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Correspondence should be addressed to José Roberto C. Piqueira, piqueira@lac.usp.br

Received 16 January 2011; Revised 9 May 2011; Accepted 24 May 2011

Academic Editor: Wei-Chiang Hong
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This work develops a method for solving ordinary differential equations, that is, initial-value
problems, with solutions approximated by using Legendre’s polynomials. An iterative procedure
for the adjustment of the polynomial coefficients is developed, based on the genetic algorithm. This
procedure is applied to several examples providing comparisons between its results and the best
polynomial fitting when numerical solutions by the traditional Runge-Kutta or Adams methods
are available. The resulting algorithm provides reliable solutions even if the numerical solutions
are not available, that is, when the mass matrix is singular or the equation produces unstable
running processes.

1. Introduction

Mathematical modeling is a constant in engineering daily life, and expressing phenomena
by using differential equations is almost mandatory. Successful modeling implies ability to
make simplifying assumptions but, even under these assumptions, the solution of differential
equations implies a lot of analytical and numerical efforts [1].

Considering these difficulties and sometimes the impossibility of obtaining analytical
solutions, several numerical methods were proposed and, nowadays, the great majority of
these methods are part of symbolic and numeric softwares as MATLAB andMathematica, for
instance [2]. These methods are accurate and fast, but each one has its limitations, depending
on the type of equation to be solved. The main difficulties appear when the mass-matrix is
singular or the equation generates instability in the running process [3].

Here, trying to deal with this kind of problem for equations with continuous solutions,
a method for initial-value problems in ordinary differential equations is developed, assuming



2 Mathematical Problems in Engineering

that the space of solutions is a Hilbert space, equipped with a Legendre’s polynomial basis
[4].

The central idea is to look for the best polynomial coefficient combination, in order
to satisfy the original differential equation in the whole interval, instead of searching a
polynomial that better fits a set of points in the given interval.

Consequently, a new error criterion must be defined and a program by using differen-
tial evolution methods with elitism [5–7] is developed, based on this new criterion.

The determination of the search space developed here is performed by using sequen-
tial contractions, allowing fast evolutions with noticeable reductions in the error bands when
compared with random search in large populations, as proposed by [5].

Several examples are solved by the method presented and by using the classical nu-
merical methods, with the accuracy of the results being compared.

In Section 2, the error criterion is discussed and a combination of a global and local
criteria is proposed, providing optimal fitting of the polynomial, regarding the function and
its derivatives. Section 3 presents the analytical basis of the method, by using Legendre’s
polynomials to optimize the solutions of an initial-value problem.

The use of the differential genetic algorithm with elitism, guaranteeing stability, ap-
plied to the solution of ordinary differential equations, emphasizing the choice of the co-
efficients under the optimizing criteria developed in Section 2, is described in Section 4.
Finally, in Section 5, some examples are presented and the numerical quality of the solutions
is discussed.

2. Error Criterion

Usually, the adopted optimization criterion to approximate a function by a polynomial in a
given interval is to minimize the square error integral [8]. This kind of approach minimizes
the global error along the whole interval, but produces a large value for the local error at the
starting and ending points of the interval.

Consequently, when this criterion is applied to an initial-value problem, the approx-
imation does not produce the best result, as the error for the starting point of the interval
remains large. To solve this problem, an error criterion considering the local and global results
is proposed, minimizing the product of two factors: the maximum error at the starting point
of the interval and the global integral error.

To give an idea of this procedure, the differential equation given by (2.1) with initial
condition y(−1) = e−1, that admits the solution given by (2.2) in the [−1, 1] interval, is studied.

dy

dx
+ 2xe−x

2
= 0, (2.1)

y = e−x
2
. (2.2)

If one tries to obtain, by using MATLAB, the 8th-order Legendre’s polynomial that
better fits to (2.2), the result, with double-precision format, is given by (2.3). Considering the
substitution of y, given by (2.3), in the original differential equation (2.1), the integral error
is 1.9.10−8 for the whole interval

y = .0263x8 − .1551x6 + .4963x4 − .9996x2 + 1, 0000. (2.3)
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If one continues the process, with the result given by (2.3) as an initial solution
candidate to the original equation (2.1), by using the method developed in the next Sections,
a solution given by (2.4), with an integral error 8.7.10−9 for the whole interval, is obtained

y = .0242x8 − .1511x6 + 0.4940x4 − .9992x2 + 1, 0000. (2.4)

This result is related to the fact that the polynomial given by (2.3) is adequate to fit the
function given by (2.2), without considering its derivatives. In order to adequate the solution
to the differential equation, given by (2.1), the derivatives must be adjusted in the same way.

