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The mixed variables-attributes test plans for single acceptance sampling are proposed to protect
“good lots” from attributes aspect and to optimize sample sizes from variables aspect. For the
single and double mixed plans, exact formulas of the operating characteristic and average sample
number are developed for the exponential distribution. Numerical illustrations show that the
mixed sampling plans have some advantages over the variables plans or attributes plans alone.

1. Introduction

In reality, especially in industry, acceptance sampling is applied to audit the percent
nonconforming of the incoming materials, semimanufactured goods, finished products, and
so on. Among the available plans for testing the percent nonconforming, attributes sampling
plans are the most widely used plans in practice, due to the fact that they only require easy-
to-collect and low-cost attributes data and produce reasonable judgments about the number
of nonconforming items, as pointed out in [1].

Compared with attributes plans, variables acceptance procedures require less data
under the same error probabilities and produce more accurate quality information. Hence,
for costly and/or destructive inspections, variables plans aremore attractive for practitioners.
However, the necessary preprocessing of translating the test of the percent nonconforming
into that of a variables characteristic would have the following problems [1, 2]: (i) It is
generally more difficult and time consuming to measure the variables quality characteristic.
(ii) The variables quality characteristic and its distribution should be specified. Since testing
and estimating the percent nonconforming highly depend on the assumed distribution,
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unreliable conclusions may be made from the inappropriate distribution especially when the
percent nonconforming is extremely small or large and is greatly inflected by the tail feature
of the distribution. (iii) Under the same requirements on error probabilities, the protection
for the two types of error probabilities under variables plans may be weaker than that of
attributes plans. (iv) For variables plans, a lot may be rejected even if all of the sampled items
are conforming, which violates the rule of attributes procedures and is always questioned by
practitioners.

In fact, the authors found the above problem (iv) when applying a variables plan to
the following application. To test the percent nonconforming p (0 < p < 1) of a batch of
bullets, a bullets sample is inspected by shooting at a circular objective with the center (0, 0)
and the radius

√
a (a > 0). A bullet is defined as conforming if it hits the objective under some

circumstances, or as nonconforming otherwise. The inspection results include the variables
data, that is, coordinates of the fall points, and the attributes data aboutwhether the inspected
bullets are nonconforming. According to specific needs, the test problem was set as

H0 : p = p0 = 0.1 versus H1 : p = p1 = 0.4. (1.1)

Under the binomial distribution, the attributes plan for single acceptance sampling
(single attributes plan) with the error probabilities α = β = 0.15 is (na, ca) = (11, 2), that is,
to inspect 11 bullets and accept the null hypothesis in the test problem (1.1) when 2 or less
bullets in the sample are nonconforming. The real error probabilities of the plan are α′

a =
0.0896 and β′a = 0.1189.

The variables plan for single acceptance sampling (single variables plan) is also
accessible based on locations of the fall points. Suppose the coordinate of the fall point is
(X, Y), whereX and Y are independent and identically distributed (i.i.d.)withN(0, σ2) (σ2 >
0) according to the practitioners’ experiences. Then, (X2 + Y 2)/σ2 conforms with χ2(2) or
Gamma(1,2). Equivalently, R = X2 + Y 2 conforms with the exponential distribution Exp(2σ2)
with 2σ2 as its mean. Hence, the percent nonconforming p and the variables parameter σ2

have the following relationship:

p = P(R > a) = exp
{
− a

2σ2

}
, (1.2)

or equivalently,

σ2 = − a

2 ln
(
p
) . (1.3)

Taking a = 1 as an example, according to (1.3), the test problem (1.1) is equivalent to

H0 : σ2 = σ2
0 = 0.2171 versus H1 : σ2 = σ2

1 = 0.5457. (1.4)

For the test problem (1.4), setting {Rnv =
∑nv

i=1 Ri/nv > cv} as the rejection region, the
single variables plan should be (nv, cv) = (6, 0.6284)with the real error probabilities α′

v = β′v =
0.1365.
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To save the inspection costs, we chose the variables scheme and obtained coordinates
of the 6 sampled bullets, that is, (−0.82,−0.51), (0.59,−0.06), (−0.74, 0.39), (0.24, 0.24),
(−0.33, 0.93), and (0.17, 0.88). Since Rnv =

∑6
i=1 Ri/6 = 0.6460 > 0.6284, the null hypothesis in

(1.4) or in (1.1)was rejected. However, it is clear that all of the sampled bullets are conforming
since Ri ≤ 1, i = 1, . . . , 6. Thus, the judgement leads to some problems from attributes aspect
as stated below.

