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We project a novel digital control law for continuous stirred tank reactors, based on sampled
measures of temperatures and reactant concentration, as it happens in practice. The methodology
of relative degree preservation under sampling is used. It is proved that a suitably approximated
sampled system, obtained by Taylor series expansion and truncation, in closed loop with the
projected control law, is asymptotically stable, provided that a condition on the sampling period
is verified. Such condition allows for values of the sampling period larger than necessary in
practical implementation with usual technology. Many simulations show the high performance
of the proposed digital control law.

1. Introduction

The control of the operation of chemical reactors has attracted the attention of researchers
for a long time. The underlying motivation relies on the fact that industrial chemical reactors
are frequently operated at unstable operating conditions, which often corresponds to optimal
process performance [1–19]. Polymerization processes [5] and bioreactors fermentors [18] are
important examples of large-scale chemical reactors operated at unstable conditions. As well
known, the measures of the reactant concentration cannot be achieved on continuous time. In
practice, thesemeasures are available at certain time intervals. It is therefore very important to
project control laws which are piecewise constant and are updated at each measures update.
That is, for practical use, a digital control law has to be projected. Applications of nonlinear
digital control theory to some chemical reactors can be found in [20, 21]. In [11] a discrete-
time controller is obtained by linear approximations successively executed at each sampling
time, and an application to a continuous stirred tank reactor is shown.
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In this paper we deal with a novel digital controller design for a continuous stirred
tank reactor, where an irreversible, exothermic, liquid-phase reaction A → B evolves. The
controlled output is the reactor temperature. The jacket temperature dynamics is considered.
The control law is actuated by means of a pneumatic valve which regulates the cooling
water flow rate. This actuation process is easier to implement than the ones based on the
use of the inlet reactor concentration or of the jacket temperature as manipulated inputs.
The model consists of three nonlinear ordinary differential equations. We develop a digital
control law by means of a suitably approximated sampled model, obtained by Taylor series
expansions (see [21, 22]). The preservation of relative degree methodology shown in [22]
is here used. For the underlying continuous time model, the relative degree is not full. The
relative degree is preserved for the approximated sampled model by introducing a dummy
output. Then a feedback control law is projected, by which the approximated sampled
system becomes asymptotically stable. Many performed computer simulations show the
high performance of the proposed digital controller. Saturation effects have been taken into
account in simulations. The convergence of the state variables to the arbitrarily chosen
operating point is always obtained with the many considered system initial conditions (even
start-up initial conditions).

2. The Model of the CSTR

Here we study a CSTR with jacket cooling in which a first-order irreversible exothermic
reaction takes place [23]: A → B (Figure 1).

The liquids in the reactor and in the jacket are assumed perfectly mixed, that is, with
no radial, axial, or angular gradients in properties (temperature, concentrations). This allows
to consider reactor and jacket temperatures and reactant concentrations as space invariant
variables. If physical properties are assumed constant (densities and heat capacities), the
reactor volume is constant and the jacket volume is constant, the mathematical model of the
CSTR is given by the following set of nonlinear functional differential equations:

ẋ1(t) =
F(Ca0 − x1(t))

Vr
− x1(t)K0e−E/Rx2(t),

ẋ2(t) =
F( T0 − x2(t))

Vr
− λx1(t)K0e−E/Rx2(t)ρ−1Cp

−1 − UAj(x2(t) − x3(t))
VrρCp

,

ẋ3(t) =
u(t)(Tcin − x3(t))

Vj
+
UAj(x2(t) − x3(t))

VjρjCj
,

(2.1)

where x1 = Ca = reactant concentration (kmol/m3), x2 = TR = reactor temperature (K),
x3 = TJ = jacket temperature (K), u = flow rate of coolant (control input) (m3/s), K0 =
pre-exponential factor (s−1), E = activation energy (J/kmol), R = universal gas constant,
8314 Jkmol−1K−1, F = flow rate of feed and product (m3/s), ρ = density of product stream
(kg/m3), Ca0 = concentration of reactant A in feed (kmol/m3), VR = volumetric holdup of
liquid in reactor (m3), T0 = temperature of feed (K), Cp = heat capacity of product (Jkg−1K−1),
λ = heat of reaction (J/kmol), U = overall heat transfer coefficient (WK−1m−2), Aj = jacket
heat transfer area (m2), ρj = density of coolant (kg/m3), Cj = heat capacity of coolant
(Jkg−1K−1), and Tcin = supply temperature of cooling medium (K).
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Figure 1: Schematic reactor type CSTR.

