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This paper addresses a new methodology for servo pneumatic actuators mathematical modeling
and selection from the dynamic behavior study in engineering applications. The pneumatic
actuator is very common in industrial application because it has the following advantages: its
maintenance is easy and simple, with relatively low cost, self-cooling properties, good power
density (power/dimension rate), fast acting with high accelerations, and installation flexibility.
The proposed fifth-order nonlinear mathematical model represents the main characteristics of
this nonlinear dynamic system, as servo valve dead zone, air flow-pressure relationship through
valve orifice, air compressibility, and friction effects between contact surfaces in actuator seals.
Simulation results show the dynamic performance for different pneumatic cylinders in order to
see which features contribute to a better behavior of the system. The knowledge of this behavior
allows an appropriate choice of pneumatic actuator, mainly contributing to the success of their
precise control in several applications.

1. Introduction

This work presents a new methodology to identify the main nonlinear characteristics
in pneumatic actuators and its mathematical modeling in engineering applications. The
pneumatic actuator is very common in industrial application [1] because it has the following
advantages: its maintenance is easy and simple, with relatively low cost, self-cooling proper-
ties, good power density (power/dimension rate), fast acting with high accelerations [2] and
installation flexibility. Also, compressed air is available in almost all industrial plants [3].
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However, there are difficulties of control due to various nonlinear characteristics
of the system [4, 5]. The nonlinearities present in pneumatic actuators are motivated
by its very low stiffness (caused by air compressibility), inherently nonlinear behavior,
parameter variations, and low damping of the actuator systems, which make it difficult
to achieve precise motion control. The main nonlinearities in pneumatic servo systems
are the servo valve dead zone [6], air flow-pressure relationship through valve orifice
[1, 7], the air compressibility, and friction effects between contact surfaces in actuator seals
[8, 9].

Several recent authors present a study on the characteristics of nonlinear pneumatic
actuators [1, 5, 7, 9–11]. Valdiero et al. [6] present a mathematical model to dead zone in
pneumatic servo valves, followed by the method used for compensation that is made with
the addition of an inverse dead zone function in the control system. Rao and Bone [1]
present a modeling approach where they use the bipolynomial functions to model the valve
flow rates, but a poor classical friction model is used. Perondi [10] developed a nonlinear
accurate model of a pneumatic servo drive with friction, where the nonlinear airflow
relationship between the pneumatic valve’s driving voltage and the upstream/downstream
pressures is proposed. Endler [7] used the methodology of optimal feedback control for
nonlinear systems proposed by Rafikov et al. [12] in servo pneumatic system, and simulation
results show that a full nonlinear mathematical model is important in pneumatic robot
applications.

The main paper contribution is to systematize its nonlinear mathematical model
with some innovations such as a new equation for valve flow rate and to show how it is
important for the success in control applications. The paper is organized as follows. Section 2
brings a description of servo pneumatic positioning system with its main components, the
used test rig, and a schematic drawing with the nonlinearities present in the actuator. In
Section 3, the systematic methodology of the pneumatic actuator nonlinear mathematical
modeling is shown. Results are presented in Section 4. Conclusions are outlined in
Section 5.

2. Pneumatic Servo Position System

The servo pneumatic positioning system considered in this paper is formed by a proportional
servo valve (component 4 in Figure 1) and a double-action rodless cylinder (component 2 in
Figure 1). This actuator permits to position one load in a desired position of the actuator curse
or follow a desired trajectory. Figure 1 shows the schematic drawing of used experimental
setup with main components for the purpose of investigating the nonlinear mathematic
model. The used acquisition and control system is a dSPACE DS 1102 board. It is composed
by 4 analog inputs (ADCs) and 4 analog outputs (DACs) as shown in Dspace [13]. Sensors
permit to measure air system inlet pressure (1), the actuator position (3), and actuator
chamber pressures (pa and pb) (5) and (6).

