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We use recent innovative solution techniques to investigate the problem of MHD viscous flow due
to a shrinking sheet with a chemical reaction. A comparison is made of the convergence rates,
ease of use, and expensiveness (the number of iterations required to give convergent results)
of three seminumerical techniques in solving systems of nonlinear boundary value problems.
The results were validated using a multistep, multimethod approach comprising the use of the
shooting method, the Matlab bvp4c numerical routine, and with results in the literature.

1. Introduction

Boundary layer flow over a stretching surface occurs in several engineering processes such
as hot rolling, wire drawing, and glass-fibre production. Materials that are manufactured by
extrusion processes and heat-treated substances proceeding between a feed roll and a wind-
up roll can be classified as a continuously stretching surface [1–3]. A shrinking film is useful
in the packaging of bulk products since it can be unwrapped easily with adequate heat [4–7].
Shrinking problems can also be applied to the study of capillary effects in small pores and
the hydraulic properties of agricultural clay soils [8]. Studies of flow due to a shrinking sheet
with heat transfer and/or mass transfer have been considered by, among others, [7, 9].

In recent years, several analytical or semianalytical methods have been proposed
and used to find solutions to most nonlinear equations. These methods include the
Adomian decomposition method (ADM) [10, 11], differential transformmethod (DTM) [12],
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variational iteration method (VIM) [13], homotopy analysis method (HAM) [14–17], and
Homotopy perturbation method (HPM) [18–23].

Motsa and Shateyi [24] obtained a numerical solution of magnetohydrodynamic
(MHD) and rotating flow over a porous shrinking sheet by the new approach known as
spectral homotopy analysis method (SHAM). Muhaimin et al. [5] studied magnetohydrody-
namic viscous flow due to a shrinking sheet in the presence of suction. The study found out
that the shrinking of the sheet has a substantial effect on the flow field and, thus, on the heat
and mass transfer rate from the sheet to the fluid.

In this paper we provide a qualitative assessment of key features of three recent
seminumerical techniques, namely, the successive linearisation method (SLM), the spectral-
homotopy analysis method (SHAM), and the improved spectral-homotopy analysis method
(ISHAM). The two methods were introduced and used by Motsa and his coworkers (see
Motsa et al. [25, 26] and Makukula et al. [27–30]) to solve nonlinear boundary value
problems. In Motsa et al. [25, 26, 29] the SHAM approach was tested on simple one-
dimensional nonlinear boundary value problems. Later, Makukula et al. [28, 30, 31] extended
the application of the SHAM to a system of two coupled nonlinear equations that model
the von Kármán fluid flow problem. The SLM method was applied on one-dimensional
nonlinear differential equations in Makukula et al. [27]. In this study we solve the nonlinear
equations that govern the shrinking sheet problem for purposes of evaluating the efficiency
of each method with regards to speed of convergence, ease of use, and expensiveness
(in terms of the number of iterations required to give convergent results). We introduce
the ISHAM as a method that is meant to improve the accuracy of the standard SHAM
approach. The governing equations for the problem are a rather formidable system of three
nonlinear differential equations in three unknowns. Parametric study of the effect of different
parameters is made and the results compared with previous findings in the literature (see
Noor et al. [6], Mohd and Hashim [7], and Muhaimin et al. [5]). The solutions are further
compared with results obtained using the shooting method and the bvp4c solver, which is
based on Runge-Kutta fourth-order schemes.

2. Mathematical Formulation

We investigate the effect of chemical reaction, heat and mass transfer on nonlinear MHD
boundary layer past a porous shrinking sheet with suction. The governing boundary layer
equations of momentum, energy, and mass diffusion in terms of the velocity components u,
v, and w are (see Muhaimin et al. [5])
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(2.1)

where α is the thermal conductivity of the fluid, B0 is the magnetic field, κ is the thermal
viscosity, K is the permeability of the porous medium, k1 is the rate of chemical reaction,
ν = μ/ρ is the kinetic viscosity, μ is the dynamic viscosity, and σ is the electrical conductivity.

The applicable boundary conditions are

u = −ax, v = −a(m − 1)y, w = −W, T = Tw, C = Cw, at y = 0,

u −→ 0, C −→ C∞, T −→ T∞ as y −→ ∞,
(2.2)

where a > 0 is the shrinking constant and W is the suction velocity. The cases m = 1 and
m = 2 correspond to shrinking sheets in the x- and y-directions, respectively.

