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The paper presents a new methodology for optimizing the design of DC-DC converters. The
magnitudes that we take into account are efficiency, ripples, bandwidth, and RHP zero placement.
We apply a geometric programming approach, because the variables are positives and the
constraints can be expressed in a posynomial form. This approach has all the advantages of convex
optimization. We apply the proposed methodology to a boost converter. The paper also describes
the optimum designs of a buck converter and a synchronous buck converter, and the method can
be easily extended to other converters. The last example allows us to compare the efficiency and
bandwidth between these optimal-designed topologies.

1. Introduction

Methods of mathematical programming are useful in the processes of design in engineering
when these processes have to maximize a certain magnitude and when at the same time there
are certain design or operating constraints. The optimal design of DC-DC converters has been
studied by several authors. Some of them use graphical methods, but these cannot deal with
more than two variables simultaneously, and the variables are rarely constrained. Examples
of these methods are the efficiency optimization of a monolithic DC-DC converter [1] and
the losses optimization in a switching power converter for envelope tracking in RF amplifiers
[2].

The fact that the expressions used are nonlinear has prompted some authors to use
nonlinear programming methods, particularly algorithms based on Lagrangian functions.
Important related studies are those of Seeman and Sanders [3], who optimized a switched-
capacitor converter design bymeans of Lagrangian functions, and those of Balachandran and
Lee [4] and Wu et al. [5], which describe the optimization of DC-DC converters by means
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of augmented Lagrangian functions with penalty functions. Other nonlinear programming
methods such as the sequential quadratic programming method have also been used for
designing of DC-DC converters. For example, Busquets-Monge et al. [6] designed a boost
power-factor-corrector converter using this method.

In addition to nonlinear programming techniques, other optimizing methods have
been used in converter optimization such as genetic algorithms or probabilistic methods. A
genetic algorithm was used to optimize harmonic noise in AC/AC converters in [7], and the
Monte Carlo search method has been used to optimize the cost, the weight, and the volume
of converters for automotive applications in [8].

Nevertheless, neither general purpose nonlinear programming methods nor the other
aforementioned nonlinear optimization techniques ensure that the global optimum is reached
because of a local optimum can stop the searching process. Moreover, in some cases, these
methods fail to detect the unfeasibility of the problem.

In contrast, unlike other methods that accept any nonlinear function, geometric
programming (GP) is able to globally optimize a problem when the objective function and
the constraint have a given form. GP ensures that the global solution is readily found or that
the unfeasibility is detected very quickly. GP has never been used in the design of DC-DC
converters, but it has proved successful in other electrical fields [9–11]. The technique has
been used for designing CMOS op-amp [9], electrical transformers [10], and synchronous
motors [11].

Although researchers in optimization methods have been interested in GP since the
1960s [12], the real advantages of this technique are only starting to be appreciated now. The
reason for this is the significant development of interior point methods for solving convex
optimization problems in the last fifteen years [13]. GP methods are now extremely efficient
and reliable. GP uses the concepts of monomial function and posynomial function as the
form to express objective function and constraints; we review these concepts in the following
section.

In the present paper, we apply GP to the task of sizing DC-DC converter components.
Specifically, we impose constraints on voltage ripples, current ripples, bandwidth, RHP
zero locations, conduction operation mode, and efficiency. First, we choose efficiency as the
objective function, then we do the same for the bandwidth. We apply the technique to a boost
converter. Also, in subsequent sections, we apply the technique to a buck converter and a
synchronous buck converter, then we compare the performances of them to demonstrate the
versatility of the procedure.

The paper is organized as follows: we review the GP concepts in Section 2. Section 3
describes the designing magnitudes of a boost converter, the optimization program, and the
verification of the solution. Section 4 compares the optimal design of a buck converter with
that of a synchronous buck converter. Finally, Section 5 summarizes the main conclusions.

2. Basics on Geometric Programming

The most well-known optimization method is surely the simplex method. This method
readily provides a solution to linear programming problems, that is, problems with a
linear objective function subject to linear constraints that limit the selection of variable
values. On the other hand, general purpose nonlinear optimization methods deliver a
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solution for nonlinear problems, but they depend on the starting point, since general
purpose nonlinear optimization methods are only able to reach a local optimum. In
addition, these optimization methods find it difficult to detect the infeasibility of a
problem.