Figure 2 shows the schematic drawing of a servo pneumatic actuator for better
understanding of system behavior. During the operation, the control signal u energizes
valve’s solenoid, so that a resulting magnetic force is applied in the valve’s spool, producing
the spool displacement. The spool displacement opens control orifices, so that one port
is connected to the supply’s pressure line, and the other is connected to the atmosphere.
Consequently, there is the pressure difference between cylinder chambers, resulting in a force
that moves the mass M in a positive or negative displacement y, depending on the control
signal input.
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Figure 1: Experimental setup with main components.
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Figure 2: Schematic drawing of a pneumatic servo system.
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Figure 3 shows block diagram of the main dynamics in the nonlinear mathematical
model of the pneumatic actuator. The main nonlinear characteristics of this dynamic
system are servo valve dead zone, air flow-pressure relationship through valve orifice, air
compressibility, and friction effects between contact surfaces in actuator seals.

Dead zone is common in pneumatic valves because the spool blocks the valve orifices
with some overlap, so that for a range of spool positions, there is no air flow [6]. It is located at
the dynamic system as a block diagram shown in Figure 3 and is characterized in Section 3.1.

The air flow-pressure relationship through valve orifice is a nonlinear function that
depends on pressure difference across the valve orifice and valve opening [7]. In this paper,
we present a new mass flow rate equation in Section 3.2.

The pressures dynamic model is obtained from continuity equation and results in
nonlinear first-order differential equation. This dynamic behavior depends on pneumatic
cylinder size. Small cylinder bore size produces significant effects such as a faster pressure
response [1]. If the bore size is reduced, the ratio of friction force to maximum pneumatic
force increases, and the chamber pressures are more sensitive to small variations in the mass
flow rate. Therefore, the precise tracking control is more difficult with smaller bore sizes. This
detailed nonlinear dynamics is presented in Section 3.3.

The nonlinear friction is the most important factor that affects the motion equation.
Friction is a nonlinear phenomenon which is difficult to describe analytically [8]. The friction
often changes with time andmay depend on an unknown way of environmental factors, such
as temperature and lubricant condition. Even so, the modeling of their main characteristics is
important. In this paper, we consider the actuator friction dynamics described by the LuGre
model, proposed in Canudas de Wit et al. [14], and improved by Dupont et al. [15] in order
to include stiction effects. This model is presented in Section 3.4.

3. Nonlinear Mathematical Modeling

The systematic methodology of the pneumatic actuator nonlinear mathematical modeling
is presented from experimental data and recent literature information. The full system
constitutes a fifth-order nonlinear dynamic model of the pneumatic positioning system and
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considers the nonlinearity of the dead zone, the mass flow rate, the pressure dynamics, and
the motion equation, that includes the friction dynamics.

3.1. Dead Zone Nonlinearity

This section presents the mathematical model for dead zone nonlinearity and its graphical
representation. Dead zone is a static input-output relationship which for a range of input
values gives no output. Figure 4 shows a sectional view sketch of typical spool valve with
main mechanical elements.

The mathematical model for dead zone in pneumatic servo valves presented in this
section was obtained from Tao and Kokotović [16]. The dead zone analytical expression is
given by the equation

uzm(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

md(u(t) − zmd) if u(t) ≥ zmd,

0 if zme < u(t) < zmd,

me(u(t) − zme) if u(t) ≤ zme,

(3.1)

where u is the input value, uzm is the output value, zmd is the right limit of the dead zone, zme

is the left limit of the dead zone, md is the right slope of the output, and me is the left slope
of the output.

Figure 5 shows a graphical representation of the dead zone. In general, neither the
break-points (zmd and zme) nor the slopes (md andme) are equal.

In current fluid power literature, dead zone in valves is expressed as a percentual of
spool displacement. Valdiero et al. [6] present a newmethodology for dead zone nonlinearity
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Figure 5: Graphical representation of the dead zone.

identification in proportional directional pneumatic valves. It is based on observing the
dynamic behavior of the pressure in the valve gaps. The dead zone nonlinearity is a key
factor that limits both static and dynamic performance in feedback control of fluid power
systems. The usual method to cancel the harmful effects of dead zone is to add its fixed
inverse function into the controller. This inverse ismodeled by a set of parameters that need to
be identified. The classic dead zone parameter identification uses expensive flow transducers
and special test rig, while our proposed methodology needs only the pressure transducers
shown in Figure 1. Experimental results are presented in Valdiero et al. [6] and illustrate the
efficacy of this methodology that is cheaper and faster.