Using the similarity transformations (see Sajid and Hayat [32]):
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(2.3)

(2.1) are transformed to the system of nonlinear equations

f ′′′ −
(
M2 + λPr

)
f ′ − f ′2 +mff ′′ = 0, (2.4)

θ′′ − Prf ′θ +mPrfθ′ = 0, (2.5)

φ′′ − Scf ′φ +mScfφ′ − Scγφ = 0, (2.6)

subject to

f(0) = s, f ′(0) = −1, f ′(∞) = 0, θ(0) = 1, θ(∞) = 0,

φ(0) = 1, φ(∞) = 0,
(2.7)

where Pr = ν/κ is the Prandtl number, Sc = ν/D is the Schmidt number, λ = κ/Ka is
the porosity, and γ is the chemical reaction parameter. We remark that (2.4) can be solved
independently of equations of (2.5)-(2.6) for f , but the solutions for θ and φ directly depend
on the solution for f . To demonstrate how robust the proposed methods of solution are,
the system of (2.4)-(2.5) is solved simultaneously in the next section. Solving the equations
simultaneously is also important when conducting the parametric study because some of the
governing parameters such as Pr andm affect all three unknown variables.



4 Mathematical Problems in Engineering

3. Solution Methods

We solve (2.4)–(2.6) using three recent innovative semi-numerical methods. Validation of the
results is done by further solving the equations numerically using a shooting method and the
Matlab bvp4c solver. For the last two methods we used a tolerance of 10−6.

We begin by transforming the domain [0,∞) to [−1, 1], using the domain truncation
method, the domain [0,∞) is first approximated by the computational domain [0, L], where
L is a fixed length that is taken to be larger than the thickness of the boundary layer. The
domain [0, L] is then transformed to [−1, 1] using the algebraic mapping

ξ =
2η
L

− 1, ξ ∈ [−1, 1]. (3.1)

3.1. The Successive Linearisation Method (SLM)

The successive linearisation method (see Makukula et al. [27, 28]) is used to solve (2.4)–(2.7).
The starting point is to assume that the independent variables f(η), θ(η), and φ(η) may be
expanded as

f
(
η
)
= fi

(
η
)
+

i−1∑
m=0

Fm

(
η
)
, θ

(
η
)
= θi

(
η
)
+

i−1∑
m=0

Θm

(
η
)
,

φ
(
η
)
= φi

(
η
)
+

i−1∑
m=0

Φm

(
η
)
, i = 1, 2, 3, . . . ,

(3.2)

where fi, θi and φi, are unknown functions and Fm, Θm, and Φm(m ≥ 1) are approximations
that are obtained by recursively solving the linear part of the equation that results from
substituting (3.2) in the governing equations (2.4)–(2.7). Substituting (3.2) in the governing
equations (2.4)–(2.7) gives
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(3.3)

where the coefficient parameters ak,i−1, bk,i−1, ck,i−1 (k = 1, . . . , 4), r1,i−1, r2,i−1, and r3,i−1 are
defined as
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(3.4)

Starting from the initial approximations
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)
= e−η, (3.5)

which are chosen to satisfy the boundary conditions (2.7), the subsequent solutions for Fm,
Θm, and Φm, m ≥ 1, are obtained by successively solving the linearized form of (3.3) which
are
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subject to the boundary conditions

Fi(0) = F ′
i(0) = F ′

i(∞) = 0, Θi(0) = 0, Φi(0) = 0. (3.7)

Once each solution for Fi,Θi, andΦi (i ≥ 1) has been found from iteratively solving (3.6)-(3.7)
for each i, the approximate solutions for f(η), θ(η), and φ(η) are obtained as
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In coming up with (3.8), we have assumed that
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Equations (3.6)-(3.7) are integrated using the Chebyshev spectral collocation method
(Canuto et al. [33] and Trefethen [34]). The unknown functions are defined by the Chebyshev
interpolating polynomials with the Gauss-Lobatto points defined as

yj = cos
πj

N
, j = 0, 1, . . . ,N, (3.10)

where N is the number of collocation points used. The unknown functions Fi, Θi, and Φi are
approximated at the collocation points by
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(3.11)

where Tk is the kth Chebyshev polynomial defined as

Tk(ξ) = cos
[
k cos−1(ξ)

]
. (3.12)

The derivatives at the collocation points are represented as
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(3.13)

where a is the order of differentiation and D = (2/L)D with D being the Chebyshev spectral
differentiation matrix. Substituting (3.13) in (3.6)-(3.7) leads to the matrix equation

