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The fictitious domain technique is coupled to the improved time-explicit asymptotic method for
calculating time-periodic solution of wave equation. Conventionally, the practical implementation
of fictitious domain method relies on finite difference time discretizations schemes and finite
element approximation. Our newmethod applies finite difference approximations in space instead
of conventional finite element approximation. We use the Dirac delta function to transport the
variational forms of thewave equations to the differential form and then solve it by finite difference
schemes. Our method is relatively easier to code and requires fewer computational operations
than conventional finite element method. The numerical experiments show that the new method
performs as well as the method using conventional finite element approximation.

1. Introduction

Recently, aircraft design for military application has focused more and more attention
on using stealth technologies. It is important to realize Rader stealth through reducing
the intensity of scattering signals of Rader in stealth design. Theoretically, the stealth
characteristics such as Radar Cross-Section (RCS) for a given aerodynamic body can
be obtained by solving the fundamental electromagnetic Maxwell equations. The control
method based on exact controllability has been successfully used in computing the time-
periodic solutions of scattered fields by multibody reflectors (see [1–5]). An improved
time-explicit asymptotic method is afforded through introducing an auxiliary parameter for
solving the exact controllability problem of scattering waves [4].
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Fictitious domain methods are efficient methods for the solutions of viscous flow
problems with moving boundaries [6]. In [7–9], fictitious domain method is combined with
controllability method to compute time-periodic solution of wave equation, which is proved
to be equivalent to the Maxwell equation in two dimensions for the TM mode. A motivation
for using fictitious domain method is that it allows the propagation to be simulated on
an obstacle free computational region with uniform meshes. In our paper, the fictitious
domain technique is coupled to the improved time-explicit asymptotic method for calculating
time-periodic solutions of wave equation. Conventionally, the practical implementation of
fictitious domain method relies on finite difference time discretizations schemes and finite
element approximation. Our new method applies finite difference approximations in space
instead of conventional finite element approximation (see [7–9]). We use the Dirac delta
function to transport the variational form of the wave equation to the differential form and
then solve it by finite difference schemes. Our method is relatively easier to code and requires
fewer computational operations than conventional finite element method does.

In Section 2, the formulation of the Scattering problem is presented. In Section 3, we
introduce exact controllability problem of the Scattering problem and the corresponding
improved time-explicit algorithm. In Section 4, we use fictitious domain method to solve
the equivalent variational problem of the relevant time discretization of wave equations.
In Section 5, we use the Dirac delta function to improve the computation procedure of the
space discretization equations. Finally, the results of numerical experiments and conclusion
are presented in Sections 6 and 7.

2. Formulation of the Scattering Problem

We will discuss the scattering of monochromatic incident waves by perfectly conducting
obstacle in R2 [1]. Let us consider a scattering body ω with boundary γ = ∂ω, illuminated
by an incident monochromatic wave of period T and incidence β. We bound Rn \ ω by an
artificial boundary Γ. We denote by Ω the region of Rn between γ and Γ (see Figure 1). The
scattered field u satisfies the following wave equation and boundary conditions:

utt −Δu = 0, in Q(= Ω × (0, T)),

u = g, on σ
(
= γ × (0, T)

)
,

∂u

∂n
+
∂u

∂t
= 0, on Σ(= Γ × (0, T)),

(2.1)

where g = −Re[e−ikteik(x cos β+y sin β)], with i =
√
−1, k = 2π/T .

Due to the periodic requirement, u also should satisfy

u(0) = u(T), ut(0) = ut(T). (2.2)

Equation (2.1) represent the electric field u satisfying the two-dimensional Maxwell
equation written in transverse magnetic (TM) form.
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Ω

ω

Figure 1: Computational Domain.

3. Exact Controllability and Least-Squares Formulations

Solving problem (2.1)-(2.2) is equivalent to finding a pair {v0, v1} such that

u(0) = v0, ut(0) = v1,

u(T) = v0, ut(T) = v1,
(3.1)

where u is the solution of (2.1). Problem (2.1), and (3.1) is an exact controllability problem
which can be solved by the following controllability methodology given by [1].