In 1984, Narendra Karmarkar [14] developed an algorithm for linear prog-
ramming which, in contrast to the simplex method, reaches an optimal solution by
traversing the interior of the feasible region. Interior point methods readily solve not
only linear optimization problems but also convex problems, that is, problems with a
convex objective function and convex constraints. Therefore, any optimization problem
that can be modeled as a convex problem can be readily solved by interior point
algorithms. There is a great deal of software as MATLAB that has coded interior point
methods. We review the concepts of convex set and convex function in the following
paragraphs.

A set C is convex if the line segment between any two points in C lies in C; that is, if
for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1 − θ)x2 ∈ C. (2.1)

Obviously, a generic finite-dimensional real vector space Rn is convex, and a set of Rn

with entirely positives coordinates Rn
++ is also a convex set.

A function f : Rn → R is convex if the domain of f is a convex set and if for
all points x, y belonging to the domain of f , and given a certain θ with 0 ≤ θ ≤ 1, we
have

f
(
θx + (1 − θ)y

) ≤ f(θx) + f
(
(1 − θ)y

)
. (2.2)

Obviously, both linear and affine functions are convex. Another example of convex
function is eax on R, for any a ∈ R. Also,

∑K
k=1 e

aT
k
y+bk and log(

∑K
k=1 e

aT
k
y+bk) are convex

functions in Rn
++ [12].

There are certain kinds of nonlinear optimization problems, known as geometric
programs, that can be transformed into convex optimization problems by means of a
logarithmic change of variables. Such problems can be modeled using the concepts of
monomial and posynomial function.

Given a vector x = (x1, . . . , xn) ∈ Rn
++, a monomial function is defined as

g(x) = cxa1
1 xa2

2 · · ·xan
n , (2.3)

where c is a positive real constant called the monomial coefficient and a1, . . . , an are real
constants that are referred to as the exponents of the monomial.
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The sum of monomial functions is named a posynomial function; that is,

f(x) =
K∑

k=1

ckx
a1k
1 xa2k

2 · · ·xank
n . (2.4)

Using these concepts, a geometric program is defined as

minimize f0(x)

subject to fi(x) ≤ 1 i = 1, . . . , m,

gj(x) = 1 j = 1, . . . , p,

(2.5)

where f0, . . . , fm are posynomial functions and g1, . . . , gp are monomial functions.
The geometric program (2.5) is not convex; however, it can be made convex by means

of the change of variables y = log(x) or (x = ey) and replacing fi ≤ 1 with log(fi) ≤ 0 and
gj = 1 with log(gj) = 0. Once transformed, the geometric program is written as

minimize log(ey)

subject to log
(
fi(ey)

) ≤ 0 i = 1, . . . , m,

log
(
gj(ey)

)
= 0 j = 1, . . . , p.

(2.6)

The geometric program (2.6) can be readily solved using interior point algorithms
because it is convex. Thus, modeling an engineering optimization problem as a geometric
program solves the problem in a quick and reliable manner. This approach has been used in
several engineering problems. In the next section, we analyze design magnitudes in DC-DC
converters and confirm that they can be written in posynomial form.

3. Optimal Design in Boost Converters

In this section, we revisit losses, ripples, and other magnitudes that appear in the boost
converter design process. On the basis of these expressions, we provide an optimal design
and evaluate the influence of converter parameters. Specifically, we optimize the efficiency
when the current ripple, voltage ripple, the bandwidth, and the RHP zero location are limited.
Afterwards, we optimize the bandwidth when efficiency is constrained.

3.1. The Design Magnitudes in Boost Converters

Although the expressions are well known, we revisit the expressions for the sake of
completeness.
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Figure 1: Boost converter.

Figure 1 depicts the boost topology. We consider the following state vector:

x =

[
iL

vC

]

, (3.1)

where iL is the inductor current and vC is the output voltage. State equations (3.2) model
the converter dynamic behaviour in mode ON (when Q1 is ON and D1 is inactive) which
corresponds to a value of the control signal u = 1, and in mode OFF (when Q1 is OFF and D1

is active), which corresponds to u = 0. Thus,

diL
dt

=
−vC

L
(1 − u) +

Vi

L
u,

dvC

dt
=

iL
C
(1 − u) − vC

RC
,

(3.2)

where L, C, and R stand for the inductor value, the capacitor value, and the load value,
respectively and Vi represents the input voltage. The expressions of the converter model (3.2)
are valid only when it works in continuous conduction mode, as restriction (3.5) imposes.