Let � ∈ [0, 1] be the reaction conversion

� =
Ca0 − Ca

Ca0
. (2.2)

Let �eq be the chosen operating point reaction conversion. By (2.2) it follows that the
operating point concentration of reactant in the reactor Caeq is given by

Caeq = Ca0
(
1 − �eq

)
. (2.3)

From equations in (2.1), setting zero the left-hand side, it follows that the operating point
reactor temperature (TReq), the operating point jacket temperature (Tjeq), the necessary coolant
water flow rate (ueq) for the chosen operating point are given by

TReq = −E
(

ln

(

−F
(−Ca0 +Caeq

)

CaeqK0Vr

))−1
R−1,

TJeq =
λCa0F�eq

UAj
− FρCpT0

UAj
− E

(

ln

(
F�eq

(
1 − �eq

)
K0Vr

))−1
R−1

− FρCpE

(

ln

(
F�eq

(
1 − �eq

)
K0Vr

))−1
R−1U−1Aj

−1,

ueq = UAjEρj
−1Cj

−1
(
Tcin − TJeq

)−1
(

ln

(
F�eq

(
1 − �eq

)
K0Vr

))−1
R−1

+
UAjTJeq

ρjCj

(
Tcin − TJeq

) .

(2.4)
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3. Sampled System and Digital Control Law

The system (2.1) is in the form

ẋ(t) = f(x(t)) + g(x(t)) · u(t), (3.1)

where the functions f , g can be easily defined by (2.1) as

f(x(t)) =

⎡

⎢⎢
⎣

f1(x(t))

f2(x(t))

f3(x(t))

⎤

⎥⎥
⎦ =

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

F(Ca0 − x1(t))
Vr

− x1(t)K0e−E/Rx2(t)

F(T0 − x2(t))
Vr

− λx1(t)K0e−E/Rx2(t)ρ−1Cp
−1 − UAj(x2(t) − x3(t))

VrρCp

UAj(x2(t) − x3(t))
VjρjCj

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

,

g(x(t)) =

⎡

⎢⎢
⎣

g1(x(t))

g2(x(t))

g3(x(t))

⎤

⎥⎥
⎦ =

⎡

⎢⎢⎢
⎢⎢
⎣

0

0

Tcin − x3(t)
Vj

⎤

⎥⎥⎥
⎥⎥
⎦
.

(3.2)

In order to rewrite (3.1) in normal form, as required in [22], let us now consider the following
variables:

ξ(t) =

⎡

⎢
⎢
⎣

ξ1(t)

ξ2(t)

ξ3(t)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

x2(t) − TReq

f2(x(t))

x1(t) − Caeq

⎤

⎥
⎥
⎦ = φ(x(t)), (3.3)

from which the easy inverse relation holds

x(t) = Φ−1(ξ(t)) =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎣

ξ3(t) + Caeq

ξ1(t) + TReq

−FρCp

UAj

(
T0 − ξ1(t) − TReq

)

+
λVr

(
ξ3(t) + Caeq

)
K0e−E/R(ξ1(t)+TReq )

UAj
+
ξ2(t)VrρCp

UAj
+ ξ1(t) + TReq

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦

. (3.4)

Let the control input be equal to

u(t) = ueq + v(t). (3.5)
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Let the controlled output be

y(t) = h(ξ(t)) = ξ1(t). (3.6)

We want to control to zero this output, which corresponds to drive the reactor temperature
to the reactor temperature operating point TReq .

