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Correspondence should be addressed to Elena Sánchez, esanchezj@mat.upv.es

Received 23 December 2010; Accepted 2 March 2011

Academic Editor: Reza Jazar
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This paper presents the use of an iteration method to solve the identifiability problem for a class of
discretized linear partial differential algebraic equations. This technique consists in replacing the
partial derivatives in the PDAE by differences and analyzing the difference algebraic equations
obtained. For that, the theory of discrete singular systems, which involves Drazin inverse matrix,
is used. This technique can also be applied to other differential equations in mathematical physics.

1. Introduction

Mathematical models are used extensively to simulate the behavior of experimental and
practical situations. These models can be constructed in different ways and differ greatly
in complexity but they have in common that they can be used to predict the behavior
of the initial system. Usually, the model is constructed using some of the properties of a
system by tinkering with adjustable parameters and sometimes the equations of the models
involved unknown parameters. In this case, it is interesting to obtain these parameters
to make the model accurate. This property is known as identifiability problem. Given a
parameterized state-space model, structural identifiability is concerned with whether the
unknown parameters within the model can be identified uniquely from the experiment
considered. Thus structural identifiability analysis is an important step in the modeling
process, and it is necessary for theoretical prerequisites to experiment design and system
identification, that is, to estimate the unknown parameters of the model using experimental
data. A wide variety of these models is often defined by differential algebraic equations
(DAEs) or partial differential algebraic equations (PDAEs). These equations relate internal
variables and their derivatives with inputs to the system and appear in several scientific
fields. Recently, several researches have been devoted to PDAEs, and some theoretical and
numerical results are obtained [1–4].
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In this paper, we limit ourselves to solve the identifiability problem for second order
partial differential equations which has added additional algebraic equations. The relations
can be described by the general explicit formulation (see [1, 5]) using a matrix equation in
the form

E
∂z

∂t
+ F(p)

∂2z

∂x2
+G(p)z = f(t, x), (1.1)

where f(t, x) ∈ R
n is a smooth function, E/= 0, F(p)/= 0, G(p) are matrices in R

n×n, all of which
can be singular, and p = (α, β) ∈ R

2 is a unknown parameter vector. The solution of (1.1),
denoted by z = z(t, x), depends on the parameter vector p, the spatial variable x ∈ Ω and the
time value t ∈ (0, T).

For system (1.1) initial values and boundary conditions may depend on the parameter
vector to be estimated. In general, if an arbitrary initial condition is imposed, it may be
inconsistent with the PDAE; for that, we assume that initial values may be decomposed into
the data which can be prescribed arbitrarily and the consistent data. The boundary values are
in similar form.

The outline of this paper is as follows. Problem description and general formulations
are discussed in Section 2, also it contains the numerical procedure to discretize the partial
differential algebraic equation. Section 3 contains the solution to the identifiability problem of
a structural discrete system and the application of the obtained results to solve the initial iden-
tifiability problem. For that, an explicit expression of the Drazin inverse of a structuredmatrix
with parameters is given and the structure of the Markov parameters of the singular system
is obtained. Finally, in last the section, an algorithm and an illustrative example are shown.

2. Problem Description and Discretization

In this section we consider the second-order partial differential algebraic equations (PDAEs)
given by

E
∂z

∂t
+ F(p)

∂2z

∂x2
+G(p)z = O, (2.1)

where z =
(

z1

z2

)
, z1 ∈ R

n1 , z2 ∈ R
n2 and E = diag(I,O), F(p) = αI, α > 0, and G(p) = βI + E,

β > 4α. The differential algebraic aspect of the system is due to singularity of E.
The basic idea to solve the identifiability problem is the use of an iteration method

based on the numerical procedure that is useful to discretize partial differential algebraic
equations. This technique consists in replacing the partial derivatives in the PDAE by differ-
ences. For that, we discretize our domain, both time and space can be discretized by an uni-
form grid with gridparameter Δx, where Δx is the distance between two neighboured nodes
of the grid, and we discretize the interval (0, T) by a one-dimensional grid with stepsize Δt.