3.2. Mass Flow Rate

According to Rao and Bone [1], the mass flow rate model of the proportional valve is a key
part of the systemmodel. In this paper, we use an innovator model to mass flow rate equation
qma and qmb developed by Endler [7], given by equations

qma

(
u, pa

)
= g1

(
pa, sign(u)

)
arc tg(2u),

qmb

(
u, pb

)
= g2

(
pb, sign(u)

)
arc tg(2u),

(3.2)

where g1and g2 are signal functions given by

g1
(
pa, sign(u)

)
= βΔpa =

⎧
⎨

⎩

(
psup − pa

)
βench if u ≥ 0,

(
pa − patm

)
βesv if u < 0,

g2
(
pb, sign(u)

)
= βΔpb =

⎧
⎨

⎩

(
psup − pb

)
βench if u < 0,

(
pb − patm

)
βesv if u ≥ 0,

(3.3)
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Figure 6: Fitted model of mass flow rate.

where psup is the supply pressure, patm is the atmospheric pressure, and βench and βesv are the
constant coefficients.

Equations (3.2) are a fitting of a surface obtained experimentally [5, 7] in the test rig of
Figure 1, considering that the piston is stopped; in that way, the volume is constant, and the
speed of the piston is null. The mass flow rates at different pressures and valve input voltages
were first estimated from the pressure versus time responses obtained for step inputs in valve
voltage and a fixed piston position.

The fitted mass flow rate in valve orifice, qma, is plotted versus input voltage and
pressure difference in Figure 6.

Rao and Bone [1] used a second-order bipolynomial equation to fit this function. In
a similar way, Perondi [10] used a third-order polynomial one. Bobrow and McDonell [17]
use a curve fit for the change in internal energy as a function of cylinder pressure which is
quadratic in u. One of the greatest problems in these equations found in the literature is the
difficulty in isolating the signal u, necessary when a control methodology that considers the
nonlinear characteristics of the system is used. Equations to mass flow rate proposed by Ritter
et al. [5] are innovations that have advantages as easiness of computational implementation
and differentiation.

3.3. Pressure Dynamics

The cylinder used in this modeling is symmetric and without spindle. In mathematical
modeling, the pressure changes in the chambers are obtained using energy conservation laws.
Figure 7 shows a schematic drawing of cylinder used.

The relationship between the air mass flow rate and the pressure changes in the
chambers is obtained using energy conservation laws. According to Perondi [10], the energy
balance yields

qmaT − pa

Cp

dVa

dt
=

1
γR

d

dt

(
paVa

)
, (3.4)
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Figure 7: Cylinder’s schematic drawing.

where T is the air supply temperature, qma is the air mass flow rate into chamber A, pa is the
absolute pressure in chamber A, Cp is the specific heat of the air at constant pressure, Cv is
the specific heat of the air at constant volume, γ = Cp/Cv is the ratio between the specific heat
values of the air, R is the universal gas constant, and V̇a = (dVa/dt) is the volumetric flow
rate. Assuming that the mass flow rates are nonlinear functions of the servo valve control
voltage (u) and of the cylinder pressures, that is, qma = qma(pa, u) and qmb = qmb(pb, u), the
total volume of chamber A is given by

Va = Ay + Va0, (3.5)

where A is the cylinder cross-sectional area, y is the piston position, and Va0 is the initial
volume of air in the line and at the chamber A extremity, including the pipeline. The change
rate for this volume is V̇a = Aẏ, where ẏ is the piston velocity.

