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This paper presents evolutionary approaches for designing rotational inverted pendulum (RIP)
controller including genetic algorithms (GA), particle swarm optimization (PSO), and ant colony
optimization (ACO) methods. The goal is to balance the pendulum in the inverted position.
Simulation and experimental results demonstrate the robustness and effectiveness of the proposed
controllers with regard to parameter variations, noise effects, and load disturbances. The proposed
methods can be considered as promising ways for control of various similar nonlinear systems.

1. Introduction

During the past decades, many modern control methodologies such as nonlinear control,
optimal control, adaptive control, and variable structure control have been widely proposed
for control approaches [1–3]. However, these methods are theoretically complex and difficult
to implement. Also, proportional-integral-derivative (PID) controller is a well-known
method for industrial control processes. The later approach has been broadly employed
in industries because of its simple structure and robust performance in a wide range of
operating conditions [3]. Unfortunately, it has been difficult to tune up PID controller gains
accurately because many industrial plants are often very complex consisting of issues such
as higher order, time delays, and nonlinearities [4, 5]. Ziegler and Nichols proposed the
first method utilizing the classical tuning rules. Though, it is hard to determine optimal
PID controller parameters with Ziegler-Nichols formula in general [1, 3]. To overcome these
difficulties, various methods have been proposed. The ability of using numerical methods for
efficiently and accurately characterizing the quality of a particular design has excited control
engineers to apply stochastic global optimizers.



2 Mathematical Problems in Engineering

x

y

z

θ

τ

mp

α

r

lp

Figure 1: Schematic view of RIP system.

Over the past years, several evolutionary algorithms have been proposed to search
for optimal PID controllers. Among them, GA has received great attention and PSO has
been successfully applied to various fields [6–10]. Also, ACO is a relatively recent approach
to solve optimization problems by simulating the behavior of ant colonies and modeling
the behavior of ants, which are known to be able to find the shortest path from their
nest to a food source [11]. The ACO method proposed in our paper has the following
advantages: applicability to any kind of optimization problems, combinatorial or continuous,
easy implementation, high rate of successful optimizations, and low run time.

In this paper, we compare the efficiency of three intelligent algorithms, that is, GA,
PSO, and ACOmethods. These evolutionary algorithms are used to adjust the PID controller
parameters in order to ensure adequate servo and regulatory behavior of the closed-loop
system. Also, we formulate the problem of designing PID controllers as an optimization
dilemma which adjusts five performance indexes, that is, maximum overshoot, rise time,
settling time, and steady-state error of the response and system control energy.

2. Rotational Inverted Pendulum System

The rotational inverted pendulum system is a well-known test platform for evaluating
various control algorithms. Also, it has some significant real-life applications such as position
control, aerospace vehicles control, and robotics [12, 13]. The system consists of a rotational
arm and a pendulum where the rotational arm is actuated by a motor with the objective of
balancing the pendulum in the inverted position. A schematic diagram of the RIP system is
represented in Figure 1, where u, lp, mp, α, r, θ, and Jb are the motor input, the pendulum
length, the pendulum mass, the pendulum angle, the arm length, the arm angle and effective
mass moment of inertia, respectively.

The plane of the pendulum is orthogonal to the radial arm. Figure 2 indicates the RIP
system built in robotics research lab in our department. Also, the block diagram of the whole
system is shown in Figure 3.

In this section, the dynamic equations of the RIP system considering backlash and
friction effects are presented. The RIP dynamics are governed by [12, 14]

(
a + b sin2α

)
θ̈ + (c cosα)α̈ − (c sinα)α̇2 + (b sin 2α)α̇β̇ + f θ̇ + g sgn

(
θ̇
)
+ hθ = iu, (2.1)

bα̈ + (c cosα)θ̈ − (b sinα cosα)θ̇2 − d sinα + eα̇ = 0. (2.2)
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Figure 2: Built in-RIP system (advanced robotics research lab).
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Figure 3: Block diagram of the whole system.

The above nonlinear model can be found in the following equations:

[
a + b sin2α c cosα

c cosα b

][
θ̈

α̈

]
+

[
f + b(sin 2α)α̇ −c(sinα)α̇
−b(sinα cosα)θ̇ e

][
θ̇

α̇

]
+

[
g sgn

(
θ̇
)
+ hθ

−d sinα

]
=

[
iu

0

]
.

(2.3)

The parameters of nonlinear model of the system are represented in Table 1.
Using (2.1)–(2.3), the RIP system is easily simulated using Simulink and Matlab. The

Simulink block diagram of RIP system shown in Figures 4 and 5 illustrates the step response
without controllers indicating the whole system is unstable. The controller parameters
generated by heuristic algorithms are employed iteratively in relevant simulation blocks, and
the cost function is calculated in the manner presented in the next section.
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Table 1: Parameters of the RIP system.