In this case we use the forward-looking difference operator in time and the
approximation is

∂z

∂t
≈ zk+1,i − zk,i

Δt
, (2.2)
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and the second-order derivative is approximated by the second-order central difference
operator in space given by

∂2z

∂x2
≈ zk,i−1 − 2zk,i + zk,i+1

(Δx)2
. (2.3)

To obtain the discretized system we take Δx = Δt = 1. The discretized problem can by
written as

z1k+1,i = pz1k,i + q
(
z1k,i−1 + z1k,i+1

)
,

0 = pz2k,i + q
(
z2k,i−1 + z2k,i+1

)
, i = 1, . . . ,N − 1,

(2.4)

where p = 2α − β and q = −α.
Moreover, we need to add some equations to show the transition among the variables.

These new equations are linearly independent of the other equations and have the form

z1k+1,0 = pz1k,0 + qz1k,1,

z2k+1,0 = pz2k,0 + qz2k,1 + uk,

z1k+1,N = pz1k,N + q
(
z1k,N−1 + z2k,N

)
,

z2k+1,N = pz2k,N + q
(
z2k,N−1 + z1k,N

)
.

(2.5)

To obtain a structure which simplifies the solution we write the full system of
equations as follows:

Ex(k + 1) = A(p)x(k) + Bu(k), (2.6)

where the state vector x(k) = (z1(k)T z2(k)T )T with z1(k) = (z1
k,j
)j=0,...,N and z2(k) =

(z2k,N−j)j=0,...,N , the control vector u(k) = uk ∈ R, and the coefficient matrices are given by

E =

(
Il O

O O

)
, A(p) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p q 0 · · · 0

q p q · · · 0

0 q p · · · 0

...
. . . · · · . . . q

0 0 · · · q p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

...

0

1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.7)

with l = (N + 1)n1. These matrices have a fixed structure with the parameter vector p = (p, q)
belonging to a subset P ⊆ R

2, which suggests the relation among variables in the process.
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It is well-known (see [6]) that the system has solution if there exists an scalar λ ∈ C such that
det[λE − A(p)]/= 0 (regularity condition). The matrix A(p) is a symmetric, tridiagonal, and
regular matrix. This follows from the eigenvalues of A(p) given by

λk = p + 2q cos
(

kπ

n + 1

)
, k = 1, 2, . . . , n, (2.8)

and using the expressions of p and q, since it is easy to check that

λk < −2α
(
1 + cos

(
kπ

n + 1

))
< 0. (2.9)

This establishes the regularity of A(p) and this fact guaranties the regularity of the system
(2.6).

3. The Identification Problem

The system (2.6) is a singular discrete-time systemwhich, from the regularity ofA(p), we can
rewrite as follows:

E(p)x(k + 1) = x(k) + B(p)u(k), (3.1)

where E(p) = A−1(p)E and B(p) = A−1(p)B. This system is denoted by S(p). Since there
exists a scalar λ ∈ C such that det[λE − I]/= 0, the explicit solution of the system is given by

x(k) = E
D
(p)k+1E(p)x(0) +

k−1∑
i=0

E
D
(p)k−iB(p)u(i)

−
(
I − E

D
(p)E(p)

)ν−1∑
j=0

E(p)jB(p)u
(
k + j

)
,

(3.2)

where E
D
(p) denotes the Drazin inverse of matrix E(p), ν is the index of E(p), and x(0) is an

admissible initial condition, x(0) ∈ X0, with

X0 = Im
[
E
D
(p)E(p),H0(p), . . . ,Hν−1(p)

]
, (3.3)

where Hj(p) = (I − E
D
(p)E(p))E(p)j , j = 0, 1, . . . , ν − 1.

The input-output behavior of the system S(p) is obtained from theMarkov parameters
associated which the system. These parameters are defined as

V
(
j,p

)
= E

D
(p)jB(p) j ≥ 1. (3.4)
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3.1. Identifiability of Structural Singular Systems

To get a good formulation of the model we need to know if the unknown parameters can
be determined uniquely from the obtained experiment data. This is known as identifiability
problem.