3. Analytic Foundations

In this section, it is considered the Hilbert space of piecewise continuous functions, defined
in a closed interval [a, b], with a scalar product between f and g, belonging to the space,
defined as [4]

〈
f, g

〉
=
∫b

a

fg dx. (3.1)

Considering the real interval [−1, 1], the Legendre’s polynomials set is an orthogonal
basis for the space of piecewise continuous function S, defined in this interval, that is, for any
function f ∈ S

lim
n→∞

∫1

−1

[

f(x) −
n∑

k=0

akPk(x)

]2
dx = 0, (3.2)

with Pk being the k-degree normalized Legendre’s polynomial and ak = 〈f, Pk〉 [4, 9].
It is important to notice that either the integral or the derivative of a Legendre’s

polynomial can be expressed as a linear combination of the Legendre’s polynomial basis [10],
as the following theorems, with proofs presented in Appendix A, show.

Theorem 3.1. Calling Pn(x) the n-degree Legendre’s polynomial,

∫x

−1
Pn(ξ)dξ =

Pn+1(x) − Pn(x)
2n + 1

, n ∈ N∗. (3.3)

Theorem 3.2. Calling Pn(x) the n-degree Legendre’s polynomial,

P ′
n =

n−1∑

k=0

(2k + 1)
2

[
1 − (−1)k+n

]
Pk. (3.4)

Considering the theorems above, about integration and differentiation of Legendre’s
polynomials, it is interesting to express these results in a matrix form.
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3.1. Operational Matrices

As shown in [11], Theorem 3.3 allows the construction of matrices expressing any linear
operation executed over the Hilbert space of the continuous functions. Here, numerical
methods for solving differential equations by using Legendre’s polynomials are devel-
oped. Therefore, constructing these matrices for integration and differentiation operations
expressed in a Legendre’s polynomials basis is useful.

Let f(u) a linear combination of a generic basis, {Bk}, in the Hilbert space of continu-
ous functions

f(u) =
n∑

k=0

ckBk(u). (3.5)

Theorem 3.3. Let Z a (n + 1) × (n + 1) matrix describing the resulting coefficients from a linear
operation, α, over the generic basis, {Bk}, as functions of the same basis. Calling V = [v0v1 . . . vn]
the resulting coefficients vector from the linear operation, α, over f(u): V T = ZTCT , with C being the
vector of the coefficients described in (3.5).

The procedure described by Theorem 3.3, proved in Appendix A, can be used for any
basis in a Hilbert space, with the calculation of matrix Z representing the main operation to
be done.

Combining Theorems 3.1 and 3.3, taking Legendre’s polynomials as the basis in the
Hilbert space of continuous functions, if ZLi is (n + 2) × (n + 2) and considering α the integral
operation

ZLi(1, 1) = 1; ZLi(1, 2) = 1,

ZLi(k, k − 1) =
1

2k − 1
; k = 2, . . . n + 1,

ZLi(k, k + 1) =
−1

2k − 1
; k = 2, . . . n + 1,

ZLi(n + 2, n + 1) =
−1

2n + 3
.

(3.6)

All the elements of ZLi , not defined by (3.6), are equal to zero. For instance, if n = 2,
ZLi can be written as

ZLi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 1 0 0

−1
3

0
1
3

0

0 −1
5

0
1
5

0 0 −1
7

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (3.7)

It can be observed that the elementZLi(n+2, n+3) = ZLi(4, 5) does not appear, because
the third degree Legendre’s polynomial was not integrated.
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Combining Theorems 3.2 and 3.3, taking Legendre’s polynomials as the basis in the
Hilbert space of continuous functions, ifZdi is (n+1)×(n+1) and considering α the derivative
operation

ZLd

(
k + 1, j + 1

)
=
[
1 − (−1)k+j

]2j + 1
2

; k = 1, . . . n − 1; j = 0, . . . k. (3.8)

All the elements of ZLd , not defined by (3.8), are equal to zero. For instance, for n = 3,
ZLd can be written as

ZLd =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

1 0 0 0

0 3 0 0

1 0 5 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (3.9)

The integration matrix ZLi is nonsingular, and, therefore, its inverse always exists. On
the other hand, ZLd needs a correction if c0 in (3.5) is such that c0 /= − ∑k+1

n=1 cn(−1)n. The
correction to be done is to modify c0, imposing the condition described, without changing
the derivative of f(u).