We can write the system equations by using the new variables ξ(t) as follows:

ξ̇(t) = p1(ξ(t)) + p2(ξ(t))v(t), (3.7)

where p1, p2 are given by

p1(ξ(t)) =

⎡

⎢⎢
⎣

p11(ξ(t))

p21(ξ(t))

p31(ξ(t))

⎤

⎥⎥
⎦,

p11(ξ(t)) = ξ2(t),

p21(ξ(t)) = −λK0FCa0Vr
−1ρ−1Cp

−1
(
eE/R(ξ1(t)+TReq )

)−1 − ueqUAjξ1(t)
VjVrρ Cp

+
ueqFT0

VjVr

+ λξ3(t)K0FVr
−1ρ−1Cp

−1
(
eE/R(ξ1(t)+TReq )

)−1 −
ueqUAjTReq

VjVrρ Cp
− ueqFξ1(t)

VjVr

+ λK0CaeqFVr
−1ρ−1Cp

−1
(
eE/R(ξ1(t)+TReq )

)−1
− ueqξ2(t)

Vj
+
ueqUAjTcin

VjVrρ Cp

+ λK0
2ξ3(t)

(
eE/R(ξ1(t)+TReq )

)−2
ρ−1Cp

−1 −
ueqFTReq

VjVr
− UAjξ2(t)

VjρjCj

+ λK0
2Caeq

(
eE/R(ξ1(t)+TReq )

)−2
ρ−1Cp

−1 − ξ2(t)F
Vr

− ξ2(t)λK0Eξ3(t)ρ−1Cp
−1R−1

(
ξ1(t) + TReq

)−2(
eE/R(ξ1(t)+TReq )

)−1

− ξ2(t)λK0ECaeqρ
−1Cp

−1R−1
(
ξ1(t) + TReq

)−2(
eE/R(ξ1(t)+TReq )

)−1

− UAjξ2(t)
VrρCp

+
UAjFT0

VjρjCjVr
− UAjFξ1(t)

VjρjCjVr
−
UAjFTReq

VjρjCjVr

−UAjλK0ξ3(t)Vj
−1ρj−1Cj

−1ρ−1Cp
−1
(
eE/R(ξ1(t)+TReq )

)−1

−UAjλK0CaeqVj
−1ρj−1Cj

−1ρ−1Cp
−1
(
eE/R(ξ1(t)+TReq )

)−1
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− ueqλK0ξ3(t)Vj
−1ρ−1Cp

−1
(
eE/R(ξ1(t)+TReq )

)−1

− ueqλK0CaeqVj
−1ρ−1Cp

−1
(
eE/R(ξ1(t)+TReq )

)−1
,

p31(ξ(t)) =
F
(
Ca0 − ξ3(t) − Caeq

)

Vr
− (ξ3(t) +Caeq

)
K0e−E/R(ξ1(t)+TReq),

p2(ξ(t)) =

⎡

⎢
⎢
⎣

p12(ξ(t))

p22(ξ(t))

p32(ξ(t))

⎤

⎥
⎥
⎦,

p12(ξ(t)) = 0,

p22(ξ(t)) =
TcinUAj

VjVrρCp
+

FT0
VjVr

− Fξ1(t)
VjVr

−
FTReq

VjVr
− UAjξ1(t)

VjVrρCp
−
TReqUAj

VjVrρCp
− ξ2(t)

Vj

− λK0ξ3(t)Vj
−1ρ−1Cp

−1
(
eE/R(ξ1(t)+TReq )

)−1

− λK0CaeqVj
−1ρ−1Cp

−1
(
eE/R(ξ1(t)+TReq )

)−1
,

p32(ξ(t)) = 0.

(3.8)

Since ξ = 0 corresponds to x =
[ Caeq
TReq
TJeq

]
, it follows that p1(0) = 0. The introduction of

the new variables allows to obtain the CSTR equations in normal form [22], and the origin is
an equilibrium point. Therefore, the stability of the origin for the system described by (3.7) is
equivalent to the stability of the chosen operating point for the system described by (2.1). Let
us now sample and approximate, by Taylor series expansion and truncation, the system (3.7)
as follows: setting v(t) = v(kδ) = vk , kδ ≤ t < (k + 1)δ, k = 0, 1, 2, . . .,

⎡

⎣
ξ̃1

ξ̃2

⎤

⎦((k + 1)δ) =

[
1 δ

0 1

]⎡

⎣
ξ̃1

ξ̃2

⎤

⎦(kδ) +

⎡

⎢
⎣

δ2

2

δ

⎤

⎥
⎦R0(kδ),

ξ̃3((k + 1)δ) = ξ̃3(kδ) + δp31
(
ξ̃(kδ)

)
+
δ2

2
q
(
ξ̃(kδ)