(i) The basic rule of attributes plans is to accept a lot when none of the sampled items
is nonconforming. Obviously, our test result is contradictory to this rule.

(ii) The producer can hardly be convinced about the decision of rejecting the lot when
no nonconforming item is found. The producer may argue that the lot should be
accepted even under the attributes plan (ña, c̃a) = (6, 0), which guarantees the
consumer’s risk since β′ = (1 − 0.4)6 = 0.0467 < β, although it employs the
producer’s risk as large as α′ = 1 − (1 − 0.1)6 = 0.4686. Further, for the hypothesis
“p = p1 = 0.4” with {dña =

∑ña

i=1 I(a,+∞)(Ri) ≤ c} (I(·) is an indicator function) as its
form of rejection region, the P -value of the test result is Pp1(dña ≤ 0) = (1 − 0.4)6 =
0.0467. Therefore, the decision of rejecting the hypothesis “p = p1 = 0.4” should be
made with a quite sufficient evidence under the significance level γ = 0.05.

Motivated by this case and other similar problems in engineering (e.g., [3–8]), we try
to find the answer about which one is more suitable for testing the percent nonconforming,
the variables plan or the attributes plan. Scholars have different opinions and arguments in
their papers. Some (e.g., [2]) support attributes plans due to their better protection for the two
types of error probabilities. Some (e.g., [9, 10]) insist that variables plans be advantageous
and acceptable according to the evaluation on some loss functions under superpopulations.

However, it is not necessarily a dichotomy scenario. Some scholars choose com-
promised schemes, that is, the mixed variables-attributes sampling plans, most of which
(e.g., [11–15]) are double sampling procedures. For single acceptance sampling, Kao [16]
proposes the mixed plan which permits to accept a lot when the number of nonconforming
items is small and the conforming items in the sample are uniform under some variables
characteristic. However, since it mainly aims at testing item variability and considers two
independent quality characteristics for attributes and variables inspections, respectively, the
mixed plan in [16] is inapplicable to our case. Anyway, the present mixed plans provide a
way to find out a solution to our problem.

In Section 2, we propose the mixed variables-attributes plans for single acceptance
sampling (single mixed plans). To make a comparison, we also obtain the existing mixed
plans for double acceptance sampling (double mixed plans) with the derived performance
formulas in Section 3. Summaries and further remarks are provided in Section 4. The
appendix gives the related formula in evaluating performance of the mixed plans. Due to
our interest in the bullets test problem, we only discuss the exponential distribution case,
which is also vital for life testing according to [12].

2. Mixed Plans for Single Acceptance Sampling

To design the mixed variables-attributes schemes for single acceptance sampling, a key is to
determine the form of the rejection region. For the bullets test problem in this paper, taking
A = {Rn =

∑n
i=1 Ri/n > cr} (cr ≥ 0) as the rejection region for variables sampling and B =

{dn =
∑n

i=1 I(a,+∞)(Ri) > cd} (cd is an integer in [0, n − 1]) as the counterpart for attributes
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sampling, we set the rejection region of the single mixed plans asAB = {Rn > cr}
⋂{dn > cd}.

Then, a single mixed plan contains 3 parameters, that is, the sample size n, the critical values
cr for variables measurement and cd for attributes measurement.

Since cd ≥ 0, the single mixed plans can guarantee the rule of accepting a lot when no
nonconforming item is found in the sample. Moreover, variables and attributes information
can be integrated in the single mixed plans to obtain more convincible and applicable results.

However, the feature of discrete distributions (e.g., the binomial distribution) for the
number of nonconforming items dn impairs the flexibility of designing the plans. Therefore,
sample sizes of the single mixed plans are larger than or equal to those of the single variables
plans with the same requirements on error probabilities.

Next, we discuss how to determine the operating characteristic (OC) formula of the
single mixed plan (n, cr , cd). With the rejection region AB, the probability of accepting the
null hypothesis under the percent nonconforming p should be

L
(
p
)
= 1 − Pp(AB) = 1 −

n∑
k=cd+1

Pp

(
Rn > cr, dn = k

)
. (2.1)

As will be shown in the sequel, the OC formulas of the single mixed plans share the
same difficulty as those of the double mixed plans in terms of the quantity P(Rn > cr , dn = k)
in (2.1). According to [12], finding the OC formulas of the double mixed plans involves
“severe technical difficulties” in two aspects. First, the random variable Ri is truncated as
Ri > a or Ri ≤ a (i = 1, . . . , n), which is specified by the number of nonconforming
items dn. Commonly, it is not readily to obtain the distributions of algebraic functions of
truncated randomvariables such asRn. Second, the random variables inRn are not identically
distributed when 0 < dn < n.

