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The effect of random phase for Duffing-Holmes equation is investigated. We show that as the
intensity of random noise properly increases the chaotic dynamical behavior will be suppressed
by the criterion of top Lyapunov exponent, which is computed based on the Khasminskii’s
formulation and the extension of Wedig’s algorithm for linear stochastic systems. Then, the
obtained results are further verified by the Poincaré map analysis, phase plot, and time evolution
on dynamical behavior of the system, such as stability, bifurcation, and chaos. Thus excellent
agrement between these results is found.

1. Introduction

For the past ten years, there has been a great deal of interest in the chaos control’s research
which has become one of nonlinear scientific field hot spot issues. After OGY methods
were proposed by Ott et al. [1], various methods for chaos control’s have been given which
are composed of the feedback control and the nonfeedback control. The feedback control
methods [1–3], which can exploit the chaos control’s characteristic: the sensitivity to initial
condition, use some weak feedback control to make the chaotic trajectory approach and settle
down finally to a desired stabilized periodic orbit, formerly unstably embedded in the chaotic
manifold. The nonfeedback methods [4–9] can eliminate chaos by using a period adjustment
coming from a out period incentive for coupling system variables. Because noise is ubiquitous
in actual environment, the research into the influence of noise on the system is very important.

Stochastic forces or random noise have been greatly used in studying the control of
chaos. For example, Ramesh and Narayanan [10] explored the robustness in nonfeedback
chaos control in presence of uniform noise and found that the system would lose control
while noise intensity was raised to a threshold level. Wei and Leng [11] studied the chaotic
behavior in Duffing oscillator in presence of white noise by the Lyapunov exponent. Liu et al.
[12] investigated the generation of chaos in a kind of Hamiltonian system subject to bounded
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noise by the criterion of stochastic Melnikov function and Lyapunov exponent. Qu et al. [13]
further applied weak harmonic excitations to investigate the chaos control of nonautonomous
systems and especially observed that the phase control in weak harmonic excitation may
greatly affect taming nonautonomous chaos, and Lei et al. [14] have investigated the control
of chaos with effect of proper random phase. Recently, much work for suppressing chaos by
random excitation [15–18] is carried out.

Duffing equation is the reduced form of lots of practical system model, for example,
swinging pendulum model and financial model. Duffing system is a typical nonlinear
vibration system; in engineering, lots of mathematical models of nonlinear vibration
problems could be transformed to this equation, for example, ship’s weaving, structural
vibration, destruction of chemical bond, and so forth. Disturbed axial tensile force model
of lateral wave equation and dynamics equation of rotor bearing are also the same as Duffing
system. To some extent, Duffing system is the basis of lots of complicated dynamics; it has
not only theoretical significance but also important actual value. This paper focuses on the
study of the influences of random phase on the behaviors of Duffing-Holmes dynamics and
shows that the random phase methods can actualize the chaos control. Since the Lyapunov
index is an important symbol to describe chaos system, by using the Khasminskii [19]
spherical coordinates and Wedig [20] algorithm, we can figure out the top of Lyapunov index.
Furthermore, we can ascertain the vanishing of chaos by checking the sign of average value of
the Lyapunov index. Finally, we show that the random phase can control the chaos behaviors
by combining the Poincar section and the time history.

2. Chaotic Behavior of Duffing-Holmes System

Consider the following Duffing-Holmes system [21–23]

ẍ + δẋ − x + x3 = f sin(ωt), (2.1)

where δ is damping coefficient, f is excitation amplitude, and ω is excitation frequency.
Equation (2.1) can be reformulated to one-order nonautonomous equation

ẋ = y,

ẏ = −δy + x − x3 + f sin(ωt).
(2.2)

The linear format of (2.2) is

ẋ1 = y1,

ẏ1 =
(

1 − 3x2
)
x1 − δy1.

(2.3)

Denote top Lyapunov exponent [24] as

λ = lim
t→∞

1
t

log
‖Y (t)‖
‖Y (0)‖ , (2.4)



Mathematical Problems in Engineering 3

5000450040003500300025002000150010005000

t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

λ

Figure 1: Lyapunov exponents.

where ‖Y (t)‖ =
√
x2

1 + y
2
1, the symbol of top Lyapunov exponent is always used to identify

the motion state of system, when λ ≥ 0, movement of system is chaotic, and when λ < 0, it is
robust.

Select parameters δ = 0.25, f = 0.27, ω = 1.0; the initial condition is x = 1.0, y = 0.0; we
use Runge-Kutta-Verner method of sixth-order to solve system (2.2) and (2.3); the analysis of
top Lyapunov exponent in (2.1) is shown in Figure 1.

It is seen from Figure 1 that robust top Lyapunov exponent symbol is positive (λ ≈
0.12); this illustrate that the system is chaotic. The phase map and time-history map are shown
in Figures 2(a) and 2(b).

Let

θ : R
1 −→ S1,

t �−→ θ(t) = ωt, mod 2π.
(2.5)

Equation (2.2) is reformulated as

ẋ = y,

ẏ = −δy + x − x3 + f sin(θ),

θ̇ = ω.

(2.6)

Denote cross section as

Σθ0 =
{
(x, θ) ∈ R

n × S1 | θ = θ0 ∈ (0, 2π]
}
. (2.7)

Poincaré cross section is shown in Figure 2(c).
From Figures 2(a) and 2(b), we find that the phase portrait is chaotic and the time

history is not regular. From Figure 2(c), the Poincaré surface of section is a chaotic attractor.
The conclusion in our paper illustrates that the system is chaos.
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Figure 2: (a) Phase portrait, (b) time history, and (c) Poincaré surface of section.