In [10], the operational matrix was derived for the particular case where α is an
integration operation. Theorem 3.3, developed here, permits general matrix expressions for
all linear α-operations and considering any kind of basis in the Hilbert space of continuous
functions. [12] shows, additionally, this development for Fourier trigonometric and canonical
basis.

3.2. Conservation of Initial Conditions in a Legendre’s Basis

When using evolution methods to treat initial-value problems, expressing solutions in a
Legendre’s basis, the initial conditions must be conserved during all algorithm running
process. This conservation depends on the correct combination of the coefficients, ci, to ex-
press the function in any step of the running process. This combination generates an algebraic
linear system of equations that admits infinite solutions. It is solved choosing a subset of q
coefficients, with q representing the order of the original differential equation, and expressing
then as a function of the others.

In order to obtain the coefficients of a function derivative, the differentiation matrix,
built as explained in the former subsection, has to be used.

As an example, if a third-order equation with solutions in the [−1, 1] interval is studied
with seven coefficients for the expression in Legendre’s basis, one of the possible relationship
among the coefficients is

c0 = 5c3 − 21c4 + 56c5 − 120c6 +
2
3
y
(2)
0 + y

(1)
0 + y0,

c1 = 9c3 − 35c4 + 90c5 − 189c6 + y
(2)
0 + y

(1)
0 ,

c2 = 5c3 − 15c4 + 35c5 − 70c6 +
1
3
y
(2)
0 .

(3.10)
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where (y0, y
(1)
0 , y

(2)
0 ) is the vector of the initial conditions. If one needs to obtain the

coefficients of the integral of the function, the integration matrix, built as explained in the
former subsection, must be used, but the initial condition must be considered, as explained
below.

Considering that F(u) =
∫u
−1 f(ξ)dξ and its Legendres expansion is given by: F(u) =

∑n+1
k=0 bkPk(u), with Pk being the k-degree Legendre’s polynomial and that the initial condition

for the original differential equation is F(−1) = β, b0 obtained by the integration matrix must
be replaced by b0 = b0 + β. For q differential equations, this process must be repeated q times.

3.3. Domain Transposition

The purpose of this work is to develop numerical methods to solve differential equations
with solutions defined in a generic closed real interval [a,b], but the exposed analytical
foundations and other developed methods consider only particular intervals [13, 14]. Here, a
generic transformation providing tools to transpose any general closed domain to a particular
one is studied for up to fourth-order initial-value problems. Besides, the impact of this
transformation in original differential equation and initial conditions is analyzed.

Let u = T(x); T : [a, b] → [c, d] be a bijective transformation and its inverse T−1, and
y = f(x); f : [a, b] → R a solution of an initial value problem, with a vector Y0 representing
the initial condition.

The interval transposed function yt(u) : [c, d] → R is defined by yt(u) = y(x), with
x = T−1(u) and, for the first derivative, calling D0 = y(x)

D1 = y(1)(x) = y
(1)
t (u) · du

dx
. (3.11)

Calling λ = du/dx = 1/(dx/du) and Dt
1 = y

(1)
t ,

D1 = Dt
1λ. (3.12)

Consequently, the second and third derivatives are

D2 = Dt
2 · λ2 +Dt

1 ·
dλ

du
· λ,

D3 = Dt
3 · λ3 + 3Dt

2λ
2 dλ

du
+Dt

1λ

[(
dλ

du

)2

+ λ
d2λ

d2u

]

.

(3.13)

For the sake of clarity, the forth derivative is written by grouping the terms expressed
in function of Dt

1, D
t
2, D

t
3, and Dt

4 as follows:

(i) terms in Dt
4: D

t
4λ

4,

(ii) terms in Dt
3: 6D

t
3λ

3(dλ/du),

(iii) terms in Dt
2: D

t
2λ

2(7(dλ/du)2 + 4λ(d2λ/du2)),

(iv) terms in Dt
1: D

t
1λ[(dλ/du)

3 + 4λ(dλ/du)(d2λ/d2u) + λ2(d3λ/du3)].
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Combining the expressions above,

D4 = Dt
4λ

4 + 6Dt
3λ

3 dλ

du
+Dt

2λ
2

(

7
(
dλ

du

)2

+ 4λ
d2λ

du2

)

+Dt
1λ

[(
dλ

du

)3

+ 4λ
dλ

du

d2λ

d2u
+ λ2

d3λ

du3

]

.