Parameters Values Parameters Values
a 3.29 f 14.283
b 0.1252 g 1.4286
c 0.2369 h 1.72
d 6.052 i 141.32
e 0.0132 w 0.0012
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Figure 4: Block diagram of RIP system.

3. GA, PSO, and ACO: An Overview

In the following, brief reviews of GA, PSO and ACO principle are illustrated.

3.1. GA

Considering Darwin’s original ideas, life in all its diverse forms is evolved by natural
selection and adaptation processes controlled by the survivability of the fittest species. GA is
an evolutionary optimizer that takes a sample of possible individuals and employs selection,
crossover, and mutation as the primary operators for optimization [15, 16].

3.2. PSO

Considering the social behavior of swarm of fish, bees, and other animals, the concept of the
particle swarm optimization (PSO) is developed. The PSO is a robust stochastic evolutionary
computation method based on the movement of swarms looking for the most fertile feeding
location [16].

From the above statements, it is obvious that the theoretical bases of the two
optimization methods rest upon two completely different structures. The GA is based on
genetic encoding and natural selection, and the PSO method is based on social swarm
behavior. PSO is based on the principle that all solutions can be represented as particles
in a swarm. Each particle has a position and velocity vector, and each position coordinate
represents a parameter value. Similar to GA, PSO requires a fitness evaluation function that
takes the particle’s position and assigns a fitness value to it.XPB andXGB are the personal best
(Pbest) position and global best (Gbest) position of the ith particle. Each particle is initialized
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Figure 5: System response without PID controller.

with a random position and velocity. The velocity of each particle is accelerated toward the
global best and its own personal best based on the following equation:

Vi(new) = w × Vi(old) + c1 × rand() × (XPB −Xi) + c2 × Rand() × (XGB −Xi). (3.1)

Here rand() and Rand() are two random numbers in the range [0, 1], c1 and c2 are the
acceleration constants, andw is the inertia weight factor. The parameterw helps the particles
converge to Gbest, rather than oscillating around it. Suitable selection ofw provides a balance
between global and local explorations. In general,w is set according to the following equation
[16, 17]:

w = 0.5(1 + rand(0, 1)). (3.2)

The positions are updated based on their movement over a discrete time interval (Δt)
as follows, with Δt usually set to 1:

Xi = Xi + Vi ×Δt. (3.3)
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Figure 6: Convergence tendency of mean values of cost function with β = 1.
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Figure 7: Convergence tendency of mean values of cost function with β = 1.5.
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Figure 8: Convergence tendency of standard deviation values of cost function with β = 1.

Then the fitness at each position is reevaluated. If any fitness is greater than Gbest, then
the new position becomes Gbest and the particles are accelerated toward that point. If the
particle’s fitness value is greater than Pbest, then Pbest is replaced by the current position.
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Figure 9: Convergence tendency of standard deviation values of cost function with β = 1.5.

3.3. ACO

ACO is a relatively recent approach to solve optimization problems by simulating the
behavior of ant colonies and modeling the behavior of ants, which are known to be able to
find the shortest path from their nest to a food source [18]. ACO is an optimization technique
that has been recently developed and recognized as effective for combinatorial optimization
problems.

All ants start their tours from source node and end up their tours in destination node.
In each node, an ant chooses its path probabilistically, and the probability of choosing an edge
is proportional to the pheromone on the edge, that is, roulette wheel selection.

All edges have an initial amount of pheromone, τ0. After completion of all tours, first
pheromone values on all edges are lowered, reflecting evaporation:

τij ←−
(
1 − ρ)τij , (3.4)

where ρ ∈ (0, 1] is the pheromone evaporation rate. Then all ants deposit pheromone on all
edges they have crossed in their tours:

τij ←− τij +
m∑
k=1

Δτij
k,

ΔτKij =

⎧
⎨
⎩

1
cost (k) + c0

if edge
(
i, j

)
belongs to TK

0 otherwise,

(3.5)

where TK is the tour of the kth ant, cost (k) is its cost, and c0 is a positive constant which
allows to adjust maximum pheromone deposit.

The algorithms parameters have been chosen based on trial and error as follows. For
GA method, population size = 50, crossover rate = 0.5, mutation rate = 0.01, and maximum
generations = 20; for PSO algorithm, number of particles = 50; acceleration constants c1 = c2 =
1.5, and maximum iteration = 20; for ACO algorithm, ρ = 0.4, τ0 = τmax = 10, τmin = 1 and
c0 = 0.5. Each algorithm is implemented in Matlab. All of the programs are run on a 2.1GHz
Core 2 Duo processor with 2GB of memory. Each of the optimization methods is tested in 50
independent runs involving 50 different initial trial solutions.
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Figure 10: System response: (a) pendulum angle, (b) arm angle, and (c) energy signal, with β = 1 for
yr = 0.