Ai−1Xi = Ri−1, (3.14)

where Bi−1 is a 3(N + 1) × 3(N + 1) square matrix and Xi and Pi−1 are 3(N + 1) × 1 column
vectors defined by

Ai−1 =

⎛
⎜⎜⎝

D3 + a1D2 + a2D + a3I 0I 0I

b3D + b4I D2 + b1D + b2I 0I

c3D + c4I 0I D2 + c1D + c2I

⎞
⎟⎟⎠,

Xi = [Fm(ξ0), Fm(ξ1), . . . , Fm(ξN),Θm(ξ0),Θm(ξ1), . . . ,Θm(ξN),

Φm(ξ0),Φm(ξ1), . . . ,Φm(ξN)]T ,
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(3.15)

In the above definitions, ak,i−1, and bk,i−1, ck,i−1 (k = 1, . . . , 4) are diagonal matrices of size
(N + 1) × (N + 1). After modifying the matrix system (3.14) to incorporate the boundary
conditions, the solution is obtained as

Xi = A−1
i−1Ri−1. (3.16)

3.2. Spectral-Homotopy Analysis Method (SHAM)

The spectral-homotopy analysis method (SHAM) has been used by Motsa et al. [25, 26]. It is
also convenient to first ensure that the boundary conditions are made homogeneous by using
the transformations
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where f0(η), and θ0(η), φ0(η) are chosen to satisfy the boundary conditions (2.7) of the
governing equations (2.4)–(2.6). From (3.1) and the chain rule, we have that
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(3.18)

Substituting (3.1) and (3.17)-(3.18) in the governing equations and boundary conditions gives

a0F
′′′ + a1F

′′ + a2F
′ + a3F +

4
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2
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(
η
)
,

(3.19)
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where prime now denotes derivative with respect to ξ and
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.

(3.20)

The initial guesses used are

f0
(
η
)
= s + e−2η − ηe−η, θ0

(
η
)
= e−η, φ0

(
η
)
= e−η. (3.21)

Solving the linear part of the equation system (3.19), that is,

a0F
′′′
0 + a1F

′′
0 + a2F

′
0 + a3F0 = r1

(
η
)
,

b0Θ′′
0 + b1Θ′

0 + b2Θ0 + b3F
′
0 + b4F0 = r2

(
η
)
,

c0Φ′′
0 + c1Φ′

0 + c2Φ0 + c3F
′
0 + c4F0 = r3

(
η
)
,

(3.22)

subject to

F0(−1) = 2
L
F ′
0(−1) =

2
L
F ′
0(1) = 0, Θ0(−1) = Θ0(1) = 0, Φ0(−1) = Φ0(1) = 0,

(3.23)

will yield the initial SHAM approximate solution. Applying the Chebyshev pseudospectral
method on equations (3.22)-(3.23) yields the matrix form

BY0 = R, (3.24)
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where

B =

⎛
⎜⎜⎝

a0D3 + a1D2 + a2D + a3I 0I 0I

b3D + b4I b0D2 + b1D + b2I 0I

c3D + c4I 0I c0D2 + c1D + c2I

⎞
⎟⎟⎠, (3.25)
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, . . . , r1
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,

Y0 = [F0(ξ0), F0(ξ1), . . . , F0(ξN),Θ0(ξ0),Θ0(ξ1), . . . ,Θ0(ξN),Φ0(ξ0),Φ0(ξ1), . . . ,Φ0(ξN)]T ,

ai = diag
([
ai

(
η0
)
, . . . , ai

(
ηN−1

)
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(
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)])
, bi = diag
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)
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(
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)
, ci

(
ηN

)])
, i = 0, 1, 2, 3, 4.

(3.26)

The superscript T denotes the transpose, diag is a diagonal matrix, and I is an identity matrix
of size (N + 1) × (N + 1). The boundary conditions (3.23) are implemented in matrix B and
vector R of equation (3.24). The values of [Y0(ξ1), Y0(ξ2), . . . , Y0(ξN−1)] are then determined
from the following equation:

Y0 = B−1R, (3.27)

which provides us with the initial approximation for the solution of the governing equations
(3.19). With the initial approximate solution, we then find approximate solutions for the
nonlinear equations (3.19). We start by defining the following linear operators:

LF

[
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(
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)]
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)
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∂ξ
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∂F̃

∂ξ
+ c4F̃,

(3.28)

where q ∈ [0, 1] is the embedding parameter and F̃(ξ; q), Θ̃(ξ; q), and Φ̃(ξ; q) are unknown
functions. The zeroth-order deformation equations are given by