(3.14)

As the solution of a differential equation is tied to the initial conditions, it is necessary
to establish domain transformations as described above, in an inverse way. Therefore, calling
ρ = dx/du = 1/(du/dx) and considering equations (3.12), (3.13), and (3.14) in an inverse
way, with the replacement of λ by ρ, the initial conditions, y(0), y(1)(0), y(2)(0), and y(3)(0)
are given by

yt
0 = y0,

yt
1 = y1ρ,

yt
2 = y2 · ρ2 + y1 ·

dρ

dx
· ρ,

yt
3 = y3 · ρ3 + 3y2ρ

2 dρ

dx
+ y1ρ

[(
dρ

dx

)2

+ ρ
d2ρ

d2x

]

.

(3.15)

If T is a linear transformation, expressions (3.12), (3.13), (3.14), and (3.15), are consid-
erably simplified, as λ and ρ are constants.

In spite of linear transformation being simple, it does not allow to work with equations
defined in an infinite domain. In order to take care of this problem, the transformation T ,
given by

u = T(x) =
(d − c)(arctan(x) − v1)

v2 − v1
+ c,

x = T−1(u) = tan
(
(v2 − v1)(u − c)

d − c
+ v1

)
,

(3.16)

where v1 = arctana and v2 = arctan b can be used.

4. Evolution-Adaptive Process for Solving Initial-Value Problems

In this section, the main question to be answered is if it is possible, with the computation
power available, to generate random coefficients for an n-degree polynomial and, under a
sequential algorithm, like differential evolution algorithm, over the coefficients, to obtain the
exact solution of an initial value problem.

Due to the randomness of the original genetic algorithms, the solution space has its
regions visited in a randomway, and there is no convergence. Nevertheless, when differential
versions of genetic algorithmswith elitism are applied, some stable processes and satisfactory
results are obtained for particular cases [15–18], including complex biological problems [19,
20] and quantum mechanics [21, 22].
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Here, a differential genetic algorithm with an implicit learning process, given by
a good choice of the region of the space of solutions based on a restriction scheme that
continuously contracts the volume of the space of research, guaranteeing stability, is devel-
oped.

Considering that a n-degree polynomial is the best candidate to the solution of an
initial value problem, in a particular step of a sequential algorithm, under a certain error
criterion, it is natural to ask how far of the exact solution it is. In order to treat this problem,
the original differential equation is writtenwith the higher-order derivative term expressed as
a function of the lower-order derivatives, the original function, and the independent variable
as:

dqy
duq

= G
(
yt, y

(1)
t , . . . , y

(q−1)
t , u

)
. (4.1)

Replacing the best solution candidate as y, into G given by (4.1), it is possible to
evaluate G in the defined interval and fitting the obtained results by using a Legendre’s
polynomial up to (n − q)-degree. The fitting process follows Gauss-Legendre quadrature
method [23, 24]. After that, the obtained polynomial is q-times integrated, by using the
integration matrix given by [ZLi]

T , defined in Section 3.1, and considering the given initial
conditions.

Comparing this result with the original candidate, the dispersion is obtained. This
dispersion defines the band variation for the coefficients of the polynomial candidate, in the
next step of the algorithm. For the first step, the candidate is the null polynomial, providing
the first band variation for each coefficient of the Legendre’s polynomial.

To perform the differential evolution algorithm, a population is randomly mounted
inside the first band variation. Then, by using a combination of crossing-over, random and
mutation, new off-springs are generated feeding the sequence of the algorithm.

The program starts a tournament selection. If the best output of the tournament
overcomes the former winner, a new band variation is constructed. Otherwise, by using elit-
ism with random cross-over and mutation [25], the algorithm creates a new generation with
each gene (coefficient) varying inside the new band, avoiding stagnation in local minima.

The described procedure is possible, even when the mass-matrix is singular [3]
because the Gauss-Legendre’s abscissae do not include the interval extremes [23, 24]. If
the numerical integration solution is available, it can be the starting point of the algorithm,
instead of the null-polynomial, shortening the running time of the procedure.