In this manner, calculating the derivative term in the right hand side of (3.4), and using
Cp = (γR)/(γ − 1), we can solve this equation to obtain

ṗa = − Aγẏ

Ay + Va0
pa +

RγT

Ay + Va0
qma

(
pa, u

)
. (3.6)

Similarly, for chamber B of the cylinder, we obtain

ṗb =
Aγẏ

Vb0 −Ay
pb −

RγT

Vb0 −Ay
qmb

(
pb, u

)
. (3.7)

Note that the pressure dynamics in chambers A and B, ṗa and ṗb, given by (3.6) and
(3.7), are functions of piston position y, piston velocity ẏ, and mass flow rate qm. Figure 8
shows numerical simulation results presented in Endler [7] for constant mass flow rate input,
where pa and pb as a function of time are illustrated. The pressure curves in the cylinder’s
chambers for the control signal u = 2 volts are observed, where the valve is opened, so that
its “b” port is connected to the atmosphere.



Mathematical Problems in Engineering 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7
×105

Time (s)

Pressure dynamics in chamber A
Pressure dynamics in chamber B

Pr
es
su

re
(P

a)

Figure 8: The numerical study of pressure dynamics behaviour in pneumatic cylinder’s chambers.

More detailed study of (3.6) and (3.7) is presented in Bobrow and McDonell [17],
Perondi [10] and Ritter et al. [5].

3.4. Friction Dynamics in Motion Equation

Applying Newton’s second law to the piston-load assembly results in

Mÿ + Fatr = Fp, (3.8)

where M is the mass of the piston-load assembly, ÿ is the cylinder acceleration, Fatr is the
friction force, and Fp is the pneumatic force related to the pressure difference between the
two sides of the piston, that is given by A(pa − pb).

In this section, the dynamic model to friction is based on the microscopic deformation
of asperities in surface contact. It is possible to perceive an evolution in friction models that
are based on the asperity microscopic deformations and depicted in recent papers.

The Dahl model describes friction in the presliding movement phase, in a similar
way to the rigid spring with damping behavior, but it has not included the Stribeck friction
effect. The LuGre model, proposed by Canudas de Wit et al. [14], is an improved model that
includes the Stribeck friction and describes many complex friction behaviors but is limited
in the presliding movement phase, according to simulations results presented by Dupont
et al. [15] and experimental tests carried out by Swevers et al. [18]. These authors also
propose improvements in LuGre model through the inclusion of a model to hysteresis with
nonlocal memory and sliding-force transition curves in presliding movement phase. This
improved model is named Leuvenmodel and used in friction modeling to a pneumatic servo
positioning system by Nouri et al. [19]. Dupont et al. [15] also propose improvements in



10 Mathematical Problems in Engineering

y

w z

Elastic asperity

Sliding
body

Figure 9: Model of body subject to friction force showing elastic (z) and inelastic (w) displacement
components.

LuGre model through its interpretation as an elastoplastic friction model that is used in this
paper.

Figure 9 represents the contact between surfaces through a lumped elastic asperity,
considering a rigid body where the displacement y is decomposed into its elastic and plastic
(inelastic) components z andw.

The friction force is described according to the LuGre friction model proposed by
Canudas de Wit et al. [14]. In this model, the friction force is given by

Fatr = σ0ż + σ1z + σ2ẏ, (3.9)

where z is a friction internal state that describes the average elastic deflection of the
contact surfaces during the stiction phases, σ0 is the stiffness coefficient of the microscopic
deformations z during the presliding displacement, σ1 is a damping coefficient, σ2 represents
the viscous friction, and ẏ is the velocity.