Our system (2.6) has a fixed structure, andwewant to solve the identifiability problem
when this structure holds on. The identifiability helps us test the unique relationship between
parameter sets and model response and guarantees that the parameters can be estimated
under ideal conditions.

A model is globally structurally identifiable if and only if there exists a unique input-
output behavior for every parameter set [3]. That is, the system S(p) is globally structurally
identifiable if and only if, for almost any two candidates parameter vector values p,q ∈ P,
io(p) = io(q) imply p = q, where io(·) denotes the input-output behavior of the system S(p).
From now on, we use the concept globally identifiable as globally structurally identifiable.

For linear models there are many well established techniques to analyze structural
identifiability; see, for example, [4, 7, 8] and the references therein. The main contribution
of this part consists in using the special structure of the Markov parameters associated with

S(p) to the identifiability analysis. For that, we need to know the structure of E
D
(p).

By definition of E(p) to obtain E
D
(p) we use the inverse of the tridiagonal matrix. A

concise expression of A−1(p) = (aij)i,j is obtained as follows:

aij = (−1)i+jqα di−1dn−j
dn

, (3.5)

where α = |j − i| and di = pdi−1 − q2di−2, for i = 2, . . . , n, with d0 = 1 and d1 = p. Note
that di = Mi(p), where Mi(p) is the principal minor of order i of the matrix A(p) and the
symmetry property of matrix A(p) is transferred to A−1(p). For more information on the
inverse of a tridiagonal matrix see [9, 10].

Using the above inverse, an explicit expression of the Drazin inverse of E(p) is given
in the following result.

Proposition 3.1. Consider the matrices given in (2.7) and construct E(p) = A−1(p)E. Then, the

Drazin inverse matrix E
D
(p) = (eij)i,j is given by

eij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p i = 1, . . . , l − 1, j = i,

q
∣∣j − i

∣∣ = 1,

0
∣∣j − i

∣∣ > 1,

q i = l, j = l − 1,

dn−l+1
dn−l

j = l,

0 j /= {l − 1, l},

(−1)i−l+1qi−l+1dn−i
dn−l

i = l + 1, . . . , n, j = l − 1,

q−1ei,l−1el,l j = l,

0 j /= {l − 1, l}.

(3.6)
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Proof. Write the matrix A(p) in a block form

A(p) =

[
A1 A2

AT
2 A4

]
. (3.7)

where A1 and A4 are tridiagonal matrices and A2 is given by

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

...
... · · · ...

0 0 · · · 0

q 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (3.8)

Matrix A−1(p) can be obtained from the Schur complement of matrix A4, S = A1 −
A2A

−1
4 AT

2 . Then, we obtain

A−1(p) =

[
S−1 ∗

−A−1
4 AT

2S
−1 ∗

]
. (3.9)

From the above expression and by definition of E(p) = A−1(p)E,

E(p) =

[
S−1 O

−A−1
4 AT

2S
−1 O

]
. (3.10)

Using the expression to obtain the Drazin inverse given in [11] we obtain

E
D
(p) =

[
S O

−A−1
4 AT

2S
−1S2 O

]
=

[
S O

−A−1
4 AT

2S O

]
. (3.11)

Using the expression given in (3.5) to obtain A−1
4 and by simple mathematical calculations

expression (3.6) is obtained.

Now, the next step is to check that this matrix E
D
(p) verifies the properties of the

Drazin inverse matrix. First, we need to know the index of E(p). From the symmetry of the
inverse matrix obtained in (3.5)we obtain rank(E(p)) = rank(E(p)2), then ind(E(p)) = 1.

By technical calculations we check that this matrix verifies the Drazin properties (i)

E
D
(p)E(p)E

D
(p) = E

D
(p), (ii) E

D
(p)E(p) = E(p)E

D
(p), and (iii) E

2
(p)E

D
(p) = E(p), to

prove the proposition.

