u(t)
and y are control input and output variables, respectively. d1(t), . . . , dn(t) denote external
disturbance. However, the bound of external disturbance is difficult to obtain in the practical
applications. The control objective is to design a stabilizing controller for the system described
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by (2.1) so that the tracking error converges to zero asymptotically despite the presence of
unknown nonlinearities and disturbances.

2.1. Description of Fuzzy Systems

Fuzzy logic systems have been successfully employed to approximate the mathematical
models of nonlinear systems. The fuzzy systems can be divided into four parts: fuzzifier,
fuzzy rule base, fuzzy inference engine, and defuzzifier. The fuzzy mechanism is described
by IF-THEN rules from an input linguistic vector xn(t) to an output variable f(xn(t))

Ri: If x1 is Fi1, x2 is Fi2, . . . , xn is Fin,

then y is Gi, i = 1, 2, . . . , m,
(2.2)

where m is the number of rules. Fi1, Fi2, . . . , Fin and Gi are the fuzzy sets and x1, x2, . . . , xn
are states of system. Using a singleton function, center average defuzzification, and product
inference, the fuzzy systems output is

f(xn) =
∑m

i=1 yi
(∏n

l=1μFil(xl)
)

∑m
i=1
(∏n

l=1μFil(xl)
) , (2.3)

where μFil(xl) is the membership of x1 in the fuzzy set Fi1 and yi = maxy∈RμGi(yi) = 1. Then,
(2.3) can be rewritten as

f(xn) = θTf ϕf(xn), (2.4)

where θf = [y1, y2, . . . , ym]
T and ϕf(xn(t)) = [ϕ11, . . . , ϕ1m]T . We can define ϕ1i as

ϕ1i =

(∏n
l=1μFil(xl)

)

∑m
i=1
(∏n

l=1μFil(xl)
) , i = 1, . . . , m. (2.5)

The logic fuzzy system shown in (2.5) is a universal approximator. It can be proved
using the following lemma.

Lemma 2.1 (see [41]). Let f(xn) be continuous functions defined on a compact set U ∈ Rn and
arbitrary ε > 0, and there exists a fuzzy logic system f(xn) in the form of (2.4) such that

sup
x∈U

∣
∣
∣f(xn) − fn(xn)

∣
∣
∣ ≤ ε. (2.6)

After some simple manipulations in (2.4) and (2.5), we can obtain gn(xn) = θTgϕg(xn)
as the approximator of gn(xn). The nonlinear functions fn(xn) and gn(xn) requires successful
estimates θ̂f and θ̂g in order to perform the performance shown in (2.6).
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Typically, there exists optimal parameter estimates θ, and the approximation error is
the smallest. The optimal parameter estimate is defined as

θf = arg min
θf∈Ωf

{

sup
x∈Ωx

∣
∣
∣fn(xn) − θTf ϕf

∣
∣
∣

}

,

θg = arg min
θg∈Ωg

{

sup
x∈Ωx

∣
∣
∣gn(xn) − θTg ϕg

∣
∣
∣

}

.

(2.7)

Based on fuzzy mechanism, (2.1) can be rewritten as below:

ẋ1 = x2 + d1(t),

ẋ2 = x3 + d2(t),

...

ẋn = θ
T

fϕf(xn) + θ
T

gϕg(xn)u(t) + dn(t) + εf + εg,

y = x1,

(2.8)

where εf and εg are internal modeling error variables

εf = fn(xn) − θ
T

fϕf(xn),

εg = gn(xn) − θ
T

gϕg(xn),
(2.9)

Therefore, the mathematical model includes internal modeling error variables and
external disturbance. We will discuss our proposed method in the next section.

3. Adaptive Backstepping Fuzzy Controller Technique and
Fuzzy-Immune Mechanism

fn(xn(t)) and gn(xn(t)) are the system dynamic functions, these cannot be exactly obtained
in general, d1(t), . . . , dn(t) are unknown parameters in practical application Thus, in the
adaptive backstepping fuzzy controller (ABFC) system, the fuzzy system is designed to
estimate the system dynamic functions.