5. Results and Analysis

Based on the analytical development presented in Section 3, by using a differential evolution
algorithm, a method for solving initial value problems, from now on abbreviated by SIV and
detailed in Appendix B, was developed, considering that the solutions are expressed as linear
combinations of Legendre’s polynomials, in the transposed domain.

Starting with an interval transposition, the SIV algorithm runs, adjusting the co-
efficients of the polynomial solution, minimizing the residual error when replacing the
polynomial approximation and derivatives and transposed initial conditions in the trans-
posed differential equation. After a chosen number of generations, applying the inverse
transposition, the solution is obtained, in the original domain.
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Here, the application of the SIV algorithm is shown considering four examples of
nonlinear up to fourth-order equations. The obtained solutions are compared with the
analytic ones, when they exist.

The algorithm is implemented with 66 chromosomes and 5% of mutation. The CPU is
a PC Dual-core with 2GB RAM and running MATLAB-7.

In the cases where it is not possible to express an analytic solution by a finite combina-
tion of elementary functions, the solution obtained by SIV is compared with the obtained by
Adams’ method, when the maximum MATLAB precision is used [2, 3].

5.1. Linear Transposition: Zero-Order Bessel Equation

The first chosen example is the zero-order Bessel equation, corresponding to

xD2 +D1 +D0x = 0, (5.1)

with Di denoting the ith derivative of the searched function, related to the independent
variable x, x ∈ [0, 1], and with the initial condition given by the vector [1, 0].

Equation (5.1) has analytic solution given by

J0(x) =
∞∑

k=0

(−1)k
(k!)2

(x
2

)2k
. (5.2)

In order to transpose the domain from the [0, 1] to [−1, 1], a linear transformation is
used. For this kind of transformation, considering that a function is described in an interval
[a, b] and will be transposed to an interval [c, d], the relation (u− c)/(d− c) = (x−a)/(b−a),
with u = T(x) = (d − c)/(b − a) · x + (bc − ad)/(b − a), is used.

The SIV algorithm was applied to (5.1), with a 26-coefficient polynomial approxima-
tion, starting with the null-polynomial.

The final result was comparedwith the analytic solution (5.2). As, in this case, themass
matrix is singular [3, 23, 24], the Runge-Kutta and Adams algorithms cannot be initialized
and, consequently, they are not used for comparisons.

After two hundred generations, an evolved Legendre’s series approximation was
obtained with very low error margins, as shown in Figure 1 for the obtained solution of (5.1)
and the corresponding derivatives.

To give an idea about the precision of the method, Figure 2 shows the residue by
substituting the approximation of the function given by (5.2) by using Legendre’s polynomial
fitting process [2], and the residue for the same degree evolved solution. Observing Figure 2,
it can be noticed that the SIV algorithm improves the accuracy in, at least, two order of
magnitude. Besides, the problem of lack of accuracy at the interval extremes is considerably
reduced.



10 Mathematical Problems in Engineering
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5

(c)

Figure 1:Zero-order Bessel equation: error in the function and derivatives after 200 generations, comparing
SIV and analytic solution.

5.2. Linear Interval Transposition: Fourth-Order Differential Equation

Now, it will be considered an example of a fourth-order differential equation. Denoting Di

the i-derivative of the searched function, the equation to be solved is

D4 +D3 ·D1 − D0

2
+ 3 · sin2x + (4D0 + 3) cosx + (D1 − sinx)2 +

D2

2
= 0, (5.3)

x ∈ [0, π], and with the initial condition given by the vector: [0, 0, 2, 0].
Equation (5.3) has analytic solution given by

f(x) = x · sin(x). (5.4)
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Figure 2: Zero-order Bessel equation: residue due to the best fitting polynomial compared with the residue
by SIV polynomial.

In order to transpose the domain from the [0, π] to [−1, 1], a linear transformation, as shown
in Section 5.1, is used.

Starting with the solution obtained by using MATLAB (ode113) with maximum
precision [2], the SIV method with 22 coefficients gives a solution with the error figures
shown in Figure 3, after two hundred generations.

To give an idea about the precision of the method, Figure 4 shows the residue by
substituting the approximation of the function given by (5.4) by using Legendre’s polynomial
fitting process [2], and the residue for the same degree evolved solution. Observing Figure 4,
it can be noticed that the SIV algorithm improves the accuracy in, at least, two order of
magnitude. Besides, the problem of lack of accuracy at the interval extremes is considerably
reduced.