Efforts have been made to derive the OC formulas of the double mixed plans.
Savage [12] obtains the OC formulas for dn = 0 and 1 based on the convolution for the
exponential distribution. Although it is accessible in theory, the method is so complex that
it is quite hard to derive the OC formulas for dn > 1. For the double mixed plans under
the normal distribution, Gregory and Resnikoff [11] provides the approximate OC formulas
through numerical integration and asymptotic expansion, respectively. Thereafter, the exact
OC formulas under the normal distribution are set up with a recursive form and tables about
some related values are provided for applications in [13, 17–19].

In Theorem A.1 of the appendix, we derive an accurate formula for P(Rn > cr , dn = k)
to obtain the OC curve of the mixed plans under the exponential distribution. It is simple
in form and easy in operation, which is believed to further increase attractions of the mixed
plans.

According to Theorem A.1 in the appendix, the probability of accepting the null
hypothesis under the single mixed plans is

L
(
p
)
= 1 −

{
n∑

k=cd+1

(
n

k

)
n−k∑
i=0

(−1)i
(
n − k

i

)[
1 − Fσp(ncr − (k + i)a)

]
exp

{
−(k + i)a

2σ2
p

}}
, (2.2)

where Fσp(·) is the cumulative distribution function (c.d.f.) of Gamma (n, 2σ2
p), and σp is

obtained from (1.3).
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Finally, we determine the parameters (n, cr , cd) with two proposed procedures here.
One aims at protecting “good lots” from attributes aspect, and the other is to achieve
optimization by minimizing the sample size.

2.1. Single Mixed Plan I: Protecting “Good Lots”

In Section 1, we point out the awkward problem of variables plans, that is, a “good lot” from
the attributes aspect possibly being rejected. To solve the problem, the single mixed plan is
designed to guarantee “good lots” to be accepted. This is called the single mixed plan I.

Then, the point is how to define a “good lot” from attributes aspect. According to
the discussion in Section 1, we consider to find a proper region {dn ≤ cd} for rejecting the
hypothesis “p = p1” with a sufficient evidence under the significance level γ . Then, when the
number of nonconforming observations is not more than cd, we have a sufficient evidence to
conclude a “good lot” from attributes aspect. This provides a way to determine the critical
value cd of the single mixed plan I.

The sample size n of the single mixed plan I may be determined through searching in
a computer program. In applications, the sample size nv of the single variables scheme with
the same error probabilities can be set as a starting value for searching n, since n must be
larger than or equal to nv as stated above.

As the most flexible value with continuous measurement, the critical value cr should
be determined according to requirements on the two error probabilities under some provided
n and cd.

The following steps provide a guidance to find the single mixed plan I.

Step 1. Find the sample size nv of the single variables plan with the required error
probabilities and set the initial sample size n as n = nv.

Step 2. With the sample size n, determine the critical value cd for “good lots” under the
significance level γ .

Step 3. For the given n and cd, search cr through dichotomy and try to find a single mixed
plan with the required two error probabilities. If the plan is not found, set n = n+ 1 and go to
Step 2.

To illustrate the procedure, we reconsider the bullets test problem in Section 1.

Example 2.1. In this example, we set up the single mixed plan I for the bullets test problem
(1.1) under the two error probabilities α = β = 0.15. Here, the significance level γ for defining
“good lots” is set as 0.05. The steps are the following.

(i) According to the results in Section 1, the single variables plan is (nv, cv) =
(6, 0.6284). Thus, we set n = 6.

(ii) For n = 6, the region for rejecting “p = p1 = 0.4” is {dn ≤ 0} under γ = 0.05.
Therefore, we have cd = 0.

(iii) After searching cr through dichotomy in a computer program, we find that when
cr = 0.6259, the single mixed plan (n, cr , cd) = (6, 0.6259, 0)makes α′ = β′ = 0.1368 <
α = β = 0.15. Thus, the determined single mixed plan I is (n, cr , cd) = (6, 0.6259, 0).
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With the data of the 6 inspected bullets in Section 1, since dn = 0 = cd, the decision
of accepting the null hypothesis in (1.1) should be made under the single mixed plan I
(n, cr , cd) = (6, 0.6259, 0).