3.1. Backstepping Design Principle

The design of ABFC for the chaotic dynamic system is described step-by-step as follows:

Step 1. Consider the tracking error

ė1 = ẋ1 − ṙ = x2 − ṙ + d1 = e2 + a1 + d1, (3.1)
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where r is the command trajectory. The first Lyapunov function is defined as

V1 =
e2

1

2
. (3.2)

Differentiating (3.2) with respect to time and it is obtained that

V̇1 = e1ė1 = e1(e2 + a1 + d1) = e1e2 + e1(a1 + d1). (3.3)

Define the following stabilizing function:

a1 = −τ1e1 −
1
η2

1

e1, (3.4)

where τ1 and η1 are positive constants, η1 represent the attenuation level of disturbances.
From substitute (3.3) into (3.4), then we obtain

V̇1 = −τ1e
2
1 + e1e2 + μ1, (3.5)

where μ1 = −(1/η2
1)e1 + e1d1 = −((1/η1)e1 − (1/2)η1d1)2 + (1/4)η2

1d
2
1.

Step 2. The derivative of e2 = x2 − ṙ − a1 is

ė2 = ẋ3 + d2 − r̈ −
∂a1(x2 + d1)

∂x1
− ∂a1ṙ

∂r1
= e3 + a2 −

∂a1x2

∂x1
− ∂a1ṙ

∂r1
+
(

d2 −
∂a1d1

∂x1

)

. (3.6)

The second Lyapunov function is defined as

V2 = V1 +
e2

2

2
. (3.7)

Differentiating (3.7) with respect to time, it is obtained that

V̇2 = e2e3 − τ1e
2
1 + e2

(

e1 + a2 −
∂a1x2

∂x1
− ∂a1ṙ

∂r1

)

+ μ1 + e2d2 − e2
∂a1d1

∂x1
. (3.8)

Define the following stabilizing function:

a2 = −e1 − τ2e2 −
1
η2

2

e2 +
∂a1

∂x1
x2 +

∂a1

∂r
ṙ, (3.9)

where τ2 and η2 are positive constants and η2 represent the attenuation level of disturbances.
From substitute (3.9) into (3.8), then we obtain

V̇2 = −τ1e
2
1 − τ2e

2
2 + e2e3 + μ1 + μ2, (3.10)
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where

μ2 = − 1
η2

2

e2
2 + e2

(

d2 −
∂a1

∂x1
d1

)

= −
[

1
η2
e2 −

1
2
η2

(

d2 −
∂a1

∂x1
d1

)]2

+
1
4
η2

2

(

d2 −
∂a1

∂x1
d1

)2

.

(3.11)

Step i

After some simple manipulations and the same method, the derivative of generalized error
is

ėi = xi+1 +

[

di −
i−1∑

l=1

(
∂ai−1

∂xl

)

dl

]

− d
ir

dr
−
(

i−1∑

l=1

∂ai−1xl+1

∂xl
+

i−1∑

l=1

∂ai−1

∂r(l−1)
rl
)

. (3.12)

The ith Lyapunov function is defined as

Vi = Vi−1 +
e2
i

2
. (3.13)

Differentiating (3.13) with respect to time, it is obtained that

V̇i = eiei+1 −
i∑

l=1

τle
2
l +

i∑

l=1

ηl, (3.14)

where

μl = −
[

1
ηl
el −

1
2
ηl

(

dl −
l−1∑

k=1

∂al−1

∂xk
dk

)]2

+
1
4
η2
l

(

dl −
l−1∑

k=1

∂al−1

∂xk
dk

)2

. (3.15)