Let E is the space containing {v0, v1}

E = Vg × L2(Ω), (3.2)

with Vg = {ϕ | ϕ ∈ H1(Ω), ϕ|γ = g(0)}. Least-squares formulations of (2.1), and (3.1) are
given by

min
v∈E

J(v), (3.3)

with

J(v) =
1
2

∫

Ω

[∣∣∇(
y(T) − v0

)∣∣2 +
∣∣yt(T) − v1

∣∣2
]
dx, ∀v = {v0, v1}, (3.4)

where y is the solution of

ytt −Δy = 0, in Q = (Ω × (0, T)), (3.5)

y = g, on σ
(
= γ × (0, T)

)
, (3.6)

∂y

∂n
+
∂y

∂t
= 0, on Σ(= Γ × (0, T)), (3.7)

y(0) = v0, yt(0) = v1. (3.8)
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The problem (3.3)–(3.8) may be solved by the conjugate algorithm [1]. Because this method
looks some complicated, we use an alternative improved time-explicit asymptotic algorithm
[4] to solve it. This method introduces an auxiliary parameter to control the time-explicit
asymptotic iteration, and the auxiliary parameter is updated during the iteration based on
the existing or current iterated solution of the wave equation. The algorithm is presented as
follows.

Algorithm 3.1. We have the following steps.

Step 1 (initialization). (1) Given v = {v0, v1} ∈ E as an initial guess.
(2) compute the first periodic solution yT : solving wave equation problem (3.5)–(3.8)

to have solution yT = {y(T), yt(T)}.
(3) compute the second periodic solution y2T : solving wave equation problem (3.5)–

(3.8) to get solution y2T = {y(2T), yt(2T)}with initial condition y(0) = y(T), yt(0) = yt(T).

Step 2 (compute β∗ and update v, yT ). (1) Compute β∗ by

β∗ =
1
2
− J

(
yT

) − J(v)
∫
Ω

[∣∣∇(
δTTy(T)

)∣∣2 +
∣∣δTTyt(T)

∣∣2
]
dx

, (3.9)

where δTTy(T) = y(2T) − 2y(T) + y(0).

(2) Update v and yT by

v =
{[
v0 + β∗

(
y(T) − v0

)]
,
[
v1 + β∗

(
yt(T) − v1

)]}
,

yT =
{[
y(T) + β∗

(
y(2T) − y(T)

)]
,
[
yT (T) + β∗

(
yt(2T) − yt(T)

)]}
.

(3.10)

Step 3 (solve wave equation to obtain y2T ). Solve (3.5)–(3.8) for the second periodic solution
y2T = {y(2T), yt(2T)}with initial condition y(0) = y(T), yt(0) = yt(T).

Step 4 (test of the convergence). Compute control function J(yT ). If the value of J(yT ) satisfies
a given accuracy, then v = yT is taken as final solution, otherwise return to Step 2.

4. Fictitious Domain Method for Solving Wave Equation

Note that the above algorithm needs solve wave equations (3.5)–(3.8). The equivalent
variational formulation of (3.5)–(3.7) is

∫

Ω
yttz dx +

∫

Ω
∇y · ∇zdx +

∫

Γ

∂y

∂t
dΓ = 0, ∀z ∈ V0,

y = g, on σ,

(4.1)

where V0 = {ϕ | ϕ ∈ H1(Ω), ϕ|γ = 0}.
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The implementation used in [1] is based on an explicit finite difference scheme in time
combined to piecewise linear finite element approximations for the space variables. Time
discretization is carried out by a centered second-order difference scheme with time step
Δt = T/N. After time discretization, (4.1)with (3.8) becomes

1
Δt2

∫

Ω

(
yn+1 − 2yn + yn−1

)
zdx +

∫

Ω
∇yn+1 · ∇zdx +

1
2Δt

∫

Γ

(
yn+1 − yn−1

)
zdΓ = 0, ∀z ∈ V0,

yn+1 = g
(
tn+1

)
, on γ,

y0 = v0,
y1 − y−1

2Δt
= v1.