3. Suppressing Chaos of the Duffing-Holmes
System Using a Random Phase

We plug a random phase into (2.2)

ẋ = y,

ẏ = −δy + x − x3 + f sin(ωt + σξ(t)),
(3.1)

where ξ(t) denotes a standard Gaussian white noise, σ is an intensity, and ξ(t) satisfies Eξ(t) =
0, Eξ(t)ξ(t + τ) = ζ(τ), where ζ(τ) is the Dirac-Delta function, that is,

ζ(τ) =

⎧
⎨
⎩

0, τ /= 0,

1, τ = 0.
(3.2)

Equation (3.1) is linearized as follows:

ẋ1 = y1,

ẏ1 =
(

1 − 3x2
)
x1 − δy1.

(3.3)
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Let

A =
(
Aij

)
2×2

[
0 1

0 −δ

]
, F(t) =

(
fij
)

2×2 =

[
0 0

−3x2 0

]
, Y =

(
x1

y1

)
. (3.4)

We have

Ẏ = [A + F(t)]Y. (3.5)

Assume that fij , i, j = 1, 2, are ergodic and E‖b + F(t)‖ < ∞, where the norm ‖A‖
is defined as the square root of the largest eigenvalue of the matrix ATA. By Ossledec
multiple ergodic theorem [25], there exist two real numbers λ1, λ2 and two random subspaces
E1, E2(E1 ⊕ E2 = uδ(0) ⊂ R2, and Uδ(0) denotes the neighborhood of O(0, 0)), such that,

λi = lim
t→+∞

1
t

log‖Y (t)‖ iff y0 ∈ Ei \ {0}, i = 1, 2, (3.6)

where ‖Y (t)‖ =
√
x2

1 + y
2
1, λi (i = 1, or 2) is the Lyapunov exponent, representing the rate

of exponential convergence or divergence of nearby orbits in a specific direction in Ei. The
Ossledec multiple ergodic theorem states that for almost all random initial values in random
subset Uδ(0) there holds λ = maxi λi = limt→+∞(1/t) log ‖Y (t)‖ and λ is defined as the largest
(or top) Lyapunov exponent.

Using Khasminskii’s [19] technique, the computation of the top Lyapunov exponent
of system (3.5) can be presented as follows.

Let

s1 =
x1

a
, s2 =

y1

a
, a = ‖Y (t)‖ =

√
x2

1 + y
2
1 . (3.7)

It follows that

s′i =
∑
j

[
Aij −m(t)δij +

(
fij − n(t)δij

)]
sj , (3.8)

where m(t) =
∑

k,l Aklsksl, n(t) =
∑

k,l fklsksl, δij = 1(i = j), δij = 0(i /= j), and

a′ = [m(t) + n(t)]a. (3.9)

Thus, the largest Lyapunov exponent can be expressed as

λ = lim
t→∞

1
t

loga = lim
t→∞

1
t

∫ t
0
[m(τ) + n(τ)]dτ. (3.10)

Now the top Lyapunov exponent can be obtained by numerical integration of (3.10).
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Figure 3: Top Lyapunov exponents versus noise intensity.
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Figure 4: (a) Phase portrait, (b) time history, and (c) Poincaré surface of section.

Take δ = 0.25, f = 0.27, ω = 1.0; we solve (3.1) and (3.3) with (3.8)–(3.10) using the
Runge-Kutta-Verner method of sixth order. We plot the top Lyaponov exponent depending
on the intensity of the noise in Figure 3. From Figure 3, the top Lyaponov exponent keeps
positive when σ is smaller than the critical value σc = 0.05. When the intensity is greater
than the critical value, the sign of the top Lyaponov exponent suddenly turns from positive
to negative, namely, the behavior of this system turns from chaotic to stable abruptly. From
then on, the increase of the intensity of stochastic phase would not affect the sign of the top
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Lyaponov exponent any longer in the interested parameter range. This suggests the random
phase noise effectively stabilizes the system for the parameter range, σ ∈ (σc, 1.0].

Now we apply Poincaré map of (2.1) to verify the above results. Set Poincaré may as

P : Σ −→ Σ, Σ =
{
(x(t), ẋ(t)) | t = 0,

2π
ω
,

4π
ω
, . . .

}
⊂ R2. (3.11)

For the given initial condition as in Figure 4, the differential (2.1) is solved by the sixth-
order Runge-Kutta-Verner method and the solution is plotted for every T = 2π/ω, and after
deleting the first 500 transient points, the succeeded 200 iteration points are used to plot the
Poincaré map for σ = 0.2 in Figure 4(c). For σ = 0.2, the phase portrait and time history are
plotted in Figures 4(a) and 4(b), too.

From the comparison of Figures 2 and 4, the chaotic phase portrait corresponding to
(σ = 0.0) is changed to a circle. The chaotic state of the time history took place by the periodic
state. Poincaré surface of section turns from the chaotic attractor to the stable attractor. It
appears that the chaotic state of the original system has been controlled to the stable state by
using a random phase.

4. Conclusions

Based on the work of Khasminskii and Wedig, we derive the top Lyaponov exponent for the
Duffing-Holmes random system. We have shown that the chaotic dynamical behavior will
be suppressed as the noise intensity increases slightly by the criterion of the top Lyaponov
exponent. The Poincaré map analysis, the phase portrait, and the time history fully verified
the proposed results. We can point out that the random phase is the important tool for the
suppressing chaos as a nonfeedback control method.
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