More illustrations of the single mixed plan I are provided in Example 2.2.

Example 2.2. For the bullets test problem (1.1), let the two error probabilities be α = β = 0.10
and 0.05, respectively. Also take γ = 0.05. Tables 2 and 3 list the single mixed plans I and their
performance.

From Examples 2.1 and 2.2, it can be found that the sample sizes of the single mixed
plans I are equal to or a little more than those of the single variables plans with the same
controlled error probabilities. In theory, sample sizes of some single mixed plans I can be
improved by determining the parameter cd more flexibly. With the principal objective of
minimizing the sample size, we propose the single mixed plan II.

2.2. Single Mixed Plan II: Minimizing Sample Size

To minimize the sample size, we develop the single mixed plan II in this section. The main
idea is to obtain a plan with minimized sample size by searching, and to optimize the critical
value cd (by maximizing cd) to protect “good lots”.

Tomake the sample size as small as possible under controlled error probabilities and to
protect “good lots” at the same time, the single mixed plan II should be determined according
to the following steps.

Step 1. Obtain the sample size nv of the single variables plan and set n = nv.

Step 2. Set cd = 0.

Step 3. With the provided n and cd, find the critical value cr that maximizes α′ under the
constraint α′ ≤ α. If no cr satisfying α′ ≤ α is found, set n = n + 1 and go to Step 2.

Step 4. With the n, cd and cr from Step 3, calculate β′. If β′ < β, set cd = cd + 1 and then go to
Step 3; If β′ = β, go to Step 5; If β′ > β and cd > 0, make cd = cd −1 and go to Step 5; Otherwise,
set n = n + 1 and go to Step 2.

Step 5. Readjust cr under the determined n and cd to obtain a more appropriate plan when
necessary.

Example 2.1 (continued). Continue the bullets test problem (1.1). The following indicates the
process of finding the single mixed plan II.

(i) According to the variables plan (nv, cv) = (6, 0.6284), we make n = 6.

(ii) Set cd = 0.

(iii) Under n = 6 and cd = 0, the searched value is cr = 0.6121which makes α′ = 0.15 = α.

(iv) For the mixed plan (n, cr , cd) = (6, 0.6121, 0), we have β′ = 0.1277. Since β′ < β, set
cd = 0 + 1 = 1.

(v) Under n = 6 and cd = 1, search cr . The result shows that when cr = 0, α′ may reach
its maximum value 0.1143.
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Table 1: Plans for p0 = 0.1, p1 = 0.4, α = β = 0.15.

Plans n(n1) n2 cr cd(c1) c2 α′ β′ ASN(p0) ASN(p1)
SMI 6 — 0.6259 0 — 0.1368 0.1368 6 6
SMII 6 — 0.6259 0 — 0.1368 0.1368 6 6
SV 6 — 0.6284 — — 0.1365 0.1365 6 6
SA 11 — — 2 — 0.0896 0.1189 11 11
DIM 5 5 0.4802 — 0 0.1446 0.1446 6.7657 9.6376
DDM 4 4 0.4281 1 1 0.1480 0.1480 5.5699 5.6025
DV 3 3 0.2741 0.7937 0.6467 0.1492 0.1498 4.8484 3.9944
DA 5 6 0 2 2 0.1189 0.1382 6.9683 6.5552
Notations: SMI: single mixed plan I; SMII: single mixed plan II; SV: single variables plan; SA: single attributes plan; DIM:
double independent mixed plan; DDM: double dependent mixed plan; DV:double variables plan; DA: double attributes
plan.

Table 2: Plans for p0 = 0.1, p1 = 0.4, α = β = 0.10.

Plans n(n1) n2 cr cd(c1) c2 α′ β′ ASN(p0) ASN(p1)
SMI 9 — 0.6106 1 — 0.0972 0.0972 9 9
SMII 9 — 0.6106 1 — 0.0972 0.0972 9 9
SV 9 — 0.6404 — — 0.0880 0.0880 9 9
SA 15 — — 3 — 0.0556 0.0905 15 15
DIM 7 8 0.5813 — 0 0.0997 0.0997 8.4010 14.3251
DDM 8 3 0.6194 1 1 0.0994 0.0994 8.0789 8.1281
DV 5 5 0.4210 0.8043 0.6349 0.0926 0.0926 7.1051 6.3171
DA 7 8 0 3 3 0.0630 0.0970 10.9681 10.1353

(vi) For the plan (n, cr , cd) = (6, 0, 1), we have β′ = 0.2333 > β. Therefore, make cd =
1 − 1 = 0.