(4.2)

The fully discrete system can be obtained by the corresponding space discretization.
Because Ω is irregular, if we directly use fitted meshes of Ω as in [1], we will meet great
trouble of constructing meshes and difficulty of computation especially to those shape
optimization problems with several scatters. So, we consider the problem (3.5)–(3.8) in the
extended rectangular domain B = ω ∪ Ω with boundary Γ by the following boundary
Lagrangian fictitious domain method. It allows the propagation to be simulated on B with
uniform meshes. By introducing Lagrangian multipliers to enforce the Dirichlet boundary
condition on γ , (3.5)–(3.8) is equivalent to the following variational problem.

Find {y, λ} ∈ H1(B) × L2(γ), such that

∫

B

yttz dx +
∫

B

∇y · ∇zdx +
∫

Γ

∂y

∂t
dΓ +

∫

γ

λz dγ = 0, ∀z ∈ H1(B),

∫

γ

μ
(
y − g

)
dγ = 0, ∀μ ∈ L2(γ

)
,

y(0) = v0, yt(0) = v1.

(4.3)

Let Δt = T/N, discretize (4.3) with respect to time with

y0 = v0,
y0 − y−1

Δt
= v1, (4.4)

for n = 0, 1, . . . ,N, we compute yn+1, λn+1 via the solution of

1
Δt2

∫

B

(
yn+1 − 2yn + yn−1

)
zdx +

∫

B

∇yn · ∇zdx

+
1

2Δt

∫

Γ

(
yn+1 − yn−1

)
zdΓ +

∫

γ

λn+1zdγ = 0, ∀z ∈ H1(B),
(4.5)

∫

γ

μ
(
yn+1 − gn+1

)
dγ = 0, ∀μ ∈ L2(γ

)
. (4.6)
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Below, we consider conjugate gradient method for solving (4.5) and (4.6).
For given yn, yn−1, define linear functional f on H1(B)

f(z) =
1

Δt2

∫

B

(
−2yn + yn−1

)
zdx +

∫

B

∇yn · ∇zdx − 1
2Δt

∫

Γ
yn−1zdΓ, ∀z ∈ H1(B).

(4.7)

Let

a(w, z) =
1

Δt2

∫

B

wzdx +
1

2Δt

∫

Γ
wzdΓ, ∀w, z ∈ H1(B). (4.8)

Suppose z0 satisfies

a
(
z0, z

)
+ f(z) = 0, ∀z ∈ H1(B). (4.9)

Then, (4.5) is

a
(
yn+1 − z0, z

)
+
∫

γ

λn+1zdγ = 0, ∀z ∈ H1(B). (4.10)

Define A : L−1/2(γ) → L1/2(γ),Aμ = yμ|γ , for all μ ∈ L2(γ), where yμ satisfies

a
(
yμ, z

)
+
∫

γ

μz dγ = 0, ∀z ∈ H1(B). (4.11)

Let 〈·, ·〉 denote scalar product in L2(γ), then

a
(
yμ′ , yμ

)
+
〈
μ′, Aμ

〉
= 0 ∀μ′, μ ∈ L2(γ

)
. (4.12)

−A is symmetric and positive definite. Then, in L2(γ) (4.5) (or (4.10)) becomes

Aλn+1 =
(
yn+1 − z0

)
|
γ
. (4.13)

By (4.6),

yn+1|γ = gn+1. (4.14)

Then,

Aλn+1 = gn+1 − z0|γ . (4.15)
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Its variational form is

〈
−Aλn+1, μ

〉
=
〈
z0|γ − gn+1, μ

〉
, ∀μ ∈ L2(γ

)
. (4.16)

A conjugate gradient algorithm for the solution λn+1 of (4.16) is given by the following.