4. Problem Formulation and Controller Design

Considered performance index includes the overshoot MP , rise time Tr , settling time Ts,
steady-state error Ess, and control energy Eu. We find the appropriate parameters for the
controllers minimizing the performance indexes. The proposed cost function is considered as
follows [3, 19]:

cost =
1 − e−β

2
(MP + Ess) +

e−β

2
(ts − tr) + 1

2
Eu, (4.1)

where β is the weighing factor. In this paper, β is set to 1 and 1.5 to investigate different
possible solutions. The algorithms stages for searching proper parameters of PID controller
are as follows.
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Figure 11: System response: (a) pendulum angle, (b) arm angle, and (c) energy signal, with β = 1.5 for
yr = 0.

First, specify the lower and upper bounds of controller parameters and initialize the
particles of the population randomly. Each particle, that is, K (controller parameters) is sent
to Matlab Simulink. Then, the values of the performance criteria in the time domain, namely,
MP , Tr , Ts, Ess, and Eu are calculated iteratively. After that, cost function is evaluated for each
particle according to these performance criteria. If the cost for local best solution is less than
the cost of the current global best solution, the global solution is replaced with local solution.
At the end of each iteration, the program checks the stop criterion. If the number of iterations
reaches the maximum designated by the user, the latest global best solution is recorded and
the algorithm is brought to an end.
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Figure 12: Pendulum angle (servo response) of the RIP control system with β = 1 for yr = π .
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Figure 13: Pendulum angle (servo response) of the RIP control system with β = 1.5 for yr = π .

5. Simulation Results

The lower and upper bounds of the three controller parameters are shown in Table 2.
In order to examine the dynamic behaviors and convergence characteristics of the

proposed methods, two statistical indexes, namely, the mean value (μ) and the standard
deviation (σ) of cost values of all individuals during the computation processes, are used. The
mean value displays the accuracy of the algorithm, and the standard deviation measures the
convergence speed of the algorithm. The formulas for calculating these values are as follows,
respectively [19, 20]:

μ =
∑n

i=1 costPi

n
,

σ =

√√√√ 1
n

n∑
i=1

(
costPi − μ

)2
,

(5.1)

where costPi is the cost value of the individual and n is the population size.
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Figure 14: System response: (a) pendulum angle, (b) arm angle, and (c) energy signal, with β = 1 subjected
to the band-limited white noise (noise power = 0,000523 and sampling time = 0.1 sec) and 10% disturbance.

Table 2: range of three controller parameters.

Controller parameters Lower bounds Upper bounds
Kpi 0 4
Kdi 0 4
Kpo 0 4
Kdo 0 4

Several simulations are performed to investigate and compare controllers’ conver-
gence characteristics. As it can be seen in simulations in Figures 6 and 7, though all controllers
can obtain stable mean cost value using the same cost function and simulation conditions,
the ACO-PID controller has better cost value and mean value, showing that it can achieve
better accuracy. Simultaneously, we can also find from Figures 8 and 9 that the convergence
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Figure 15: System response: (a) pendulum angle, (b) arm angle, and (c) energy signal, with β = 1.5
subjected to the band limited white noise (noise power = 0,000523 and sampling time = 0.1 sec) and 10%
disturbance.

tendency of the standard deviation of cost values in the ACO-PID controller is much faster
than other ones. This can prove that the ACO method has better convergence efficiency.

Also, our simulation results demonstrate that ACO method is faster than GA and
slower than PSO and the run time in 20 iterations for ACO is 2408.17 sec in comparison with
1805.42 sec for PSO and 3865.903 sec for GA.

5.1. Servo Behavior

In the following, the optimization procedure has been applied to the RIP system in
reference tracking (servo behavior). For analysis of this behavior, the reference signal (yr)
for pendulum angle is first given equal to zero, and then it is determined equal to π .
Figures 10 and 11 show the best results of the arm and pendulum angles and control energy
value for different values of β. As it can be seen, ACO-based controller makes fine responses,
indicating the superiority over other controllers.
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Figure 16: Experimental results of system responses with β = 1: (a) pendulum angles, (b) arm angles, and
(c) energy signals.

The simulation results of the best solution for various values of β in 50 runs are
summarized in Table 3. As it can be observed from Table 3, the overshoot is decreased using
ACO-PID in comparison with GA-PID and PSO-PID. This improvement is 25.693% (β = 1)
and 19.335% (β = 1.5) in comparison with PSO-PID and 55.071% (β = 1) and 37.936% (β =
1.5) in comparison with GA-PID. Also, it is inferred that rise time of the step response in all
simulations is quite similar and settling time of step response using GA is better than other
controllers. According to total cost value, ACO-PID controlled systems have less cost values.