(vii) With n = 6 and cd = 0, we search cr again and find that when cr = 0.6259, α′ = β′ =
0.1368 < 0.15. Thus, the determined single mixed plan II is (n, cr , cd) = (6, 0.6259, 0),
which is the same as the single mixed plan I.

Example 2.2 (continued). The single mixed plans II for α = β = 0.10 and 0.05 are also listed in
Tables 2 and 3.

In Examples 2.1 and 2.2, all of the sample sizes of the single mixed plans II are the same
as those of the single variables plans. It indicates that the single mixed plans II are attractive
and practical due to the comparative costs with the single variables plans and the ability of
protecting “good lots” to some degree.

To conduct further comparisons, we provide the performance formulas of the double
mixed plans under the exponential distribution in the next section.

3. Mixed Plans for Double Acceptance Sampling

The double mixed plans were proposed decades ago and then were developed and applied
in practice (e.g., [11–15, 17–19]). There are two forms of double mixed plans: the independent
mixed plans and dependent mixed plans.
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Table 3: Plans for p0 = 0.1, p1 = 0.4, α = β = 0.05.

Plans n(n1) n2 cr cd(c1) c2 α′ β′ ASN(p0) ASN(p1)
SMI 15 — 0.6329 2 — 0.0441 0.0441 15 15
SMII 14 — 0.6475 1 — 0.0452 0.0452 14 14
SV 14 — 0.6490 — — 0.0448 0.0448 14 14
SA 24 — — 5 — 0.0277 0.0400 24 24
DIM 13 8 0.6059 — 0 0.0494 0.0494 13.6941 20.7346
DDM 12 7 0.5960 3 3 0.0497 0.0497 12.5804 13.3319
DV 8 8 0.5038 0.8238 0.6230 0.0498 0.0496 10.2071 9.8114
DA 12 9 1 5 4 0.0488 0.0465 15.0300 15.7673

3.1. Double Independent Mixed Plans

Under a double independent mixed plan (n1, n2, cr , c2), we should inspect n1 items with
variables measurement and accept the null hypothesis when Rn1 ≤ cr . If Rn1 > cr , another
n2 items should be inspected with attributes measurement. In the second stage, a decision is
made based on the number of nonconforming items dn2 in the n2 items, that is, accepting H0

when dn2 ≤ c2 or rejectingH0 otherwise.
Obviously, the OC curve of the double independent mixed plan is

L
(
p
)
= Pp

(
Rn1 ≤ cr

)
+ Pp

(
Rn1 > cr

)
Pp(dn2 ≤ c2). (3.1)

And its ASN formula is

ASN
(
p
)
= n1 + n2Pp

(
Rn1 > cr

)
. (3.2)

The probabilities in (3.1) and (3.2) are easy to obtain because only one kind of
measurement is considered in each of the stages, and the two stages are independent.
Designing and selection of the double independent mixed plans for the normal distribution
are discussed in [14, 15]. In the later examples, optimal double independent mixed plans, that
is, plans with minimum ASN at some p, are obtained by searching in a computer program.

3.2. Double Dependent Mixed Plans

For a double dependent mixed plan (n1, n2, cr , c1, c2), n1 items should be tested with variables
and attributes measurements. In the first stage, we can accept H0 if Rn1 ≤ cr or reject H0 if
dn1 > c1 where dn1 is the number of nonconforming items in the n1 observations. Otherwise,
another n2 items should be inspected with attributes measurement. In the second stage, we
should accept H0 if dn1+n2 ≤ c2 or reject H0 otherwise, where dn1+n2 is the total number of
nonconforming items in the n1 + n2 observations.
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For the bullets test problem, according to Theorem A.1 in the appendix, the OC curve
of the double dependent mixed plan is

L
(
p
)
= Pp

(
Rn1 ≤ cr

)
+ Pp

(
Rn1 > cr , dn1 ≤ c1, dn1+n2 ≤ c2

)