)
,

(3.9)

where ξ̃(kδ) is the approximation of ξ(kδ); R0 is given by (Lie derivatives are used),

R0(kδ) = l2p1h
(
ξ̃(kδ)

)
+ lp2 lp1h

(
ξ̃(kδ)

)
v(kδ);

l2p1h
(
ξ̃(kδ)

)
=

∂l1p1h
(
ξ̃(kδ)

)

∂
(
ξ̃(kδ)

) p1
(
ξ̃(kδ)

)
; l1p1h

(
ξ̃(kδ)

)
=
∂h
(
ξ̃(kδ)

)

∂
(
ξ̃(kδ)

) p1
(
ξ̃(kδ)

)
;

lp2 lp1h
(
ξ̃(kδ)

)
=

∂lp1h
(
ξ̃(kδ)

)

∂
(
ξ̃(kδ)

) p2
(
ξ̃(kδ)

)
;

(3.10)
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q(ξ̃(kδ)) is given by

q
(
ξ̃(kδ)

)
=
∂p31

(
ξ̃(kδ)

)

∂ξ̃(kδ)
p1
(
ξ̃(kδ)

)
,

q
(
ξ̃(kδ)

)
= −K0Eξ̃2(kδ)ξ̃3R−1

(
ξ̃1(kδ) + TReq

)−2(
eE/R(ξ̃1(kδ)+TReq )

)−1

−K0Eξ̃2(kδ)CaeqR
−1
(
ξ̃1(kδ) + TReq

)−2(
eE/R(ξ̃1(kδ)+TReq )

)−1

− F2Ca0

Vr
2

+
F2ξ̃3

Vr
2
+
F2Caeq

Vr
2

+ 2FK0ξ̃3Vr
−1
(
eE/R(ξ̃1(kδ)+TReq )

)−1

+ 2FK0CaeqVr
−1
(
eE/R(ξ̃1(kδ)+TReq )

)−1
+K0

2Caeq

(
eE/R(ξ̃1(kδ)+TReq )

)−2

− FK0Ca0Vr
−1
(
eE/R(ξ̃1(kδ)+TReq )

)−1
+ ξ̃3(kδ)K0

2
(
eE/R(ξ̃1(kδ)+TReq )

)−2
.

(3.11)

The approximated sampled system (3.9) is obtained by exploiting the normal form
of (3.7) (see [22]) and by neglecting, in the Taylor series expansion, the terms which are
0(δ3) in the expression of ξ1((k + 1)δ) and in the expression of ξ3((k + 1)δ), and the terms
which are 0(δ2) in the expression of ξ2((k + 1)δ) (see terms N2

r,δ
in [22, Proposition 3.2]).

Notice that, since (∂p31(ξ̃(kδ))/∂ξ̃(kδ))p2(ξ̃(kδ)) = 0, the inclusion of a term which is 0(δ2)
in the approximation of ξ3((k + 1)δ) does not cause a new presence (besides the one in R0)
of the control input vk . As well, neglecting terms which are 0(δ2) in the expression of ξ2((k +
1)δ) avoids to have further terms (besides R0) which involve the control input. This fact is
instrumental for building the digital control law here proposed, as will be shown below.

The approximated sampled system (3.9) admits relative degree equal to 1, thus not
preserving the relative degree equal to 2 of the original continuous time system (2.1) with
respect to the output x2(t) (reactor temperature). Thus, a digital input/output linearizing
feedback control law built up on the basis of the given output (3.6) yields a further internal
dynamics. In order to preserve the relative degree, let us introduce the dummy output as
proposed in [22],

yδ(kδ) =
[

1 −δ
2

]
⎡

⎣
ξ̃1(kδ)

ξ̃2(kδ)

⎤

⎦, (3.12)

and let us define the variables

χ(k) =

⎡

⎢⎢
⎣

χ1(k)

χ2(k)

χ3(k)

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

yδ(kδ)

yδ((k + 1)δ)

ξ̃3(kδ)

⎤

⎥⎥
⎦ = Mξ̃(kδ), (3.13)
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where the nonsingular matrixM is given by

M =

⎡

⎢⎢
⎢⎢⎢
⎢
⎣

1 −δ
2

0

1
δ

2
0

0 0 1

⎤

⎥⎥
⎥⎥⎥
⎥
⎦

. (3.14)