The dynamics ż of the internal state z is modeled by the equation

dz

dt
= ẏ − α

(
z, ẏ
) σ0

gss
(
ẏ
)
∣
∣ẏ
∣
∣z, (3.10)

where gss(ẏ) is a positive function that describes the steady-state characteristics of the model
for constant velocity motions and is given by

gss
(
ẏ
)
= Fc + (Fs − Fc)e−(ẏ/ẏs)

2
, (3.11)

where Fc is the Coulomb friction force, Fs is the static friction force and ẏs is the Stribeck
velocity. Figure 10 illustrate the behavior of the friction force as a function of velocity in steady
state [8].
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The function α(z, ẏ) is presented according to Dupont et al. [15] and is used to
represent the stiction. This function is defined by equations

α
(
z, ẏ
)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if |z| ≤ zba

0<
1
2
sen

(

π
z − ((zmax

(
ẏ
)
+ zba

)
/2
)

zmax
(
ẏ
) − zba

)

<1, if zba< |z|<zmax
(
ẏ
)

1, if |z| ≥ zmax
(
ẏ
)

0, if sign
(
ẏ
)
/= sign(z)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, sign
(
ẏ
)
= sign(z),

(3.12)

0 < zba < zmax
(
ẏ
)
=
gss
(
ẏ
)

σ0
, para ∀ẏ ∈ R, (3.13)

where zba is a breakaway displacement, such a way that to z ≤ zba all movements in friction
interface consist in elastic displacements only, and zmax is the maximum value of microscopic
deformations and is velocity dependent.

It is possible to observe that, with z represented by (3.12), when sliding movement is
in steady state, ẏ is constant, α(z, ẏ) = 1, and ż = 0. The z states values are given by equation

zss =
ẏ
∣
∣ẏ
∣
∣

gss
(
ẏ
)

σ0
= sign

(
ẏ
)

(
Fc + (Fs − Fc)e−(ẏ/ẏs)

2
)

σ0
. (3.14)
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Substituting (3.14) into (3.12), the friction force at steady state is obtained and is
written as:

Fatrss = σ0zss + σ1 · 0 + σ2ẏ = sign
(
ẏ
)(

Fc + (Fs − Fc)e−(ẏ/ẏs)2
)
+ σ2ẏ. (3.15)

A detailed study of (3.10), (3.11), and (3.15) is presented as follow. The properties
of the friction model given by (3.9) and (3.10) will be explored. To capture the intuitive
properties of the sliding body in Figure 9, the microscopic deformation z should be finite,
that is, as important property, the state z is bounded.

Proof. Consider the following Lyapunov candidate function:

V =
z2

2
, (3.16)

differentiating and combining with (3.10) and α(z, ẏ) = 1 = constant, it can be written as

dV

dt
= −∣∣ẏ∣∣ · |z| ·

(
σ0 · |z|
gss
(
ẏ
) − sign

(
ẏ
) · sign(z)

)

, (3.17)

where dV/dt is negative if |z| > gss(ẏ)/σ0, since gss(ẏ) is strictly positive and bounded by Fs,
see (3.11), then the set Ω = {z : |z| ≤ Fs/σ0} is an invariant set for the solutions of (3.10).

Equation (3.15) is a nonlinear function that represents friction force as a function of
velocity in steady state as was illustrated in Figure 10.

These dynamic properties of friction model presented are shown by Dupont et al. [15]
and follow similar analysis carried out by Lyapunov method, as presented by Canudas de
Wit et al. [14] and Canudas de Wit [20]. Among model main properties, it is cited that z state
variable is limited and the model is dissipative, satisfies the stick and slip conditions, and
represents adequately the presliding movement phase.

The applied force of Figure 11(a) was chosen to challenge the stiction capability of
the model; the force ramps up to cause breakaway and then returns to a level below that of
Coulomb friction. Additionally, an oscillation is present and could be introduced by sensor
noise or vibration. The response of frictionmodel is seen in Figure 11(b). The friction dynamic
model renders both presliding displacement and stiction.

4. Results

The most common and simple industrial application is a positioning task. By a positioning
task, the objective of bringing the load position to a specified target in the actuator’s curse
is meant. The proposed nonlinear mathematical model of a pneumatic servo position system
was used in computer simulations of three cases of different cylinder size where the desired
target position is 0.045m.