= Pp

(
Rn1 ≤ cr

)
+

c1∑
l=0

Pp

(
Rn1 > cr, dn1 = l

)
Pp(dn2 ≤ c2 − l)

= Fσp(n1cr) +
c1∑
l=0

(
n1

l

)
n1−l∑
i=0

(−1)i
(
n1 − l

i

)[
1 − Fσp(n1cr − (l + i)a)

]
exp

{
−(l + i)a

2σ2
p

}

× Pp(dn2 ≤ c2 − l),
(3.3)

where dn2 is the number of nonconforming items in the second-stage n2 observations.
The ASN formula of the double dependent mixed plan is

ASN
(
p
)
= n1 + n2Pp

(
Rn1 > cr, dn1 ≤ c1

)

= n1 + n2

c1∑
l=0

(
n1

l

)
n1−l∑
i=0

(−1)i
(
n1 − l

i

)[
1 − Fσp(n1cr − (l + i)a)

]
exp

{
−(l + i)a

2σ2
p

}
.

(3.4)

According to Schilling [20], a double dependent mixed plan in MIL-STD-414 is
designed by combining the corresponding variables plan and attributes plan. In this
procedure, n1 should be much less than n2, and c1 is set equal to c2. Although it can not find
an exact double dependent mixed plan, this procedure is helpful to find an approximately
matchable plan in a simple way. However, we find that such a design does not produce
minimum ASN.

For the bullets test problems in Examples 2.1 and 2.2, we determine the double mixed
plans with minimum ASN(p0) and then possibly small ASN(p1) by searching in a computer
program. The plans and their performance are provided in Tables 1–3.

Further, the double variables plans and double attributes plans are found to make a
comparison. Under the double variables plan, the null hypothesis is accepted when Rn1 ≤ cr
or is rejected when Rn1 ≥ c1 at the first stage with a sample of size n1. If cr < Rn1 < c1, a
second sample of size n2 is needed and the null hypothesis is accepted when Rn1+n2 ≤ c2 or is
rejected otherwise. For the double attributes plan, the null hypothesis is accepted if dn1 ≤ cr
or is rejected if dn1 ≥ c1 for the first-stage n1 observations. If cr < dn1 < c1, a second sample of
size n2 is inspected and the null hypothesis is accepted if dn1+n2 ≤ c2 or is rejected otherwise.

To better analyze the performance of the mixed plans, the OC and ASN curves are
illustrated in Figures 1, 2, 3, 4, 5, and 6. Interestingly, all of the plans have almost the same OC
curves except the single attributes plans. Therefore, we provide the OC curves of the single
mixed plans II (as a representative) and the single attributes plans in Figures 1–3. Figures 4-6
show the ASN curves of the double acceptance sampling plans.
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Figure 1: OC curves of plans for p0 = 0.1, p1 = 0.4, α = β = 0.15 (“—”: OC curve of the single mixed plan
II; “- -”: OC curve of the single attributes plan).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

L
(p

)

Figure 2: OC curves of plans for p0 = 0.1, p1 = 0.4, α = β = 0.10 (“—”: OC curve of the single mixed plan
II; “- -”: OC curve of the single attributes plan).

According to Figures 1–3, the single attributes plans perform a little stronger protection
for producer and consumer’s risks than other plans. Based on Figures 4–6, it is clear that the
double dependent mixed plans are preferable in ASN than the double independent mixed
plans. Especially, the ASN curves of the double independent mixed plans increase as p
becomes large, while the double dependent mixed plans have small ASNs beyond (p0, p1).
Moreover, the ASN curves of the double dependent mixed plans lie between those of the
double variables plans and the double attributes plans in (p0, p1).
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Figure 3: OC curves of plans for p0 = 0.1, p1 = 0.4, α = β = 0.05 (“—”: OC curve of the single mixed plan
II; “- -”: OC curve of the single attributes plan).
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Figure 4: ASN curves of double plans for p0 = 0.1, p1 = 0.4, α = β = 0.15 (“:”: ASN curve of the double
independent mixed plan; “—”: ASN curve of the double dependent mixed plan; “−·”: ASN curve of the
double variables plan; “- -”: ASN curve of the double attributes plan).

4. Conclusions and Remarks

We have presented mixed plans for the single and double acceptance sampling problems.
Our proposed methods combine certain strengths of the variables sampling plans and the
attributes sampling plans. Numerical examples have shown that they performwell in various
cases.