Let M1 be the upleft submatrix of M

M1 =

⎡

⎢
⎢
⎣

1 −δ
2

1
δ

2

⎤

⎥
⎥
⎦. (3.15)

We obtain, from (3.9),

[
χ1(k + 1)

χ2(k + 1)

]

= M1

[
1 δ

0 1

]

M−1
1

[
χ1(k)

χ2(k)

]

+M1

⎡

⎢
⎣

δ2

2

δ

⎤

⎥
⎦R0(kδ),

χ3(k + 1) = χ3(k) + δp31
(
M−1χ(k)

)
+
δ2

2
q
(
M−1χ(k)

)
,

(3.16)

where R0, rewritten with the variables χ, becomes

R0(kδ) = l2p1h
(
M−1χ(k)

)
+ lp2 lp1h

(
M−1χ(k)

)
vk. (3.17)

Theorem 3.1. Let

Γ =
[
Γ1 Γ2

] ∈ R1x2 (3.18)

be chosen such that the matrix
[ 0 1
Γ1 Γ2

]
has eigenvalues inside the open complex unitary circle. Let the

sampling period δ > 0 satisfy the following inequality:

δ < δmax =
2

(F/Vr) +K0e−E/RTReq
. (3.19)

Then, the following discrete time feedback control law

vk =
−l2p1h

(
M−1χ(k)

)

lp2 lp1h
(
M−1χ(k)

) +
[ 1 −2 ]

[
χ1(k)
χ2(k)

]
+ Γ
[
χ1(k)
χ2(k)

]

δ2lp2 lp1h
(
M−1χ(k)

) (3.20)
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is such that the trivial solution of the closed-loop system (3.16)–(3.20) is asymptotically stable.
Moreover, the eigenvalues of the Jacobian (evaluated at 0) of the right-hand function describing
the closed-loop system (3.16)–(3.20) are given by the eigenvalues of the matrix

[ 0 1
Γ1 Γ2

]
and by the

eigenvalue

1 − δ

(
F

Vr
+K0e−E/RTReq

)
+
δ2

2

(
F

Vr
+K0e−E/RTReq

)2

, (3.21)

which takes its minimum, equal to 1/2, at δ = δ(1/2) = 1/((F/Vr) +K0e−E/RTReq ).

Proof. By the form of the matrixM1, the following equation holds for χ1 and for χ2, in (3.16)

[
χ1(k + 1)

χ2(k + 1)

]

=

[
0 1

−1 2

][
χ1(k)

χ2(k)

]

+

[
0

δ2

]

R0(kδ). (3.22)

Notice that, by construction, such subsystem (and thus the overall system (3.16)) admits
relative degree equal to 2, in a neighborhood of the origin, with respect to the dummy output
χ1(k). Indeed, taking into account of the form of R0(kδ), we have

χ1(k + 1) = χ2(k + 1),

χ1(k + 2) = χ2(k + 1) =
[−1 2

]
χ(k)

+ δ2
(
l2p1h
(
M−1χ(k)

)
+ lp2 lp1h

(
M−1χ(k)

)
v(kδ)

)
,

(3.23)

and the term multiplying v(kδ) is nonzero in a neighborhood of the origin, since
lp2 lp1h(M

−1χ(k)) is smooth in a neighborhood of the origin and lp2 lp1h(0)/= 0. Therefore,
taking again into account the form of R0, the proposed discrete-time feedback control law
yields the following equations for the closed-loop-system (3.16), (3.20)

[
χ1(k + 1)

χ2(k + 1)

]

=

[
0 1

Γ1 Γ2

][
χ1(k)

χ2(k)

]

,

χ3(k + 1) = χ3(k) + δp31
(
M−1χ(k)

)
+
δ2

2
q
(
M−1χ(k)

)
.