(
1 − q

)LF

[
F̃
(
ξ; q

) − F0(ξ)
]
= q�

{
NF

[
F̃
(
ξ; q

)] − r1
}
,

(
1 − q

)LΘ

[
Θ̃
(
ξ; q

) −Θ0(ξ)
]
= q�

{
NΘ

[
F̃
(
ξ; q

)
, Θ̃

(
ξ; q

)] − r2
}
,

(
1 − q

)LΦ

[
Φ̃
(
ξ; q

) −Φ0(ξ)
]
= q�

{
NΦ

[
F̃
(
ξ; q

)
, Φ̃

(
ξ; q

)] − r3
}
,

(3.29)
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where � is the nonzero convergence controlling auxiliary parameter and NF , NΘ, and NΦ

are nonlinear operators given by

NF

[
F̃
(
ξ; q

)]
= a0

∂3F̃

∂ξ3
+ a1

∂2F̃

∂ξ2
+ a2

∂F̃

∂ξ
+ a3F̃ +

4
L2

mF̃
∂2F̃

∂ξ2
− 4
L2

∂F̃

∂ξ

∂F̃

∂ξ
,

NΘ

[
F̃
(
ξ; q

)
, Θ̃

(
ξ; q

)]
= b0

∂2Θ̃
∂ξ2

+ b1
∂Θ̃
∂ξ

+ b2Θ̃ + b3
∂F̃

∂ξ
+ b4F̃

+
2
L
Pr

(
−Θ̃∂F̃

∂ξ
+mF̃

∂Θ̃
∂ξ

)
,

NΦ

[
F̃
(
ξ; q

)
, Φ̃

(
ξ; q

)]
= c0

∂2Φ̃
∂ξ2

+ c1
∂Φ̃
∂ξ

+ c2Φ̃ + c3
∂F̃

∂ξ
+ c4F̃

+
2
L
Sc

(
−Φ̃∂F̃

∂ξ
+mF̃

∂Φ̃
∂ξ

)
.

(3.30)

Them-th order deformation equations are given by

LF

[
Fm(ξ) − χmFm−1(ξ)

]
= �RF

m,

LΘ
[
Θm(ξ) − χmΘm−1(ξ)

]
= �RΘ

m,

LΦ
[
Φm(ξ) − χmΦm−1(ξ)

]
= �RΦ

m,

(3.31)

subject to the boundary conditions

Fm(−1) = F ′
m(−1) = F ′

m(1) = 0, Θm(−1) = Θm(1) = 0, Φm(−1) = Φm(1) = 0,
(3.32)

where

RF
m(ξ) = a0F

′′′
m−1 + a1F

′′
m−1 + a2F

′
m−1 + a3Fm−1

+
4
L2

m−1∑
n=0

(−F ′
nF

′
m−1−n +mFnF

′′
m−1−n

) − r1
(
η
)(
1 − χm

)
,

RΘ
m(ξ) = b0Θ′′

m−1 + b1Θ′
m−1 + b2Θm−1 + b3F

′
m−1 + b4Fm−1

+
2
L
Pr

m−1∑
n=0

(−F ′
nΘm−1−n +mΘ′

nFm−1−n
) − r2

(
η
)(
1 − χm

)
,
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RΦ
m(ξ) = c0Φ′′

m−1 + c1Φ′
m−1 + c2Φm−1 + c3F

′
m−1 + c4Fm−1

+
2
L
Sc

m−1∑
n=0

(−F ′
nΦm−1−n +mΦ′

nFm−1−n
) − r3

(
η
)(
1 − χm

)
,

(3.33)

χm =

⎧⎨
⎩
0, m ≤ 1

1, m > 1.

(3.34)

Applying the Chebyshev pseudospectral transformation to equations (3.31)–(3.33) gives rise
to the matrix equation

BYm =
(
χm + �

)
BYm−1 − �

(
1 − χm

)
R + �Qm−1, (3.35)

subject to the boundary conditions

N∑
k=0

D0kFm(ξk) = 0,
N∑
k=0

DNkFm(ξk) = 0, Fm(ξN) = 0,

Θm(ξ0) = 0, Θm(ξN) = 0, Φm(ξ0) = 0, Φm(ξN) = 0,

(3.36)

where B and R are as defined in (3.25) and

Ym = [Fm(ξ0), Fm(ξ1), . . . , Fm(ξN),Θm(ξ0),Θm(ξ1), . . . ,Θm(ξN),

Φm(ξ0),Φm(ξ1), . . . ,Φm(ξN)]T ,

Qm−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m−1∑
n=0

[
− 4
L2 (DFn)(DFm−1−n) +

4
L2

mFn

(D2Fm−1−n
)]