5.3. Trigonometric Interval Transposition

Another example where an interval transposition is necessary is described here. DenotingDi

the i-derivative of the searched function, the equation to be solved is

D4 + 4 ·D1 ·
[
3D1 · x · (x4 − 1

) − 9 · x2 + 2
]

(1 + x2)3 · tan−1(x)
= 0, (5.5)

x ∈ [0, π], and with the initial condition given by the vector: [0, 0, 2, 0].
Equation (5.3) has analytic solution given by

f(x) =
[
tan−1(x)

]2
. (5.6)
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Figure 3: A fourth-order nonlinear equation with linear domain transposition: error in the function and
derivatives after 200 generations, comparing SIV and analytic solution.

In order to transpose the domain from [0, π] to [−1, 1], a trigonometric transformation
is used. For this kind of transformation, considering that a function of x is defined in an
interval [a, b], firstly it is transposed with a new function u = tan(v), defined for an interval
[v1, v2] of v, such that v1 = tan−1(a) and v2 = tan−1(b).

Then, this interval is transposed to [c, d] for the variable u, by using the transforma-
tion: u = (d − c) · (tan−1(x) − v1)/(v2 − v1) + c.
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Figure 4: A fourth-order nonlinear equation with linear domain transposition: residue due to the best
fitting polynomial compared with the residue due to SIV polynomial.

Starting with the null-polynomial, with seven coefficients and running the SIV process
for six hundred generations, taking about 1 minute, a solution with the error figures shown
in Figure 5 was obtained.

As a 6th-order approximation for the function given by (5.6) has a very small error,
Figure 6 shows the residue of the evolved series, because it is practically the exact solution.

5.4. Equation without Analytic Solution

There are equations such that the analytic solution cannot be expressed by a finite combina-
tion of elementary functions. Here, an example of this kind of case is presented. Denoting Di

the i-derivative of the searched function, the equation to be solved is

D3 +D2 ·D0 = 0, (5.7)

x ∈ [0, 5], and with the initial condition given by the vector [0, 0, .4699].
After a linear interval transposition, the SIV algorithm started with a 21-degree

null-polynomial. After four hundred generations, a solution with residual errors shown in
Figure 7 was obtained.

As the analytic solution cannot be expressed as a finite combination of elementary
functions, in order to establish comparisons, the Adams’ method, implemented with the
maximum MATLAB precision [2], was used to perform the Legendre’s polynomial fitting
for the function. Figure 8 shows that the SIV algorithm improves the precision in, at least,
one order of magnitude, attenuating the lack of accuracy at the domain extremes.
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Figure 5:A fourth-order nonlinear equation with trigonometric domain transposition: error in the function
and derivatives after 600 generations, comparing SIV and analytic solution.

6. Conclusions

Amethod that combines genetic algorithms with Legendre’s polynomial approximation was
proposed, in order to solve nonlinear initial-value problems, up to 4th-order differential
equations.

The method presents several advantages.

(i) It provides analytical expressions for the solutions and their derivatives for the
whole domain, instead of a low-degree piecewise polynomial;
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Figure 7: A third-order nonlinear equation without analytic solution: error in the function and derivatives
after 600 generations, comparing SIV and ode 113.
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SIV.

(ii) It runs even if the mass matrix is singular, differently from the traditional Runge-
Kutta and Adams’ methods;

(iii) It is able to start the process of finding solution from a null-polynomial;

(iv) It considerably improves the precision of the solutions, solving the problem related
to the lack of accuracy in the interval extremes;

(v) The spectral evolution runs fast once the evolution of each coefficient does not affect
the others, due to orthogonality.

Appendices

A. Proofs of the Theorems

Proof of Theorem 3.1. Calling P ′
n the derivative of Pn, based on [4, 9], it can be written

(i) (2n + 1)Pn = P ′
n+1 − P ′

n−1,

(ii) Pk(−1) = (−1)k, k ∈ N.