(3.24)

In order to show the asymptotic stability of the nonlinear system (3.24), it is sufficient to show
that the linear system obtained by linearizing (3.24) is asymptotically stable. The Jacobian, at
zero, of the function in the right-hand side of (3.24) is given, taking into account of p31 and of
q, by

J =

⎡

⎢⎢
⎣

0 1 0

Γ1 Γ2 0

α β γ

⎤

⎥⎥
⎦, (3.25)
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where

γ = 1 − δ

(
F

Vr
+K0e−E/RTReq

)
+
δ2

2

(
F

Vr
+K0e−E/RTReq

)2
(3.26)

and α, β are suitable reals. Given the triangular structure of the Jacobian J , the eigenvalues are
given by the eigenvalues of the matrix

[ 0 1
Γ1 Γ2

]
and by γ . The eigenvalues of the matrix

[ 0 1
Γ1 Γ2

]

are inside the open unitary circle. The eigenvalue γ is always positive (for positive sampling
period), and is inside the open unitary circle if the inequality (3.19) is satisfied. Moreover, by
using the derivative of γ with respect to δ, we obtain that γ takes the minimum value, 0.5, at
δ(1/2).

Now, going back to initial variables x, by means of the (approximated) relation χ(k) �
Mφ−1(x(kδ)), the digital feedback control law here proposed is given, for kδ ≤ t < (k + 1)δ,
k = 0, 1, 2, . . ., by

u(t) = 4VjλK0FCa0(Tcin − x3(kδ))−1U−1Aj
−1
(
eE/Rx2(kδ)

)−1
+ 2

VjVrρ CpTReqΓ1
δ2(Tcin − x3(kδ))UAj

− 2
VjFx2(kδ)

(Tcin − x3(kδ))Vr
+

VjρCpF2T0

(Tcin − x3(kδ))UAjVr
− 2

VjVrρCpx2(kδ)
δ2(Tcin − x3(kδ))UAj

+ 2
Vjx2(kδ)

δ(Tcin − x3(kδ))
− 2VjλK0Fx1(kδ)(Tcin − x3(kδ))−1U−1Aj

−1
(
eE/Rx2(kδ)

)−1

− VrVjλK0
2x1(kδ)(Tcin − x3(kδ))−1U−1Aj

−1
(
eE/Rx2(kδ)

)−2

+ VjFT0λx1(kδ)K0E(Tcin − x3(kδ))
−1U−1Aj

−1R−1x2(kδ)−2
(
eE/Rx2(kδ)

)−1

− VjλK0Fx1(kδ)E(Tcin − x3(kδ))−1U−1Aj
−1x2(kδ)−1R−1

(
eE/Rx2(kδ)

)−1

− VrVjλ
2x1(kδ)2K0

2E(Tcin − x3(kδ))
−1U−1Aj

−1ρ−1Cp
−1
(
eE/Rx2(kδ)

)−2 1
Rx2(kδ)

− Vjλx1(kδ)K0(Tcin − x3(kδ))−1ρ−1Cp
−1
(
eE/Rx2(kδ)

)−1
− 2

VjVrρCpΓ1x2(kδ)
δ2(Tcin − x3(kδ))UAj

− Vjλx1(kδ)K0E(Tcin − x3(kδ))−1ρ−1Cp
−1x2(kδ)−1R−1

(
eE/Rx2(kδ)

)−1

− VjUAjx2(kδ)
(Tcin − x3(kδ))Vrρ Cp

+
Vjx3(kδ)F

(Tcin − x3(kδ))Vr

+
VjFT0

(Tcin − x3(kδ))Vr
− VjρCpF2x2(kδ)
(Tcin − x3(kδ))UAjVr

+ Vjx3(kδ)λx1(kδ)K0E(Tcin − x3(kδ))−1ρ−1Cp
−1R−1x2(kδ)−2

(
eE/Rx2(kδ)

)−1
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+
VjUAjx3(kδ)

(Tcin − x3(kδ))VrρCp
− UAjx2(kδ)
(Tcin − x3(kδ))ρjCj

+
UAjx3(kδ)

(Tcin − x3(kδ))ρjCj

− 2
Vjx3(kδ)

δ(Tcin − x3(kδ))
+ 2

VjVrρCpTReq

δ2(Tcin − x3(kδ))UAj

− 2
VjρCpFT0

δ(Tcin − x3(kδ))UAj
+ 2

VjρCpFx2(kδ)
δ(Tcin − x3(kδ))UAj

+ 2VrVjλx1(kδ)K0δ
−1(Tcin − x3(kδ))−1U−1Aj

−1
(
eE/Rx2(kδ)

)−1
.