2
L
Pr

m−1∑
n=0

[−(DFn)Θm−1−n +m(DΘn)Fm−1−n]

2
L
Sc

m−1∑
n=0

[−(DFn)Φm−1−n +m(DΦn)Fm−1−n]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.37)

Applying the boundary conditions (3.32) on the right-hand side of (3.35) yields the following
recursive formula for higher-order approximations Ym(ξ) for m ≥ 1:

Ym =
(
χm + �

)
B−1B̃Ym−1 + �B−1[Qm−1 −

(
1 − χm

)
R
]
. (3.38)
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3.3. Improved Spectral-Homotopy Analysis Method (ISHAM)

Details of the improved spectral-homotopy analysis method (ISHAM) can be found in
Makukula et al. [30]. The main objective is to improve the convergence rate of the spectral-
homotopy analysis method by using an optimal initial approximation. Hence, instead of
a random solution choice a systematic approach is employed to find the optimal initial
approximation. This is achieved by first assuming that the solutions f(η), θ(η), and φ(η)
can be expanded into

f
(
η
)
= Fi

(
η
)
+

i−1∑
m=0

Fm

(
η
)
, θ

(
η
)
= Θi

(
η
)
+

i−1∑
m=0

Θm

(
η
)
,

φ
(
η
)
= Φi

(
η
)
+

i−1∑
m=0

Φm

(
η
)
, i = 1, 2, 3, . . . ,

(3.39)

where Fi, Θi, and Φi are unknown functions whose solutions are obtained using the SHAM
approach at the ith iteration and Fm, Θm, and Φm (m ≥ 1) are known from previous
iterations. We use the same initial guesses as with the SHAM solution in Sections 3.1 and
3.2. Substituting (3.39) into the governing equations gives

F ′′′
i + a1,i−1F ′′

i + a2,i−1F ′
i + a3,i−1Fi +mF ′′

i Fi − F ′
iF

′
i = r1,i−1

(
η
)
,

Θ′′
i + b1Θ′

i + b2Θi + b3F
′
i + b4Fi − PrF ′

iΘi +mPrFiΘ′
i = r2,i−1

(
η
)
,

Φ′′
i + c1Φ′

i + c2Φi + c3F
′
i + c4Fi − ScF ′

iΦi +mScFiΦ′
i = r3,i−1

(
η
)
,

(3.40)

subject to the boundary conditions

Fi(0) = 0, F ′
i(0) = F ′

i(∞) = 0, Θi(0) = 0, Θi(∞) = 0, Φi(0) = 0, Φi(∞) = 0.
(3.41)

The coefficient parameters ak,i−1, bk,i−1, ck,i−1 (k = 0, . . . , 4), r1,i−1, r2,i−1, and r3,i−1 are as defined
in equation (3.4). Starting from the initial guesses (3.5), the subsequent solutions Fi, Θi, and
Φi (i ≥ 1) are obtained by recursively solving (3.40) using the SHAM approach. To find the
SHAM solutions of (3.40), we start by defining the following linear operators:

LF

[
F̃i

(
η; q

)]
=

∂3F̃i

∂η3
+ a1,i−1

∂2F̃i

∂η2
+ a2,i−1

∂F̃i

∂η
+ a3,i−1F̃i,

LΘ

[
F̃i

(
η; q

)
, Θ̃i

(
η; q

)]
=

∂2Θ̃i

∂η2
+ b1,i−1

∂Θ̃i

∂η
+ b2,i−1Θ̃i + b3,i−1

∂F̃i

∂η
+ b4,i−1F̃i,

LΦ

[
F̃i

(
η; q

)
, Φ̃i

(
η; q

)]
=

∂2Φ̃i

∂η2
+ c1,i−1

∂Φ̃i

∂η
+ c2,i−1Φ̃i + c3,i−1

∂F̃i

∂η
+ c4,i−1F̃i.