Define the following stabilizing function:

ai = −ei−1 − τiei −
1
η2
i

ei +
i−1∑

l=1

∂ai−1

∂xl
xl+1 +

i−1∑

l=1

∂ai−1

∂r(l−1)
rl. (3.16)
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Step n

The final control law will be determined in the final step, and the derivative of step
generalized error can be described as

ėn = ẋn −
dnr

dr
−
(

n−1∑

l=1

∂an−1xl+1

∂xl
+
n−1∑

l=1

∂an−1

∂r(l−1)
rl
)

= θ
T

fϕf(xn) + θ
T

gϕg(xn)u −
dnr

dr
−
(

n−1∑

l=1

∂an−1xl+1

∂xl
+
n−1∑

l=1

∂an−1

∂r(l−1)
rl
)

+ dn −
n−1∑

l=1

(
∂an−1

∂xl

)

dl + εf + εgu,

(3.17)

u =
1

θ̂Tgϕg

(

an +
dnr

dr

)

, θ̂Tgϕg /= 0, (3.18)

an = −en−1 − τnen −
1
η2
n

en − θ̂Tf ϕf(xn) +
n−1∑

l=1

∂an−1

∂xl
xl+1 +

n−1∑

l=1

∂an−1

∂rl−1
rl, (3.19)

where ηn is the given correct factor and τn is a positive constant.

3.2. Fuzzy-Immune Mechanism Design

Assume that the number of the kth-generation antigens is ε(k), the output of the helper T-
cells, stimulated by antigens, is TH(k), and the suppressor T-cells affect B-cells to the amount
of Ts(k) [42, 43]

Te(k) = TH(k) − Ts(k), (3.20)

where TH(k) = h1ε(k) and Ts(k) = h2f(Te(k),ΔTe(k))ε(k). The feedback control rules are
defined as

u(k) = h1e(k) − h2f(u(k),Δu(k))e(k)

= h1

[

1 − h2

h1
f(u(k),Δu(k))

]

e(k)

= h1
[
1 − �f(u(k),Δu(k))

]
e(k),

(3.21)

where h1, h2, and λ are scaling factors and � = h2/h1 is utilized to control the stabilization
effect. Then, we propose a novel correct constriction coefficient to improve the performance
of the immune mechanism. In this, the constriction coefficient can be expressed as follows:

� = �max −
�max − �min

kmax
× know, (3.22)
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Figure 1: Membership functions for u(k).

where �max and �min denote the maximum and minimum of �, respectively. kmax denotes
the total number of evolution generations, and know denotes the current number of evolution
generations. Let de(k) denote the difference between the e(k)’s for two consecutive iterations,
that is, at iteration k:

de(k) = e(k) − e(k − 1) ≥ 0. (3.23)

Based on the above inferences, the following nine fuzzy rules are suggested.

(1) If u(k) is big and Δu(k) is big, then f(u(k),Δu(k)) is small.

(2) If u(k) is big and Δu(k) is small, then f(u(k),Δu(k)) is medium.

(3) If u(k) is small and Δu(k) is big, then f(u(k),Δu(k)) is medium.

(4) If u(k) is medium and Δu(k) is big, thenf(u(k),Δu(k)) is small.

(5) If u(k) is big and Δu(k) is medium, thenf(u(k),Δu(k)) is small.

(6) If u(k) is medium and Δu(k) is medium, then f(u(k),Δu(k)) is medium.

(7) If u(k) is medium and Δu(k) is small, then f(u(k),Δu(k)) is medium.

(8) If u(k) is small and Δu(k) is medium, then f(u(k),Δu(k)) is big.

(9) If u(k) is small and Δu(k) is small, then f(u(k),Δu(k)) is big.

The membership functions for u(k), Δu(k), and f(u(k),Δu(k)) are shown in Figures
1–3, respectively.

The output of the controller has the following expression:

u =
1

θ̂Tg ϕg

(

an +
dnr

dr

)
{
h1
[
1 − �f(u(k),Δu(k))

]
en
}
. (3.24)

The proposed method is trying to find more efficient ways of utilizing immune
mechanism to correct controller input, and the correct item is effective in keeping out
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Figure 2: Membership functions for Δu(k).
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Figure 3: Membership functions for f(u(k),Δu(k)).

perturbation by external or internal. Then, we have the following theorem to gain the
objective.