A consequence of expression (3.2) is that under the hypothesis of low voltage variation
in the capacitor, the current ripple is a triangular waveform whose amplitude depends on its
slope during TON and the time that it remains in TON; namely,

ΔiL =
Vid

Lfs
, (3.3)

where VC is the steady-state output voltage, fs stands for the switching frequency, and d is
the switch duty-cycle which corresponds to d = TON/(TON + TOFF).

Voltage ripple can be expressed, according to [15], as

ΔvC =
VCd

fsCR
. (3.4)
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In addition to ripple constraints, we impose the following restriction to make the boost
converter operate in continuous conduction mode (CCM):

Lfs >
VC

2Io
d(1 − d)2. (3.5)

Another important property that should satisfy a design is to have a good enough
bandwidth. The following expression binds the minimal required bandwidth ωo:

ωo =
(1 − d)√

LC
,

ωo > 2π
(
afs

)
,

(3.6)

where a is a percentage of the switching frequency.
Given that the boost converter has an RHP zero, we take into account its placement.

A design should ensure that the RHP zero location is greater than the crossover frequency;
otherwise, the converter will have bad gain and phase margins. The following constraint
ensures that the boost converter has good robust margins [16]. This constraint reduces the
limitations on dynamical performances caused by the RHP zero

(1 − d)2R
L

> 5
(1 − d)√

LC
. (3.7)

One of the most important magnitudes in the design of a boost converter is its power
consumption, which is made up of conduction losses caused by parasitic resistances, and
switching losses caused by parasitic capacitances.

We have used a model of losses that consider only parasitic resistances and
capacitances. Nevertheless, parasitic inductances related to layout could be taken into
account according to expression of [15], but they are usually much less significant than
resistive and capacitive parasitic losses.

In the following analysis, we consider the MOSFET losses, the diode losses, and the
ohmic losses in the inductor and the capacitor.

3.1.1. Dissipated Power in the Switches

In this subsection, we first revisit the power losses in the transistor and then those induced
by the diode.

The total power consumption of MOSFET PQ1 consists of conduction losses PON and
switching losses PSW.
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Quantities PQ1, PON, and PSW can be approximated by

PQ1 = PON + PSW, (3.8)

where

PON =

((
Io

(1 − d)

)2

+
Δi2L
12

)

DRDS,

PSW =
(
VC − Vf

)
(

Io
(1 − d)

− ΔiL
2

)
TswONfs +

(
VC − Vf

)
(

Io
(1 − d)

+
ΔiL
2

)
TswOFFfs,

(3.9)

where Io/(1 − d) stands for the MOSFET average current and TswON and TswOFF represent
the transition time to on and to off, respectively. Times TswON and TswOFF depend on the gate
drive and MOSFET features, RDS stands for the on-resistance of MOSFET, and Vf represents
the forward voltage drop in the body diode.

The total power dissipated by the diode Pd can be expressed as

Pd = VfIo(1 − d) +Q
Schottky
rr Vcfs, (3.10)

whereQSchottky
rr is the reverse recovery charge in the diode. We have considered that the diode

is implemented in Schottky technology. For the sake of clarity, we have not taken into account
ohmic losses in the diode. Nevertheless, the procedure would allow to consider them adding
to expression (3.10) the term rdI

2
rms, where rd is diode dynamic resistance and I2rms is the mean

square diode current.

3.1.2. Losses at Passive Elements

The inductor is responsible for a substantial portion of the converter’s energy consumption.
The losses in this passive element consist of winding losses and core losses, but these can
approximately be characterized by a constant equivalent series resistance RL. Consequently,
the power dissipated by the inductive element is expressed as

Pind =

((
Io

(1 − d)

)2

+
Δi2L
12

)

RL. (3.11)

Similarly, the capacitor losses can be approximated by

Pcond = (IeffC)
2RC, (3.12)
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Figure 2: Waveform of the capacitor current.

where RC is the equivalent series resistance in the capacitive element. The waveform of the
capacitor current is shown in Figure 2, and its rms value corresponds to

IeffC =
∫DTs

0
(−Io)2 +

∫Ts

DTs

(
− 2Δic
(1 − d)Ts

t + (Δic − Iod)
)2

dt. (3.13)

3.1.3. Total Power Losses and Efficiency in a Boost Converter

Given the expressions (3.1), (3.2), (3.3), and (3.4), the total power losses in the boost converter
are written as

Pboost = PQ1 + Pd + Pind + Pcond. (3.14)

The terms on the right contribute unevenly depending on the operating conditions of
the converter.