(3.42)
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The zeroth-order deformation equations are given by

(
1 − q

)LF

[
F̃i

(
η; q

) − Fi,0
(
η
)]

= q�

{
NF

[
F̃i

(
η; q

)] − r1,i−1
}
,

(
1 − q

)LΘ

[
Θ̃i

(
η; q

) −Θi,0
(
η
)]

= q�

{
NΘ

[
F̃i

(
η; q

)
, Θ̃i

(
η; q

)] − r2,i−1
}
,

(
1 − q

)LΦ

[
Φ̃i

(
η; q

) −Φi,0
(
η
)]

= q�

{
NΦ

[
F̃i

(
η; q

)
, Φ̃i

(
η; q

)] − r3,i−1
}
,

(3.43)

NF , NΘ, and NΦ are nonlinear operators given by

NF

[
F̃i

(
η; q

)]
=

∂3F̃i

∂η3
+ a1,i−1

∂2F̃i

∂η2
+ a2,i−1

∂F̃i

∂η
+ a3,i−1F̃i

+mF̃i
∂2F̃i

∂η2
− ∂F̃i

∂η

∂F̃i

∂η
,

NΘ

[
F̃i

(
η; q

)
, Θ̃i

(
η; q

)]
=

∂2Θ̃i

∂η2
+ b1,i−1

∂Θ̃i

∂η
+ b2,i−1Θ̃i + b3,i−1

∂F̃i

∂η
+ b4,i−1F̃i

+ Pr

(
−Θ̃i

∂F̃i

∂η
+mF̃i

∂Θ̃i

∂η

)
,

NΦ

[
F̃i

(
η; q

)
, Φ̃i

(
η; q

)]
=

∂2Φ̃i

∂η2
+ c1,i−1

∂Φ̃i

∂η
+ c2,i−1Φ̃i + c3,i−1

∂F̃i

∂η
+ c4,i−1F̃i

+ Sc

(
−Φ̃i

∂F̃i

∂η
+mF̃i

∂Φ̃i

∂η

)
.

(3.44)

Themth order deformation equations are

LF

[
Fi,m

(
η
) − χmFi,m−1

(
η
)]

= �RF
i,m,

LΘ
[
Θi,m

(
η
) − χmΘi,m−1

(
η
)]

= �RΘ
i,m,

LΦ
[
Φi,m

(
η
) − χmΦi,m−1

(
η
)]

= �RΦ
i,m,

(3.45)

subject to the boundary conditions

Fi,m(0) = F ′
i,m(0) = F ′

i,m(∞) = 0, Θi,m(0) = Θi,m(∞) = 0, Φi,m(0) = Φi,m(∞) = 0,
(3.46)
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where

RF
i,m

(
η
)
= F ′′′

i,m−1 + a1,i−1F ′′
i,m−1 + a2,i−1F ′

i,m−1 + a3,i−1Fi,m−1

+
m−1∑
n=0

(
−F ′

i,nF
′
i,m−1−n +mFi,nF

′′
i,m−1−n

)
− r1,i−1

(
η
)(
1 − χm

)
,

RΘ
i,m

(
η
)
= Θ′′

i,m−1 + b1,i−1Θ′
i,m−1 + b2,i−1Θi,m−1 + b3,i−1F ′

i,m−1 + b4,i−1Fi,m−1

+ Pr
m−1∑
n=0

(
−F ′

i,nΘi,m−1−n +mΘ′
i,nFi,m−1−n

)
− r2,i−1

(
η
)(
1 − χm

)
,

RΦ
i,m

(
η
)
= Φ′′

i,m−1 + c1,i−1Φ′
i,m−1 + c2,i−1Φi,m−1 + c3,i−1F ′

i,m−1 + c4,i−1Fi,m−1

+ Sc
m−1∑
n=0

(
−F ′

i,nΦi,m−1−n +mΦ′
i,nFi,m−1−n

)
− r3,i−1

(
η
)(
1 − χm

)
.

(3.47)

The initial approximations Fi,0, Θi,0, and Φi,0 that are used in the higher-order equations
(3.45)–(3.47) are obtained by solving the linear part of (3.40) given by

F ′′′
i,0 + a1,i−1F ′′

i,0 + a2,i−1F ′
i,0 + a3,i−1Fi,0 = r1,i−1,

Θ′′
i,0 + b1,i−1Θ′

i,0 + b2,i−1Θi,0 + b3,i−1F ′
i,0 + b4,i−1Fi,0 = r2,i−1,

Φ′′
i,0 + c1,i−1Φ′

i,0 + c2,i−1Φi,0 + c3,i−1F ′
i,0 + c4,i−1Fi,0 = r3,i−1,

(3.48)

with the boundary conditions

Fi,0(0) = F ′
i,0(0) = F ′

i,0(∞) = 0, Θi,0(0) = 0, Θi,0(∞) = 0, Φi,0(0) = 0,

Φi,0(∞) = 0.
(3.49)