Theorem 3.1. Consider the nonlinear systems (2.1) and with the controller u is given by (3.18). By
utilizing parameter adjusting law (3.25) and (3.26)

˙̂θf = P−1ϕf(xn)en, (3.25)

˙̂θg = Q−1ϕg(xn)enu, (3.26)
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then the proposed adaptive backstepping fuzzy-immune control scheme can guarantee the following
properties:

(1) The asymptotic stability of the system is guaranteed.

(2) The tracking error can be described as

n∑

l=1

∫T

0

(
−τle2

l

)
dt ≤ V (0) +

n∑

l=1

∫T

0

⎛

⎝1
4
η2
l

(

dl −
l−1∑

k=1

∂al−1

∂xk
dk

)2
⎞

⎠dt. (3.27)

Proof. Firstly, consideration of fuzzy approximating error, the Lyapunov functional is set as
(3.28)

V = Vn−1 +
1
2
e2
n +

1
2
θ̃Tf P θ̃f +

1
2
θ̃TgQθ̃g, (3.28)

where P and Q are positive symmetric matrices.
Differentiating (3.28) with respect to time, it is obtained that

V̇ = V̇n−1 + enėn + θ̃Tf P
−1 ˙̃θf + θ̃TgQ

−1 ˙̃θg

= en−1en + en
(

θ̂Tgϕg(xn)u −
dnr

dr
− an
)

+
n−1∑

l=1

(
μl − τle2

l

)

+ θ̃Tf P
(
P−1ϕf(xn)en − ˙̂θf

)
+ θ̃TgQ

(
Q−1ϕg(xn)enu − ˙̂θf

)

+ en

((

θ
T

fϕf(xn)+an−
(
n−1∑

l=1

∂an−1xl+1

∂xl
+
n−1∑

l=1

∂an−1

∂r(l−1)
rl+dn−

n−1∑

l=1

(
∂an−1

∂xl

)

dl+εf+εgu

)))

.

(3.29)

Define

V̇n= V̇n−1+en

{

θ
T

fϕf(xn)+an−
(
n−1∑

l=1

∂an−1xl+1

∂xl
+
n−1∑

l=1

∂an−1

∂r(l−1)
rl+dn−

n−1∑

l=1

(
∂an−1

∂xl

)

dl+εf+εgu

)}

.

(3.30)

Equation (3.29) can be rewritten as

V̇ =V̇n +en
(

θ̂Tg ϕg(xn)u−
dnr

dr
− an
)

+θ̃Tf P
(
P−1ϕf(xn)en − ˙̂θf

)
+ θ̃TgQ

(
Q−1ϕg(xn)enu− ˙̂θg

)
,

(3.31)

Define V̇ = −
∑n

l=1 τle
2
l +
∑n

l=1 μl.
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By using (3.18) and adaptive laws (3.25)-(3.26), (3.31) can be written as

V̇ =−
n∑

l=1

τle
2
l +

n∑

l=1

μl=
n∑

l=1

⎧
⎨

⎩
−
[

1
ηl
el−

1
2
ηl

(

dl−
l−1∑

k=1

∂al−1

∂xk
dk

)]2

+
1
4
η2
l

(

dl−
l−1∑

k=1

∂al−1

∂xk
dk

)2
⎫
⎬

⎭
−

n∑

l=1

τle
2
l .