(3.27)

The digital control law (3.27) is applied to the CSTR system, described by the
differential equations (2.1), by means of a zero-order hold device. Such control law can
be easily implemented on a microprocessor. It is a static feedback control law, that is, no
dynamics are involved. The control law has to be computed at every sampling period which
is very much larger than the computation time (many minutes versus some seconds at
maximum). The great advantage of this digital control law is also given by the fact that only
sampled-data measures, provided by a suitable device, are necessary. Take into account that,
in practice, continuous timemeasures are difficult to obtain, or even impossible. The feedback
control law here presented is therefore easily realizable. The closed-loop system (2.1), (3.27)
(with the zero-order hold) is simulated in the following section.

4. Simulation Results

Simulations, using MatLab (The MathWorks, Inc.) Software Package, have been carried out
to verify the effectiveness of the proposed method. The values of the model parameters used
in simulation are given in Table 1 (taken from [23]). In all the carried out simulations, a
minimum and a maximum value for the input u, specifically the volumetric flow rate of the
refrigerant, is imposed, to take into account of the actuator saturation. It is considered:

FJmin ≤ u(t) ≤ FJmax (4.1)

with the following acceptable physical values for a control valve

FJmin = 0.002m3/s = 7.2m3/h,

FJmax = 0.08m3/s = 288m3/h.
(4.2)

With these parameters, δmax in condition (3.19) is equal to 0.57 h, which corresponds to about
34 min. The value of δ(1/2) is equal to about 0.28 h which corresponds to about 16 min.
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Table 1: Reactor and controller parameters values.

K0 = 7.47 × 1010 h−1 Ca0 = 8.01 kmol ·m−3

E = 69.71 × 106 J · kmol−1 F = 15.76m3 · h−1

ρ = 801 kg ·m−3 Tcin = 294K

R = 8314 J · kmol−1 · K−1 T0 = 294K

ρj = 1000 kg ·m−3 Aj = 45.2m2

Cp = 3137 J · kg−1 · K−1 Vr = 30.3m3

Cj = 4183 J · kg−1 · K−1 Vj = 9m3

λ = −69.71 × 106 J · kmol−1 Γ1 = −6 · 10−6
U = 3.0636 × 106 J · h−1 ·m−2 · K−1 Γ2 = −5 · 10−3

Table 2: Process parameters of Simulation 1.

Reactor operating point Initial state
χeq = 85%

⎧
⎪⎨

⎪⎩

Ca(t = 0) = Ca0

TR(t = 0) = T0

TJ(t = 0) = Tcin

δ = 0.1h = 6 min
Caeq = 1.2015 kmol ·m−3

TReq = 350K
TJeq = 312K
ueq = 69.86m3 · h−1

Parameters mismatch: absent

We performed several sets of simulation runs and all showed the high performance of the
digital control law here proposed. We choose the reactor conversion �eq = 0.85, to which
the following unstable operating point corresponds: Caeq = 1.2015 kmol/m3, TReq = 350K,
TJeq = 312K, ueq = 69.86m3/h. In the simulations here presented, the process is initially
assumed to be at the start up, that is x1(0) = Ca0 (concentration of reactant in feed) =
8.01 kmol/m3, x2(0) = T0 (temperature of feed) = 294K, x3(0) = Tcin (supply temperature
of cooling medium) = 294K. This means that the reactor is very far from the operating
point.

In Simulation 1 (see Table 2, Figure 2) we consider the reactor at nominal parameters
values (see Table 1), without any uncertainty. Figure 2 shows the evolution of the reactant
concentration, of the reactor temperature, of the jacket temperature, and of the piecewise
constant control signal, respectively, with sampling period equal to 10−1 h (6min).

As can be seen, all the state variables converge to the operating point ones in a
very good fashion, without dangerous oscillations. The reactor temperature settling time is
estimated from plots to be about 6 h, the steady-state error is equal to 0.

In Simulation 2 (see Table 3, Figure 3) we consider again the reactor at nominal
parameters values (see Table 1), without any parameters mismatch, and a sampling period
equal to 0.25 h (15min) is considered. The same desirable convergence to the operating
point is achieved, with a reactor temperature settling time of about 8 h. Again no dangerous
oscillations appear and the reactor temperature is driven in a very good fashion to the
operating point, with steady-state error equal to 0.