In a similar manner, we apply the spectral methods to solve for the initial approximate
solutions Fi,0, Θi,0, and Φi,0, and the higher-order deformation equations (3.45)–(3.47) for
higher order approximate solutions Fi,m, Θi,m, and Φi,m for m ≥ 1. The solutions for Fi, Θi,
and Φi are then generated using the solutions for Fi,m, Θi,m, and Φi,m as follows:

Fi = Fi,0 + Fi,1 + Fi,2 + Fi,3 + · · · + Fi,m,

Θi = Θi,0 + Θi,1 + Θi,2 + Θi,3 + · · · + Θi,m,

Φi = Φi,0 + Φi,1 + Φi,2 + Φi,3 + · · · + Φi,m.

(3.50)

The [i,m] approximate solutions for f(η), θ(η), and φ(η) are then obtained by substituting Fi,
Θi, and Φi from (3.50) into (3.39), where i is the ith iteration of the higher-order deformation
equation and m is the mth iteration of the initial approximation.
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Table 1: Comparison of the approximate solutions of f ′′(0) at different orders of the SLM, SHAM, and
ISHAM against the numerical solutions at different values of λ when s = 3, M = 1, m=1, Sc = 0.62, γ =3, Pr
= 1, λ = 0, �=−1, L = 30, and N = 150.

SLM SHAM ISHAM Shooting bvp4c Ref. [9]
λ order f ′′(0) order f ′′(0) order f ′′(0) f ′′(0) f ′′(0) f ′′(0)
1 1 3.32068 1 3.30709 [1, 1] 3.33858 3.30278 3.30278 3.302776

2 3.30283 2 3.30338 [2, 2] 3.30278
3 3.30278 4 3.30279 [3, 3] 3.30278
4 3.30278 6 3.30278 [4, 4] 3.30278

2 1 3.57292 1 3.56643 [1, 1] 3.59883 2.30278 2.30278 3.561553
2 3.56157 2 3.56225 [2, 2] 2.30278
3 3.56155 4 3.56157 [3, 3] 2.30278
4 3.56155 6 3.56155 [4, 4] 2.30278

4 1 4.00770 1 4.00549 [1, 1] 4.03789 4.00000 4.00000 4.000000
2 4.00000 2 4.00084 [2, 2] 4.00000
3 4.00000 4 4.00002 [3, 3] 4.00000
4 4.00000 6 4.00000 [4, 4] 4.00000

Table 2: Comparison of the approximate solutions of −θ′(0) at different orders of the SLM, SHAM, and
ISHAM against the numerical solutions at different values of λ when s = 3, M = 1, m = 1, Sc = 0.62, γ = 3,
Pr = 1, λ = 0, � = −1, L = 30, and N = 150.

SLM SHAM ISHAM Shooting bvp4c Ref. [9]
λ order −θ′(0) order −θ′(0) order −θ′(0) −θ′(0) −θ′(0) −θ′(0)
1 1 2.56783 1 2.67511 [1, 1] 2.80912 2.66554 2.66554 2.665537

2 2.66485 2 2.66656 [2, 2] 2.66554
3 2.66554 4 2.66556 [3, 3] 2.66554
4 2.66554 6 2.66554 [4, 4] 2.66554

2 1 2.59198 1 2.69041 [1, 1] 2.84009 2.68032 2.68032 2.680315
2 2.67987 2 2.68132 [2, 2] 2.68032
3 2.68032 4 2.68034 [3, 3] 2.68032
4 2.68032 6 2.68032 [4, 4] 2.68032

4 1 2.62914 1 2.71316 [1, 1] 2.88452 2.70240 2.70240 2.702455
2 2.70215 2 2.70336 [2, 2] 2.70240
3 2.70240 4 2.70241 [3, 3] 2.70240
4 2.70240 6 2.70240 [4, 4] 2.70240

4. Results and Discussion

Equations (2.4)-(2.6) subject to boundary conditions (2.7) have been solved using three recent
semi-numerical techniques as described above. To validate our results, we have compared the
skin friction coefficient, the Nusselt number, and the Sherwood number with the theoretical
results of Muhaimin et al. [9]. We have further compared our results with the full numerical
solutions obtained using the shooting method and theMatlab bvp4c routine. The comparison
is given in Tables 1–3.