Integrating equation (i) in the real interval [−1, x]
∫x

−1
Pn(ξ)d(ξ) =

[
Pn+1 − Pn−1

2n + 1

]x

−1
, (A.1)

and considering (ii), the thesis of the theorem holds for n ∈ N∗. If n = 0,
∫x
−1 P0(ξ)dξ = P1(x) +

PO.
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Proof of Theorem 3.2. The coefficients of the Legendre’s polynomial are given by

ck =
∫1

−1
f(x) · Pk(x) · dx · (2k + 1)

2
. (A.2)

Considering that f(x) = P ′
n(x) is a (n − 1)-degree polynomial and noticing that a n-

degree Legendre’s polynomial is orthogonal to all polynomials, Legendre’s or not, with lesser
degree, the integral given by (A.2) can be calculated by parts as

2ck
2k + 1

=
∫1

−1
Pk︸︷︷︸
u

· P ′
n · dx︸ ︷︷ ︸
dv

= Pk · Pn|1−1 −
∫1

−1
Pn · P ′

k · dx︸ ︷︷ ︸
(orthogonality) = 0

. (A.3)

Remembering (ii) from Theorem 3.1 and that Pk(1) = 1, k ∈ N [4, 9],

2ck
2k + 1

= 1 − (−1)k · (−1)n, (A.4)

and, consequently the coefficients of the expansion of P ′
n are

ck =
(2k + 1)

2

[
1 − (−1)k+n

]
. (A.5)

Proof of Theorem 3.3. As α is a linear operation,

α
[
f(u)

]
=

n∑

k=0

ckα[Bk(u)]. (A.6)

Considering the space of the finite matrices Mi,j ; i = 1, 2 . . . n + 1; j = 1, 2 . . . n + 1,
it can be noticed that, in this space α[f(u)] is an element of the scalar field, consequently,
(α[f(u)])T = α[f(u)].

As B is an 1 × (n + 1) vector and α[B] = ZB, VB = C(ZB), belonging to a scalar field.
Therefore,

BTV T = (ZB)TCT ,

BTV T = BT
(
ZTCT

)
.

(A.7)

Taking (A.7) and left multiplying by B results in V T = ZTCT .

B. Detailed Algorithm

The SIV algorithm is implemented divided into three parts: database, adaptive-evolutive
process, and restarting, as described below.
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B.1. Part 1—Database

(i) Reading problem data: equation, domain, initial conditions, domain transposition
type,

(ii) the database is mounted in the transposed domain, according to Section 3.

B.2. Part 2—Adaptive-Evolutive Algorithm

(i) The number of coefficients of expansion is chosen. The program used here is pre-
pared up to 41 coefficients;

(ii) each chromosome (individual) is a set of coefficients of a series expansion of the
solution and each gene is a coefficient;

(iii) the zero element of the process is the null polynomial. The coefficients are adjusted
following the idea expressed by (3.10) by changing q (order of the equation)
coefficients, in order to obey the initial conditions. Consequently, the first winner
appears;

(iv) the winner is replaced into (4.1) with G being obtained in several points of the
domain. In order to avoid the Runge phenomenon, the chosen points are the nodes
of the polynomial basis from the evolutive process;

(v) the series expansion for G is obtained in the chosen basis for the evolutive process
by using the Gauss-Legendre numerical integration;

(vi) having the integration matrix and the initial conditions, the series representing G is
integrated q times;

(vii) the winner coefficients are compared with the obtained in the former step. If they
are equal, the solution is a exact one. If they are not equal, the error bands can be
determined for each coefficient, restricting the search space, improving the speed
and efficiency of the process;

(viii) having the coefficients error bands, the winner is used as the central element to
construct a new population with coefficients varying randomly in the band that
works as a standard deviation for each coefficient;

(ix) the population is submitted to a tournament with the ranking depending on the
obtained residue substituting the candidate into the original equation. If the winner
of the tournament surpasses the former winner, the process returns to the fourth
step. If does not, the process goes to the next step;

(x) the individual evaluation in the tournament is performed simply replacing the
candidate in the equation and analyzing the residue;

(xi) the lower the residue is, the better is the candidate ranking;

(xii) a mutation is performed in a few genes (about 5%). The 20% worst are discharged,
and the champion is preserved for a new round. A new population is formed by
the combination of the former population members. The process returns to the 9th
step up to the number of generations chosen when the algorithm started to run;

(xiii) the last generation is considered to be the final winner and, after a domain transpo-
sition, the results are presented.
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B.3. Part 3—Restarting the Process

It is possible to restart the evolution starting with the former results, increasing or maintain-
ing the number of coefficients, beginning in the 8th step of part 2.
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