(3.32)

Integrating (3.32) from t = 0 to T yields

V (T) − V (0) ≤
n∑

l=1

∫T

0

⎛

⎝−τle2
l +

1
4
η2
l

(

dl −
l−1∑

k=1

∂al−1

∂xk
dk

)2
⎞

⎠dt. (3.33)

Furthermore, one can derive that

n∑

l=1

∫T

0

(
−τle2

l

)
dt ≤ V (0) +

n∑

l=1

∫T

0

⎛

⎝1
4
η2
l

(

dl −
l−1∑

k=1

∂al−1

∂xk
dk

)2
⎞

⎠dt. (3.34)

This completes the proof of the theorem.

4. Illustrative Examples

In this section, two examples are provided to illustrate the usefulness of our method.

Example 4.1. Consider the following Duffing-Holmes chaotic system [40]:

ẋ1 = x2 + d1(t), d1(t) = 0.1 sin t + 0.2 cos t,

ẋ2 = −ax2 − bx3
1 − cx1 + q cos(ωt) + (1 + cosx1)u + d2(t), d2(t) = 0.1 cos t,

(4.1)

where a, b, c and q are constants, ω is the frequency, d1(t) and d2(t) are external disturbance,
and u is the control effort. For observing chaotic unpredictable behavior, the open-loop
system behavior with u = 0, d1(t) = d2(t) = 0 was simulated with a = 0.1, b = 1.0, c = 1, q = 12,
and ω = 1.0. The phase plane plots from an initial condition point (0, 0) are shown in Figure 4.
The proposed controller is designed to force the system output to track the given desired
trajectory ym = sin t. Now, choose y = x1, and there exist external disturbances when the
chaotic systems have the form of strict-feedback. It is assumed that the external disturbance
d1(t) = 0.1 sin t + 0.2 cos t and d2(t) = 0.1 cos t. By Lemma 2.1, we use using some fuzzy rules
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Figure 4: State trajectories of the Duffing equation.

for approximation of the function fn(xn(t)) and gn(xn(t)). The membership functions of the
fuzzy sets are expressed as

μF1
i
(xi) =

1
1 + exp(5 × (xi + 2))

,

μF2
i
(xi) = exp

[
−(xi + 1)2

]
,

μF3
i
(xi) = exp

[
−x2

i

]
,

μF4
i
(xi) = exp

[
−(xi − 1)2

]
,

μF5
i
(xi) =

1
1 + exp(5 × (xi − 2))

.

(4.2)

The initial membership functions for u(k), Δu(k), and f(u(k),Δu(k)) are shown in
Figures 1–3, respectively. In order to evaluate the performance of the adaptive backstepping
fuzzy-immune control applied to the above system (4.1), it was compared to fuzzy adaptive
control (FAC) [40]. Figures 5 and 6 show the simulation curves of the two controls for x1

and x2, for the system described by (4.1) under the initial conditions x(0) = [2, 2] with
external disturbance d1(t) = 0.1 sin t + 0.2 cos t and d2(t) = 0.1 cos t. In order to compare
the stabilization and tracking performance, we consider the example introduced in [40].
FAC and the proposed method require 3.5∼4.0 seconds and 2.5∼3.0 seconds to track the
reference signal, respectively. The proposed scheme can also suppress system uncertainty
and disturbance, and its ISE (integral square error criterion) is lower than FAC. Figures 7 and
8 show x1 and x2 for the nonlinear system described by (4.1) under initial states [−1.5,−1.5],
[5,−2], and [−5, 2] with external disturbance d1(t) = 0.1 sin t + 0.2 cos t and d2(t) = 0.1 cos t,
respectively. Finally, all simulation results are given in Table 1.
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Figure 5: The tracking result for x1.
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Figure 6: The tracking result for x2.

Table 1: Experiments results for FAC and proposed control methods.

Time (sec) ISE Performance
FAC [40] 3.5∼4.0 0.30 Affected by noise
Proposed 2.5∼3.0 0.05 Rejects noise
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Figure 7: Trajectories of state x1 under initial conditions.
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Figure 8: Trajectories of state x2 under initial conditions.