In Simulations 3, 4 (see Table 4, Figure 4, and Table 5, Figure 5, resp.) we consider the
reactor whose parameters are uncertain, with sampling time again equal to 0.1 h and 0.25 h,
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Figure 2: Results of Simulation 1.

Table 3: Process parameters of Simulation 2.

Reactor operating point Initial state
χeq = 85%

⎧
⎪⎨

⎪⎩

Ca(t = 0) = Ca0

TR(t = 0) = T0
TJ(t = 0) = Tcin

δ = 0.25h = 15 min
Caeq = 1.2015 kmol ·m−3

TReq = 350K
TJeq = 312K
ueq = 69.86m3 · h−1

Parameters mismatch: absent

respectively. We apply the controller obtained using the nominal values of the parameters
(see Table 1), to a reactor whose parameter values are different with respect to the nominal
ones as reported in Table 5. In this case we observe a reactor temperature steady-state error
of about 5K. Take into account that the parameters mismatch has been deliberately chosen
very critical, in order to show the robustness of the proposed controller.

The performed simulations show the high performance of the proposed controller,
as evidenced, in the case the reactor parameters are exactly known, by zero steady state
error, no dangerous oscillations, good settling time. When parameters mismatch occurs, the
proposed controller yields a very good behavior for the reactor, evidenced by small steady-
state errors, no dangerous oscillations, and good settling time. We stress the fact that the



14 Mathematical Problems in Engineering

8

7

6

5

4

3

2

1

0

0 4 8 12 16 20 24

Time (h)

C
a
(k
m
ol

·m
−3
)

Caeq = 1.2015 kmol · m−3

(a)

T
R
(K

)

TReq = 350K

0 4 8 12 16 20 24

Time (h)

500

450

400

350

300

(b)

300

200

100

0
0 4 8 12 16 20 24

Time (h)

u
(m

3
·h

−1
)

ueq = 69.86m3 · h−1

70

60

50

40

30

20
3 4 5 6 7 8 9

(c)

310

305

300

3 3.25 3.5 3.75 4

0 4 8 12 16 20 24

Time (h)

TJeq = 312K

T
J
(K

)

380

360

340

320

300

(d)

Figure 3: Results of Simulation 2.

Table 4: Process parameters of Simulation 3.

Reactor operating point Initial state
χeq = 85%

⎧
⎪⎨

⎪⎩

Ca(t = 0) = Ca0

TR(t = 0) = T0
TJ(t = 0) = Tcin

δ = 0.1h = 6 min
Caeq = 1.2015 kmol ·m−3

TReq = 350K
TJeq = 312K
ueq = 69.86m3 · h−1

Parameters mismatch:
F = F/1.3, T0 = T0 · 1.05;

Ca0 = Ca0/1.1, Tcin = Tcin · 1.03
U = 0.8 ·U

proposed controller allows for sampled-data measures of the state variables, which is very
useful in practical applications.

5. Conclusion

In this paper we have presented a digital control law for a continuous stirred tank reactor,
constructed on the basis of an approximated sampled model and of the preservation of the
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Table 5: Process parameters of Simulation 4.

Reactor operating point Initial state
χeq = 85%

⎧
⎪⎨

⎪⎩

Ca(t = 0) = Ca0

TR(t = 0) = T0
TJ(t = 0) = Tcin

δ = 0.25h = 15 min
Caeq = 1.2015 kmol ·m−3

TReq = 350K
TJeq = 312K
ueq = 69.86m3 · h−1

Parameters mismatch:
F = F/1.3, T0 = T0 · 1.05,

Ca0 = Ca0/1.1, Tcin = Tcin · 1.03,
U = 0.8 ·U
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Figure 4: Results of Simulation 3.

relative degree methodology. The proposed feedback control law is easy to implement and
simulations show high performance. A condition on the sampling period is found, by which
the asymptotic stability of the closed-loop approximated sampled system is proved. Such
condition is verified by sampling periods belonging to feasible sets, allowing for values larger
than necessary in practical implementation. Future work will concern the construction of a
discrete-time observer, in order to avoid reactant concentration measures, which are difficult
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Figure 5: Results of Simulation 4.

to do and expensive (see [24–27]). Another topic which will be investigated is the problem
arised by the recycle time-delay (see [21, 28–31]), on the basis of the results in [32].
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