The pneumatic servo position system model dynamics is given by (3.1), (3.2), (3.6),
(3.7), (3.8), (3.9), and (3.10). This model was implemented on the MatLab/Simulink software
of which block diagram is shown in Figure 12 and using parameters presented in Tables 1 and
2. The classic proportional controller (P) was chosen because it is easy to implement and has
only one parameter to adjust. Also, the results are easier to see with P controller.
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Figure 11:Applied force in pneumatic actuator and position response in both presliding displacement and
stiction.

Table 1: The system parameters used in the numerical simulations.

Parameter value Description
psup = 7 × 105 Pa Supply pressure
patm = 1 × 105 Pa Atmospheric pressure
R = 287 Jkg/K Gas constant
T = 293K Temperature of supply air
γ = 1.4 Specific heat ratio, dimensionless
M = 10.125 kg Mass
βench = 0.69501 × 10−8 Constant coefficient to fill up
βesv = 0.898105 × 10−8 Constant coefficient to deflate
σ0 = 0.5 × 106 N/m Stiffness coefficient
σ1 = 400Ns/m Damping coefficient
σ2 = 46.532Ns/m Viscous friction coefficient
Fc = 23.103N Coulomb friction force
Fs = 24N Static friction force
ẏs = 0.010m/s Stribeck velocity

The choice curse length for case (c) in Table 2 is determined in such away that it results
in the same chamber volume of the case (a). It is a good idea because the chamber volume
has a great influence in pressure dynamics given by (3.6) and (3.7). Results obtained from
feedback control to positioning task simulations are depicted in Figure 13.

We are aiming at a good knowledge of the dynamic behavior for different pneumatic
cylinders in order to see which features contribute to a better performance in a given
engineering application. The results presented in case (a) outline the faster response with
oscillating and overshoot in actuator position. Also, there are hunting problems that are
oscillations caused by limit cycles around desired position. In many applications as robotics
and aerospace engineering, the faster response is one of the requirements for the positioning
task, and we can design pneumatic positioning systems with smaller cylinder diameter and
increase the supply pressure obtaining necessary actuator force. To solve this overshoot
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Table 2: The cylinder parameters used in the numerical simulations for different sizes.

Case (a) Case (b) Case (c) Description
d = 0.025m, d = 0.060m, d = 0.060m Diameter
L = 1m L = 1m L = 0.1746m Curse length
A = 4.91 × 10−4 m2 A = 2.8 × 10−3 m2 A = 2.8 × 10−3 m2 Piston area
Va0 = 2.5 × 10−4 m3 Va0 = 1.4 × 10−3 m3 Va0 = 2.5 × 10−4 m3 Initial volume at chamber A
Vb0 = 2.5 × 10−4 m3 Vb0 = 1.4 × 10−3 m3 Vb0 = 2.5 × 10−4 m3 Initial volume at chamber B

problem, we can use an optimal control design for nonlinear systems as in the work of
Rafikov et al. [12]. Also, the friction compensation is especially important, so that there are
no hunting problems [4] and the actuator has an accurate response.
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Despite being slow, the results in case (b) are very good for some engineering
applications as automatic welding, machining processes, surface finishing, and agricultural
machinery, where application requirements do not permit overshoot, and task velocity is
smaller. In this case, we can design pneumatic positioning systems with larger cylinder
diameter that result in the damping increase, making the system slower. Besides, we can
design a classical feedback control system depending on necessary accuracy in application.
The case (c) presented dynamic behavior similar to case (b), and it shows that the chamber
volume does not have significant influence in this positioning task.

5. Conclusion

This paper presented a full nonlinear mathematical model for pneumatic servo position
system that can be used in numerical simulations to mechanical design and control system
design of industrial applications. There was a bibliographical revision in recent international
literature. However, these works do not address completely all the important nonlinearities
in mathematical model. So, the main paper contribution was to present their nonlinearities
and its complete mathematical modeling with some innovation and application results. The
proposed systematic methodology is important to help researchers in the nonlinear modeling
and precision control success. Future research will include an optimal nonlinear control
strategy to overcome problems of the servo pneumatic system in agricultural machinery
applications with high performance.
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