Step 1 (initialization). (1) Give initial value λ0 ∈ L2(γ) and a real number ε > 0 small enough.
(2) Find u0 ∈ H1(B) such that

a
(
u0, z

)
+ f(z) +

∫

γ

λ0zdγ = 0, ∀z ∈ H1(B), (4.17)

that is,

1
Δt2

∫

B

(
u0 − 2yn + yn−1

)
zdx +

∫

B

∇yn · ∇zdx

+
1

2Δt

∫

Γ

(
u0 − yn−1

)
zdΓ +

∫

γ

λ0zdγ = 0, ∀z ∈ H1(B).
(4.18)

(3) Calculate d0 ∈ L2(γ) by

∫

γ

d0μdγ =
∫

γ

(
gn+1 − u0

)
μdγ, ∀μ ∈ L2(γ

)
. (4.19)

(4) Set w0 = d0.

Step 2. For all k > 0, calculate λk+1, dk+1, wk+1 from λk, dk, wk.
(1) Find uk ∈ H1(B) such that

a
(
uk, z

)
+
∫

γ

wkz dγ = 0, ∀z ∈ H1(B), (4.20)

that is,

1
Δt2

∫

B

ukz dx +
1

2Δt

∫

Γ
ukz dΓ +

∫

γ

wkz dγ = 0, ∀z ∈ H1(B). (4.21)

(2) Calculate ρk: ρk =
∫
γ |dk|2dγ/ − ∫

γ u
kwkdγ .

(3) Calculate λk+1: λk+1 = λk − ρkwk.
(4) Calculate the new gradient dk+1 ∈ L2(γ) by

∫

γ

dk+1μdγ =
∫

γ

dkμ dγ + ρk
∫

γ

ukμ dγ, ∀μ ∈ L2(γ
)
. (4.22)



8 Mathematical Problems in Engineering

Step 3 (test of the convergence). If ‖dk+1‖L2(γ)/‖d0‖L2(γ) ≤ ε, then take λn+1 = λk+1 and solve
(4.10) for the corresponding solution yn+1, take yn+1 as the final solution; else, compute γk by

γk =

∥
∥dk+1

∥
∥
L2(γ)

∥
∥dk

∥
∥
L2(γ)

, (4.23)

and update wk by

wk+1 = dk + γkwk. (4.24)

Set k = k + 1, return to Step 2.

5. Improving the Computation Procedure of the Space Discretizations

Conventionally, we solve (4.18) and (4.21) by the finite element method (see [7–9]). In the
computation procedure of the finite element discretizations, themesh of the extended domain
is regular, but the boundary is irregular. We will meet the trouble of computing the boundary
integrals which leads to complex set operations like intersection and subtraction between
irregular boundary γ and regular mesh of B. In order to avoid these difficulties and solve
(4.18) and (4.21)more efficiently, we use the Dirac delta function to improve the computation
procedure of the discretizations. We discuss this method as follows.

We construct a regular Eulerian mesh on B

Bk =
{
xij | xij =

(
x0 + ih, y0 + jh

)
, 0 ≤ i, j ≤ I

}
, (5.1)

where h is the mesh width (for convenience, kept the same both in x- and in y-directions).
Assume that the configuration of the simple closed curve γ is given in a parametric form
(s), 0 ≤ s ≤ L. The discretization of the boundary γ employs a Lagrangian mesh, represented
as a finite collection of Lagrangian points {Xk, 0 ≤ k ≤ M} apart from each other by a
distance Δs, usually taken as being h/2. Let δ(·) be a Dirac delta function. In the following
calculation procedure, δ is approximated by the distribution function δh. The choice here is
given by the product

δh(x) = dh(x1)dh(x2), (5.2)

where x = (x1, x2) and dh is defined by

dh(z) =

⎧
⎪⎨

⎪⎩

0.25
h

[
1 + cos

(
πz

2h

)]
, |z| ≤ 2h,

0, |z| > 2h.
(5.3)
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Using the above Dirac delta function, we can transport the variational form (4.18) to the
difference form. We write