Example 4.2. As a second example, consider the following forced chaotic attractor of the
modified Chua circuit. The dynamics of the systems can be described as [44]

⎡

⎢
⎢
⎣

ẋ1

ẋ2

ẋ3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 1 0

0 0 1

0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1

x2

x3

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

0

0

1

⎤

⎥
⎥
⎦
[
f + (1 + sin(x1)u(t))

]
+

⎡

⎢
⎢
⎣

d1(t)

d2(t)

d3(t)

⎤

⎥
⎥
⎦. (4.3)
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Figure 9: Chaotic attractor of the modified Chua circuit.
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Figure 10: The tracking result for x1.

In this simulation, let the sampling time equal 0.01 and the initial system states be
[2, 1, 3]. Now, let d1(t), d2(t) and d3(t) are external disturbance. If d1(t) = d2(t) = d3(t) = u(t) =
0 and f = (14/1805)x1−(168/9025)x2+(1/38)x3−(2/45)×((28/321)x1 + (7/95)x2 + x3)3, then
the system (4.3) is chaotic system and the trajectories of the state variables x1, x2, and x3 are
shown in Figure 9. By Lemma 2.1, we use some fuzzy rules for approximation of the function
fn(xn(t)) and gn(xn(t)). In order to control this chaotic system, the proposed control is utilized
and the corresponding adaptation laws are also applied such that the system output y tracks
a desired trajectory. In addition, let the desired output be ym = sin(t).

Simulated results are demonstrated in Figures 10, 11, 12, 13, 14 and 15. The initial
membership functions for u(k), Δu(k) and f(u(k),Δu(k)) are shown in Figures 1–3,
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Figure 11: The tracking result for x2.
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Figure 12: The tracking result for x3.

respectively. In order to evaluate the performance of the adaptive backstepping fuzzy-
immune control applied to the above system (4.3), it was compared to robust adaptive
fuzzy controller (RAFC) [44]. Figures 10–12 show the simulation curves for the system
described by (4.3) under the initial conditions x(0) = [2, 1, 3] with external disturbance
d1(t) = 0.1 cos t+0.4 cos t, d2(t) = 0.2 sin t and d3(t) = 0.1 sin t. RFAC and the proposed method
require 3.0∼3.2 seconds and 2.5∼3.0 seconds to track the reference signal, respectively. The
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Figure 13: Trajectories of state x1 under initial conditions.
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Figure 14: Trajectories of state x2 under initial conditions.

proposed scheme can also suppress disturbance, and its ISE (integral square error criterion)
is lower than RAFC. Figures 13–15 show the controlled stabilization of x1, x2, and x3 for the
nonlinear system described by (4.3) under initial states [4,−4, 1], and [−4, 4,−1] with external
disturbance d1(t) = 0.1 cos t + 0.4 cos t, d2(t) = 0.2 sin t and d3(t) = 0.1 sin t. It seems to be
satisfactory. Finally, all simulation results are given in Table 2.
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Figure 15: Trajectories of state x3 under initial conditions.

Table 2: Experiments results for RAFC and proposed control methods.

Time (sec) ISE Performance
RAFC [44] 3.0∼3.2 0.2 Affected by noise
Proposed 2.5∼3.0 0.05 Rejects noise

5. Conclusion

A hybrid optimization algorithm that combines the adaptive backstepping principle and the
fuzzy-immune algorithm for a class of chaotic dynamical systems was presented. The four
main contributions of this paper are: (1) an adaptive backstepping fuzzy-immune tracking
control method for a class of chaotic systems is designed, (2) the controller does not require
a priori knowledge of the sign of the control coefficient, (3) fuzzy-immune algorithm is
used to self-adjustment controller’s coefficient for the optimal solution, and (4) a correct
term is introduced to eliminate internal uncertainty and external disturbance. The proposed
hybrid intelligence adaptive backstepping fuzzy-immune controller guarantees closed-loop
stability while maitaining the desired tracking performance. Simulation results show that the
proposed controller scheme provides better tracking performance than those of two existing
methods.
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