Efficiency is defined as

η = 100
Pload

Pload + Pboost
, (3.15)

where Pload = VCIo is the averaged power at the load.

3.2. Geometric Programming for Boost Converter Optimal Design

In this section, we describe an optimization program that can be solved using geometric
programming, because the magnitudes are posynomial. Also, we give an example of the
procedure for a realistic set of parameters, and finally, we show that the optimum has been
reached. Furthermore, we show the influence of small variations around the optimal point on
the performance.
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3.2.1. Optimization Program for Boost Converters

In this subsection, we minimize the converter power consumption which is equivalent to
maximize the efficiency. Our optimization variables are the size of the storing elements and
the switching frequency. In addition, we constrain the ripples, the bandwidth, and the RHP
zero location and impose the continuous conduction mode. Thus, the following geometric
program allows us to optimally design a boost converter:

minimize
L,C,fs

Pboost

subject to Lmin ≤ L ≤ Lmax

Cmin ≤ C ≤ Cmax

fsmin ≤ fs ≤ fsmax

ΔiL ≤ a % of Io

ΔvC ≤ b % of VC

CM constraint (3.5)

BW constraint (3.6)

RHP zero constraint (3.7).

(3.16)

3.2.2. Example of Optimal Design of a Boost Converter

We show the input values used in the example. The input values are the voltage ratio, the
MOSFET and diode parameters, and the variable bounds and the ripple bounds.

The values for the voltage ratio, MOSFET, and diode parameters are shown in Table 1.
Table 2 indicates the bounds imposed on the optimization variables. Some of these

limits do not constrain performance; however, others do, and it is particularly important to
determine which values these are.

The optimum obtained corresponds to

Optimal values of variables

L∗ = 79.95μH

C∗ = 95.946μF

f∗
s = 104.23 kHz;

Optimal values of objective function
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P ∗
boost = 2.097W;

Current and voltage ripples and BW

Δi∗L = 0.3A

Δv∗
C = 0.1V

BW∗ = 908.56Hz;

Efficiency

η∗ = 90.5%.

(3.17)

In order to illustrate the versatility of the procedure, next, we show the result when the
purpose is to maximize the bandwidth when the efficiency is constrained to be greater than
85%

Optimal values of variables

L∗ = 10.41μH

C∗ = 12.5μF

f∗
s = 800 kHz;

Optimal values of objective function

P ∗
boost = 2.44W;

Current and voltage ripples and BW

Δi∗L = 0.3A

Δv∗
C = 0.1V

BW∗ = 6.97 kHz;

Efficiency

η∗ = 89.12%. (3.18)

It can be seen that solution (3.2.2) has a much better bandwidth than (3.17) but that
this is at the expense of an efficiency decrease.

3.2.3. Verification of the Optimal Solution in a Boost Converter

In this subsection, we analyze some plots to verify the optimality of solution (3.17) and to
evaluate which constraint limits the efficiency. The plots indicate that any variation that fulfils
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Table 1: Input values of the design example.

Vi 5V
VC 10V
Io 2A
RDS 5.2mΩ
TswON 10−8 s
TswOFF 10−8 s
Qdb

rr 25 · 10−8 A

Q
Schottky
rr 50 · 10−9 A

Vf 0.9V

Table 2: Variable bounds on the design example.

Lmin = 0.1μH Lmáx = 10mH
Cm ´in = 0.1μF Cmáx = 100μF
fsmín = 10 kHz fsmáx = 800 kHz
ΔIo < 15% Io ΔVC < 1% VC

the constraints around the optimal values (3.16) causes an efficiency decrease. The optimal
values of certain variables corresponds to limits of an active restriction, this implies that the
relaxation of the limits will increase the efficiency.

Figure 3 depicts the efficiency with respect to frequency values. Red squares corre-
spond to switching frequency values that do not satisfy the current ripple constraint, and
black circles are admissible values. The optimal switching frequency value corresponds to
the highest black circle. Therefore, the relaxation of the current ripple constraint will increase
the efficiency.