It is important to focus our attention on the structure obtained in (3.6) since it is useful
to analyze the input-output behaviour in terms of the vector parameter p. This fact allows to
study directly the identification problem.
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Proposition 3.2. Consider the system S(p). Then, the first Markov parameter V (1,p) = (v(1,p)i)i
is given by

v(1,p)i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i = 1, . . . , l − 1,

qal−1,n +
dn−l+1
dn−l

al,n i = l,

(−1)i−l+1qi−l dn−i
dn−l

v(1,p)l i = l + 1, . . . , n.

(3.12)

Proof. First we prove for all i = 1, . . . , n that

q(ai−1,n + ai+1,n) + pai,n = 0. (3.13)

Using the expression given in (3.5) we have that

ai−1,n + ai+1,n = (−1)n+i−1 q
n−i−1

dn

(
q2di−2 + di

)
, (3.14)

and since di = pdi−1 − q2di−2 we have

q(ai−1,n + ai+1,n) + pai,n = (−1)n+i−1 q
n−i

dn

(
q2di−2 + di − pdi−1

)
= 0. (3.15)

Expression (3.12) is easily seen using the above relation and the Drazin inverse of matrix

E
D
(p) given in (3.6).

Using Proposition 3.2 we give the structure of the rest of Markov parameters.

Proposition 3.3. Consider the system S(p). Then, the Markov parameters V (j,p) = (v(j,p)i)i,
j > 1, are given by

v
(
j,p

)
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i = 1, . . . , l − j,

qv
(
j − 1,p

)
i+1 + pv

(
j − 1,p

)
i + qv

(
j − 1,p

)
i−1 i = l − j + 1, . . . , l − 1,

qv
(
j − 1,p

)
l−1 +

dn−l+1
dn−l

v
(
j − 1,p

)
l i = l,

(−1)i−l+1qi−l dn−i
dn−l

v
(
j,p

)
l i = l + 1, . . . , n.

(3.16)

Next, we solve the identifiability problem in the next result.

Proposition 3.4. The system S(p) is identifiable.
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Proof. We consider two structured systems S(p1) and S(p2) with p1,p2 ∈ P, p1 = (p1, q1),
and p2 = (p2, q2) such that they have the same input-output behavior (io), that is, V (j,p1) =
V (j,p2), j ≥ 1.

From expression (3.12), since v(1,p)n = −(q/p)v(1,p)n−1, and taking i = n, we have
that

V (1,p1) = V (1,p2) implies
−q1
p1

=
−q2
p2

. (3.17)

On the other hand, from expression (3.16), since v(2,p)l−1 = qv(1,p)l,

v(2,p1)l−1 = v(2,p2)l−1 implies q1 = q2. (3.18)

Hence, p1 = p2 and the system is identifiable.

4. Algorithm and Example

In this section we introduce an algorithm to obtain the parameters of a PDAE given by (2.1),
using the Markov parameters technique.

Step 1. Introduce the size of the state vector, n. Introduce the matrices {V (j) =
(v(j)i)i=1,...,n, j = 1, . . . , n} that determine the known input-output behavior of the process.

Step 2. For i = 1, . . . , n, if v(1)i /= 0, then rename l = i.

Step 3. Construct q = v(2)l−1/ v(1)l.

Step 4. Construct p = −qv(1)n−1/ v(1)n.

Step 5. Introduce d0 = 1 and d1 = p.

Step 6. For i = 2, . . . , n, define di = pdi−1 − q2di−2.

Step 7. For i = l − 1, l, define ai,n = (−1)i+nq|n−i|(di−1/dn).

For i = 1, . . . , n, apply the following.

Step 8. Prove that V (1) verifies

v(1)i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i = 1, . . . , l − 1,

qal−1,n +
dn−l+1
dn−l

al,n i = l,

(−1)i−l+1qi−l dn−i
dn−l

v(1)l i = l + 1, . . . , n.

(4.1)
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If the result is false, then stop the process. This means that the given input-output behavior is
not suitable to a system of type (2.1).