∫
γ λ

0zdγ in (4.18) as the following form:

∫

γ

λ0zdγ =
H−1(B)

〈
L0, z

〉

H1(B)
, (5.4)

where

L0(x) =
∫L

0
λ0(s)δ(x −X(s))ds, ∀x ∈ B, (5.5)

that is, λ0 calculated over the Lagrangian points are distributed over the Eulerian points.
Thus, we can write (4.18) in the difference form as follows:

u0 − 2yn + yn−1

Δt2
−Δyn + L0 = 0, in B,

∂yn

∂n
+
u0 − yn−1

2Δt
= 0, on Γ.

(5.6)

Thus, the solution of (4.18) is

u0 = 2yn − yn−1 + Δt2
(
Δyn − L0

)
, in B,

u0 = yn−1 − 2Δt
∂yn

∂n
, on Γ.

(5.7)

The discrete form of (5.5) is

L0(xij

)
=
∑

k

λ0kδh
(
xij −Xk

)
Δs, ∀xij ∈ Bh. (5.8)

So, we can obtain u0(xij) for all xij ∈ Bh.
In the same way, let

Wk(x) =
∫L

0
wk(s)δ(x −X(s))ds, ∀x ∈ B. (5.9)

Then, (4.21) also can be written in the difference form as follows:

uk = −Δt2Wk, in B,

uk = 0, on Γ.
(5.10)
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0.2λ

4λ

1.4λ

Figure 2: Semiopen rectangular cavity.

Calculate

Wk(xij

)
=
∑

m

wk
mδh

(
xij −Xm

)
Δs, ∀xij ∈ Bh. (5.11)

Then, we can get uk(xij), for all xij ∈ Bh.
Thus

uk|γ = uk(X(s)) =
∫

B

uk(x)δ(x −X(s))dx, ∀0 ≤ s ≤ L. (5.12)

Its discrete form is

uk
m =

∑

ij

uk(xij

)
δh

(
xij −Xm

)
h2, ∀1 ≤ m ≤ M. (5.13)

And by (4.22), we have

dk+1 = dk + ρk uk|γ . (5.14)

It can be seen from the above discretization process that most of the calculations are
done over the Lagrangian points and the neighboring Eulerian points of the boundary γ .
The solutions of (4.18) and (4.21) are given explicitly by (5.7) and (5.10). And we only need
do the evaluation in (5.8), (5.11), and (5.13) to obtain the solutions of (4.18) and (4.21). So,
our method is easier to code and requires fewer computational operations than conventional
finite element method (see [7–9]).

6. Numerical Experiments

In order to validate the methods discussed in the above sections, we apply our algorithm to
simulate the scattering of planar monochromatic incident waves by a perfectly conducting
obstacle. The obstacle is a Semiopen rectangular cavity; the internal dimensions of the
cavity are 4λ × 1.4λ, and the thickness of the wall is 0.2λ as shown in Figure 2. Wavelength
λ = 0.25m and incidence of illuminating waves is 0◦. The corresponding scattered fields
and convergence histories of control function J are shown in Figures 3 and 4. Figures 3 and 4
show that ourmethod performs as well as themethod discussed in [7–9] does where fictitious
domain method and obstacle fitted meshes were used.
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Figure 3: Contours of the scattered field.
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Figure 4: Convergence histories.

7. Conclusions

In this paper, the fictitious domain technique is coupled to the improved time-explicit
asymptotic method for calculating the time-periodic solutions of wave equations. It allows
the propagation to be simulated on an obstacle free computational region with uniform
meshes. One of the main advantages of the fictitious domain approach is that it is well suited
to those shape optimization problems with several scatters that minimize, for example, a
Rader Cross Section. We use the Dirac delta function to improve the computation procedure
of space discretizations. Numerical experiments invalidate that our algorithms are efficient
and easy to implement alternative to more classical wave equation solvers.
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