Tables 1–3 give values of the skin friction, heat transfer rate, and the mass transfer rate,
respectively, for different porosity values. The convergence to the two numerical results of the
SLM is achieved at the third order of approximation, at the sixth order for the SHAM, and at
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Table 3: Comparison of the approximate solutions of −φ′(0) at different orders of the SLM, SHAM, and
ISHAM against the numerical solutions at different values of λ when s = 3, M = 1, m = 1, Sc = 0.62, γ = 3,
Pr = 1, λ = 0, � = −1, L = 30, and N = 150.

SLM SHAM ISHAM Shooting bvp4c Ref. [9]
λ order −φ′(0) order −φ′(0) order −φ′(0) −φ′(0) −φ′(0) −φ′(0)
1 1 2.39294 1 2.41413 [1, 1] 2.43976 2.41029 2.41029 2.410283

2 2.41026 2 2.41085 [2, 2] 2.41029
3 2.41029 4 2.41030 [3, 3] 2.41029
4 2.41029 6 2.41029 [4, 4] 2.41029

2 1 2.40181 1 2.42137 [1, 1] 2.44981 2.41700 2.41700 2.417000
2 2.41698 2 2.41764 [2, 2] 2.41700
3 2.41700 4 2.41702 [3, 3] 2.41700
4 2.41700 6 2.41700 [4, 4] 2.41700

4 1 2.41559 1 2.43236 [1, 1] 2.46460 2.42722 2.42722 2.427225
2 2.42721 2 2.42797 [2, 2] 2.42722
3 2.42722 4 2.42724 [3, 3] 2.42722
4 2.42722 6 2.42722 [4, 4] 2.42722

second order for the ISHAM. Comparison with results reported in Muhaimin et al. [9] shows
an excellent agreement.

Table 1 shows an increase in the surface shear stress f ′′(0) with an increase in the
porosity parameter λ. The increase in the skin friction with the porosity may be accounted
for by the fact that the velocity gradient increases with porosity (Takhar et al. [35]). Tables
2 and 3 show an increase in the surface heat transfer rate −θ′(0) and the mass transfer rate
−θ′(0) with the porosity parameter for large suction values (s = 3), suggesting an increase in
temperature and concentration gradients with increasing porosity.

Figure 1 serves two purposes: (a) to give sense of the accuracy of the improved spectral
homotopy analysis (ISHAM) by means of a comparison between the numerical results and
the second-order improved spectral-homotopy analysis results and (b) to demonstrate the
effects of the suction parameter s and the Hartmann numberM on the velocity profiles f ′(η).

Firstly we observe an excellent agreement between the second-order ISHAM and the
numerical bvp4c results for all parameter values used. Secondly we note that these results are
qualitatively similar to those reported in Noor et al. [6] for the case of one-direction shrinking
(m = 1) and show that increasing the suction parameter s and the Hartmann numberM leads
to an increase in the velocity. This in turn leads to a decrease in the boundary layer thickness
as fluid is sucked out of the flow region.

5. Conclusions

We have successfully solved the nonlinear system of equations governing MHD boundary
layer past a porous shrinking sheet with a chemical reaction and suction. We demonstrated
three recent innovative methods, namely, the successive linearisation method (SLM), the
spectral-homotopy analysis method (SHAM), and the improved spectral-homotopy analysis
method (ISHAM), and compared the performance of the three methods with regard to the
speed of convergence of the solution (the number of iterations required), computational
efficiency, and the ease of application of the method. The results were compared with those
obtained using the well-known shooting method and the Matlab bvp4c solver. We found that
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Figure 1: On the comparison between the 2nd-order ISHAM solution (figures) and the bvp4c numerical
solution (solid line) for f (η) and θ(η) at different values of λ when M = 1, m = 1, Pr = 3, λ1 = 2, s = 1, L =
30, and N = 150.

the ISHAM converged at second order. The magnitude of the parameter values used did not
affect its performance under the same conditions with the SLM and SHAM. Nevertheless,
the ISHAM does not come cheap in terms of the size of the code and computer time, taking
about three times as long as the SLM to compute the same result and about double the time
taken with the SHAM. The SLM converged at third order, is easy to implement, and has



18 Mathematical Problems in Engineering

shown a good level of stability when solving highly nonlinear problems. The SHAM gives
good convergence under the same conditions but poor convergence with highly nonlinear
problems. It is easy to implement but not as easy as with the SLM.

Results from simulations revealed an excellent agreement between results from the
shooting method and the bvp4c. Our findings indicate that the ISHAM is the best approach
of the three methods in terms of the accuracy of the results and speed of convergence.
Parametric studies for effects of different parameter values in the problems agreed with
results present in the literature.
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