Figure 4 depicts the variation of inductance value around the optimum. Red squares
represent inductance values that do not comply with the current ripple constraint, and black
circles represent the admissible values. Theminimum inductance that satisfies the restrictions
corresponds to the highest black circle.

We proceed similarly for the capacitor design variable C. The next plot shows that a
variation around the optimal capacitor has very little influence on the efficiency (Figure 5).

This graphical process shows that (3.16) is the optimum result and allows us to
determine which variables are limited by the design specifications. Finally, the slope of the
lines gives an insight into the efficiency increase when a certain constraint is relaxed. Next,
we extend this procedure to the buck converter and the synchronous buck converter.

4. A Comparison between Optimal Designs of
Buck Converters and Synchronous Buck Converters

The object of this subsection is to show that the proposed procedure can be used to
compare different alternatives once we have ensured that they are optimal. Again, we review
the magnitudes of the buck and synchronous buck converter (Figure 6). Figure 1 shows these
topologies.
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Figure 3: 3-Efficiency versus switching frequency.

4.1. The Design Magnitudes

The state equation corresponds, in both cases, to

diL
dt

=
−VC

L
+
Vi

L
u,

dvC

dt
=

iL
C

− VC

RC
.

(4.1)

Therefore, in the buck and synchronous buck converters, the current and voltage
ripples corresponds, respectively, to

ΔiL =
VC(1 − d)

Lfs
, (4.2)

ΔvC =
VC(1 − d)

8Lfs
2C

. (4.3)

The continuous conduction mode constraint is

Lfs >
VC

2Io
(1 − d). (4.4)



Mathematical Problems in Engineering 13

7.4 7.6 7.8 8 8.2 8.4 8.6 8.8
×10−5

90.47

90.48

90.49

90.5

90.51

90.52

90.53

90.54

90.55

Inductance (H)

E
ffi
ci
en

cy
(%

)

Verification of the optimum value of inductance

Current ripple violation
Admissible value

Figure 4: 4-Efficiency versus inductance.

9.56 9.58 9.6 9.62 9.64 9.66 9.68
×10−5

90.5076

90.5076

90.5076

90.5076

90.5076

90.5076

90.5076

Capacitor (F)

E
ffi
ci
en

cy
(%

)

Verification of the optimum value of capacitor

Voltage ripple violation
Admissible value

Figure 5: Efficiency versus capacitance.

And the bandwidth can be expressed by

ωo =
1√
LC

,

ωo > 2π
(
10% fs

)
.

(4.5)
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Figure 6: (a) Buck topology (b) Synchronous buck topology.

As in the boost converter, the buck converter’s losses occur in the MOSFET, diode,
inductor, and capacitor. In the following subsection, we present each of these losses in detail.

4.1.1. Dissipated Power in Buck Converter Switches

MOSFET losses correspond to

PQ1 = PONQ + PSW,

PON =

(

I2o +
Δi2L
12

)

DRDS,

PSW = Vi

(
Io − ΔiL

2

)
TswONfs + Vi

(
Io +

ΔiL
2

)
TswOFFfs.

(4.6)

And diode losses are described by

Pd = VfIo(1 −D) +Q
Schottky
rr Vifs. (4.7)

4.1.2. Losses in Passive Elements

The power dissipated by the inductor is

Pind =

(

I2o +
Δi2L
12

)

RL. (4.8)

Similarly, the capacitor losses can be described by

Pcond =

(
Δi2L
12

)

RC. (4.9)

4.1.3. Total Power Losses and Efficiency in the Buck Converter

Given the expressions (4.6)–(4.9), the total power losses in the buck converter are written as

Pbuck = PQ1 + Pd + Pind + Pcond. (4.10)



Mathematical Problems in Engineering 15

4.1.4. Dissipated Power at Switches in Synchronous Buck Converter

Losses in the high side MOSFET PQ1 in synchronous buck converter are the same as PQ1 in
the buck converter. Losses in the low side MOSFET PQ2 corresponds to

PQ2 = PONQ2 + Pdb,

PONQ2 =

(

I2o +
ΔI

12

2
)

(1 −D)RDS,

Pdb = Vf

(
Io − Δi1

2

)
Tdead1fs + Vf

(
Io +

Δi1
2

)
Tdead2fs +QrrVifs, (4.11)

where Vf represents the forward voltage drop in the body diode, Tdead1 and Tdead2 are the
dead times introduced by the synchronous rectification, and Qrr corresponds to the body
diode charge.