Step 9. Prove that V (j), j = 2, . . . , n, verifies

v
(
j
)
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i = 1, . . . , l − j,

qv
(
j − 1

)
i+1 + pv

(
j − 1

)
i + qv

(
j − 1

)
i−1 i = l − j + 1, . . . , l − 1,

qv
(
j − 1

)
l−1 +

dn−l+1
dn−l

v
(
j − 1

)
l i = l,

(−1)i−l+1qi−l dn−i
dn−l

v
(
j − 1

)
l i = l + 1, . . . , n.

(4.2)

If the result is false, then stop the process. This means that the given input-output behavior is
not suitable to a system of type (2.1).

Step 10. Obtain α = −q and β = 2α − p.

Step 11. Obtain the matrices of the system(2.6).

Step 12. Obtain the matrices of the system (2.1).

This algorithm has been implemented in MATLAB. To illustrate this algorithm, we
present the following academic example.

Example. Consider the PDAE given in (2.1), with n1 = n2 = 1. The discrete system associated
with this PDAE is given by (2.6) with A(p) ∈ R

6. The input-output behavior of a process is
given by

V (1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

−4
3

−8
9

−16
9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V (2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

4
9

−14
27

−8
9

−16
9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V (3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

− 4
27

20
81

− 85
243

−28
81

−56
81

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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V (4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
81

− 26
243

151
729

− 955
4374

−170
729

−340
729

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V (5) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

32
729

− 226
2187

563
3938

−1112
7223

− 439
3016

− 439
1508

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V (6) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

274
6561

− 513
6452

697
6360

− 1083
10072

− 1075
10474

−1075
5237

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.3)

Then we apply the above algorithm.

First, we introduce the size of the state vector, n = 6. Introduce the matrices {V (j) =
(v(j)i)i=1,...,n, j = 1, . . . , n} that determine the known input-output behavior of the
process, that is,

v(:, 1) =
[
0; 0; 0;−4

3
;−8

9
;−16

9

]
,

v(:, 2) =
[
0; 0;

4
9
;−14

27
;−8

9
;−16

9

]
,

v(:, 3) =
[
0;− 4

27
;
20
81

;− 85
243

;−28
81

;−56
81

]
,

v(:, 4) =
[
4
81

;− 26
243

;
151
729

;− 955
4374

;−170
729

;−340
729

]
,

v(:, 5) =
[
32
729

;− 226
2187

;
563
3938

;−1112
7223

;− 439
3016

;− 439
1508

]
,

v(:, 6) =
[
274
6561

;− 513
6452

;
697
6360

;− 1083
10072

;− 1075
10474

;−1075
5237

]
,

V 1 = v(:, 1), V 2 = v(:, 2), V 3 = v(:, 3),

V 4 = v(:, 4), V 5 = v(:, 5), V 6 = v(:, 6).

(4.4)

Applying MATLAB algorithm we obtain l = 4, q = −1/3, and p = 1/6. The
comparison is ok; a = 1/3; b = 1/2.
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The discrete model (2.6) is given by

E = diag(I4, O2), A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
6

−1
3

0 0 0 0

−1
3

1
6

−1
3

0 0 0

0 −1
3

1
6

−1
3

0 0

0 0 −1
3

1
6

−1
3

0

0 0 0 −1
3

1
6

−1
3

0 0 0 0 −1
3

1
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.5)

5. Conclusions

In this paper we show some results to identify and determine parameters in a mathematical
model with a particular structure. To obtain these results we study a discretemodel associated
with a partial differential algebraic equation. This model has been obtained using finite
difference method from the partial differential equation. Some results about the Markov
parameters of the discrete system are given, and the identifiability problem is solved in the
discrete case. By a similar way, the given results can be applied to different models with a
similar structure to different areas.

In this case, the results are used to know if a partial differential algebraic equation with
unknown parameters is identifiable and to obtain the parameter values. Finally, an algorithm,
implemented in MATLAB, is given to obtain the parameters.
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