Now, the servo performance is considered for the reference signal (yr) of pendulum
angle equal to π . Figures 12 and 13 show the pendulum angles (servo response) for yr = π
and different values of β.
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Figure 17: Experimental results of system responses with β = 1.5: (a) pendulum angles, (b) arm angles,
and (c) energy signals.

5.2. Regulatory Behavior

The control systems are always subject to external disturbances and internal noise which
affect the system dynamics. If the nature of the disturbance is identified, it can be modeled
mathematically. However, in practice, the nature of the disturbances is not clear and we may
not be able to simulate them easily. In RIP system, the disturbance and noise effects can be
applied by adding an additional load to the end of pendulum and adding noise to the position
sensor, respectively.

The simulations are done subject to a band-limited white noise (noise power =
0,000523 and sampling time = 0.1 sec) and 10% parameter value changes. Simulation results
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Figure 18: Experimental results of system responses using ACO-PID by adding a body mass to the end of
pendulum and in the presence of disturbances: (a) pendulum angle, (b) arm angle, and (c) energy signal.

shown in Figures 14 and 15 illustrate the robustness and effectiveness of the proposed
controllers subject to the noise and disturbance.

Servo and regulatory results motivate to consider the proposed procedure as a suitable
tool for controller parameters design and also stimulate investigating the possibility of further
research on design and development of other practical control systems.

6. Experimental Results

We have performed experiments on the RIP system set at the University of Tabriz in
the robotics research lab. The applied card in this project is PCI-6602 which creates the
connection between computer and system and has A/D and D/A converters. Also the arm
and pendulum links angles are measured using two E40S Autonics company encoders. The
experimental results of the proposed methods on RIP system are shown in Figures 16 and
17. In these figures, the time interval [0, 1.2]which belongs to the swing-up period is deleted
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Table 3: Best results of PID controllers with different β values gained by PSO, GA, and ACO algorithms in
50 runs.

β Kdp Kpp Kda Kpa Mp% tr(sec) ts(sec) tp(sec) Ess Eu cost

GA 1 0.473 4.118 0.51 0.356 36.787 0.008 0.958 0.29 0.0008 18.213 20.908

1.5 0.666 3.276 0.444 0.248 28.34 0.008 1.776 0.44 0.0046 22.624 22.519

PSO 1 0.551 3.989 0.398 0.153 22.243 0.008 1.301 0.38 0.001 17.839 16.189

1.5 0.529 3.206 0.35 0.119 21.805 0.006 1.24 0.41 0.0008 18.242 17.728

ACO 1 0.35 4.091 0.281 0.125 16.528 0.035 1.864 0.32 0.0022 19.904 15.513

1.5 0.539 2.821 0.441 0.23 17.57 0.008 1.721 0.28 0.0022 19.095 16.571

to focus on controllers’ performance in the balance mode. The experimental results are very
consistent with the simulation results shown in Figures 10 and 11 which not only prove the
performance of proposed methods but also verify the availability of the system model. The
fact that the simulated and real controlled responses are practically identical validates the
identified system model.

In order to study the stability of designed control system using ACO algorithm subject
to parameters variations, we perform the following experiment. In this experiment, the
adding effect of a 25 g body mass with the length of 13 cm and in the presence of disturbances
is validated. Figure 18 shows the results of this practical test. Then, the proposed method
is a very powerful technique in completely eliminating the effects of the disturbances and
providing satisfactory servo behavior.

7. Conclusion

In this paper, we present three evolutionary algorithms for designing of intelligent controllers
of the RIP system. Each of the algorithms is tested in 50 independent runs involving 50
different initial solutions. The rotational inverted pendulum system is considered as a case
study. Through the simulation results, the proposed controllers perform efficient search
for proper PID parameters. To evaluate the controller performance, we tested the ability
of the closed-loop system to follow set point changes (servo behavior) and the ability of
the closed-loop system to reject disturbances (regulatory behavior). The work demonstrates
that all methods can solve searching and tuning the controller parameters efficiently. The
proposed methods could be considered as promising ways for nonlinear control systems
in general. One of the important features of the system is using of xPC-Target toolbox and
input-output card in Simulink environment which utilizes hardware in the loop (HIL), tele-
lab implementation and fast-prototyping properties. The topic of our future researches is to
employ other cognitive methods in order to achieve better results for designing controller
and improving the performance in real time. Also, implementation, of heuristic algorithms
for designing adaptive controllers will be our future challenging task. Furthermore, tele-
operation control of RIP system using haptic device would be another challenge.
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