In addition, losses in the storage element are the same in both the buck and
synchronous buck converter. Hence, the total power losses in the synchronous buck converter
are written as

PSynchronous buck = PQ1 + PQ2 + Pind + Pcond. (4.12)

4.2. Optimization Program for Buck Converters and
Synchronous Buck Converters

According to expressions (4.10) for the buck converters and (4.12) for the synchronous buck
converters, the optimization program is expressed as

minimize
L,C,fs

Pbuck or PSynchronous buck

subject to Lmin ≤ L ≤ Lmax

Cmin ≤ C ≤ Cmax

fsmin ≤ fs ≤ fsmax

ΔiL ≤ a % of Io

ΔvC ≤ b % of VC

CCM constraint (4.3)

BW constraint (4.4).

(4.13)

In the following section, we instantiate the objective function and the ripple constraints
for both converters, and we provide and verify the solution.

4.2.1. Example of Optimal Design

Table 3 shows the input values for the buck converter and for the synchronous buck
converter.
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The parameters Tdead1 and Tdead2 of the synchronous buck converter are equal to 200 ns.
The remaining of values are those in Tables 1 and 2.

Thus, the optimal values for each case are

Optimal values of variables

L∗ = 19.34μH

C∗ = 10.98μF

f∗
s = 86.18 kHz

Optimal values of objective function

P ∗
buck = 5.148W

Current and voltage ripples and BW

Δi∗L = 1.5A

Δv∗
C = 0.198V

BW∗ = 10.92 kHz

Efficiency

η∗ = 90.66%

Optimal values of variables

L∗ = 8.23μH

C∗ = 22.05μF

f∗
s = 56.68 kHz

Optimal values of objective function

P ∗
Synchronous buck = 1.542W

Current and voltage ripples and BW

Δi∗L = 2.25A

Δv∗
C = 0.225V

BW∗ = 11.81 kHz

Efficiency

η∗ = 93.57%.

(4.14)

As in the boost converter, we try also to optimize the bandwidth when the efficiency
greater than 85%. The results are as follows:

Optimal values of variables

L∗ = 2.08μH

C∗ = 0.31μF

f∗
s = 800 kHz

Optimal values of objective function

P ∗
buck = 6.38W

Current and voltage ripples and BW

Δi∗L = 1.5A

Δv∗
C = 0.75V

BW∗ = 197.2 kHz

Efficiency

η∗ = 88.68%

Optimal values of variables

L∗ = 0.58μH

C∗ = 1.17μF

f∗
s = 800 kHz

Optimal values of objective function

P ∗
Synchronous buck = 3.51W

Current and voltage ripples and BW

Δi∗L = 2.25A

Δv∗
C = 0.3V

BW∗ = 192.5 kHz

Efficiency

η∗ = 86.48%.

(4.15)

Again, there is a bandwidth increment at the expense of an efficiency decrease.
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Table 3: Design example input values.

Vi 10V
VC 5V
Io 10A
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Figure 7: Efficiency versus switching frequency. (a) Buck (b) Synchronous buck.

4.3. Verification of the Optimal Solution in Buck and
Synchronous Buck Converters

The following plots verify that the optimum (4.14) has been reached and show the sensitivity
to optimization variables (Figures 7, 8, 9).

It can be seen that the synchronous buck converter is more efficient than the buck
converter and that the size of storing elements differs greatly.

5. Conclusions

The present paper describes a reliable and efficient procedure for optimizing DC-DC
converter design that is based on geometric programming. In order to illustrate the
procedure, we apply it to a boost converter to show how it optimizes efficiency and
bandwidth. Then, we compare optimal designs for a buck converter and a synchronous buck
converter, considering both efficiency and bandwidth as optimization functions. We have
used plots that show that the optimum has been reached, and they also give an insight into
sensitivity to constraint bounds. Proposals to extend the procedure to AC-DC and DC-AC
converters are being studied.
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Figure 8: Efficiency versus inductance. (a) Buck (b) synchronous buck.
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Figure 9: Efficiency versus capacitor value. (a) Buck (b) synchronous buck.
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