Compared to the variables sampling plans, the major advantages of our proposed
mixed plans are as follows. (i) The mixed plans avoid the problem of rejecting a lot when no
nonconforming item is inspected. (ii) Since attributes results are considered, the mixed plans
can tolerate small quantity of outliers which depart from the “natural” form of the underlying
distribution and then protect a generally good lot. Hence, the inference on the percent
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Figure 5: ASN curves of double plans for p0 = 0.1, p1 = 0.4, α = β = 0.10 (“:”: ASN curve of the double
independent mixed plan; “—”: ASN curve of the double dependent mixed plan; “−·”: ASN curve of the
double variables plan; “- -”: ASN curve of the double attributes plan).
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Figure 6: ASN curves of double plans for p0 = 0.1, p1 = 0.4, α = β = 0.05 (“:”: ASN curve of the double
independent mixed plan; “—”: ASN curve of the double dependent mixed plan; “−·”: ASN curve of the
double variables plan; “- -”: ASN curve of the double attributes plan).

nonconforming does not depend on the assumed distribution so much like the variables
sampling. (iii) For rejected lots, the actual number of nonconforming items is helpful to
convince producers psychologically.

Compared to the attributes sampling plans, the major advantages of our proposed
mixed plans are as follows. (i) The mixed plans can reduce sample sizes compared with the
attributes plans with the same error probabilities. (ii) The mixed plans contain a far more
careful inspection and analysis based on variables measurement. (iii) Due to the variables
feature, the mixed plans introduce more flexibility to obtain desired plans with controlled
risks.

With our derived formulas for evaluating their exact performance, our proposed
mixed plans should be useful for various applications, especially for those in which the
related population distributions are exponential. Comparing the proposed single mixed plans
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with the double mixed plans, the former may be more convenient to use, but the latter would
require less average sample sizes. When the test cost is our major concern and the quality is
assured near p0 or p1, the double dependent mixed plans are recommended. Otherwise, we
recommend to use the single mixed plans for testing the percent nonconforming conveniently
and cheaply.

In our opinion, much future research is required to study the possibility to optimize
the mixed plans, especially the double mixed plans. Further, the development of mixed plans
for the sequential sampling cases is still an open problem and requires much future research
as well.

Appendix

A Related Formula for Mixed Plans’ Performance

Theorem A.1. Suppose R1, . . . , Rn are i.i.d. random variables from the exponential distribution
Exp(2σ2) where 2σ2 is the expectation of Ri (i = 1, . . . , n). Let Rn =

∑n
i=1 Ri/n, dn =∑n

i=1 I(a,+∞)(Ri). Then, for any integer l (0 ≤ l ≤ n),

P
(
Rn > cr, dn = l

)
=

(
n

l

)
n−l∑
i=0

(−1)i
(
n − l

i

)
[1 − Fσ(ncr − (l + i)a)] exp

{
−(l + i)a

2σ2

}
, (A.1)

where Fσ(·) is the c.d.f. of Gamma (n, 2σ2).

Proof. Let Ei = {0 ≤ Ri ≤ a}, i = 1, . . . , n; Ck = {0 ≤ R1, . . . , Rk ≤ a, Rk+1, . . . , Rn > a, Rn >

cr}, k = 0, . . . , n;Dk = {Rk, . . . , Rn > a, Rn > cr}, k = 1, . . . , n,Dn+1 = {Rn > cr}.
SinceDk+1 = Ck +

⋃k
i=1(Dk+1E

c
i ) (k = 0, 1, . . . , n), we have

P(Ck) = P(Dk+1) − P

(
k⋃
i=1

(
Dk+1E

c
i

))

= P(Dk+1) −
⎡
⎣ k∑

i=1

P
(
Dk+1E

c
i

) − ∑
1≤i<j≤k

P
(
Dk+1E

c
i E

c
j

)
+ · · · + (−1)k−1P(Dk+1E

c
1 · · ·Ec

k

)
⎤
⎦

= P(Dk+1) −
(
k

1

)
P(Dk) +

(
k

2

)
P(Dk−1) + · · · + (−1)kP(D1)

=
k∑
i=0

(−1)i
(
k

i

)
P(Dk+1−i), k = 0, 1, . . . , n.

(A.2)



14 Mathematical Problems in Engineering

As Ri (i = 1, . . . , n) are i.i.d. ∼ Exp(2σ2), it is obvious that Ri − a | Ri > a (i = 1, . . . , n)
are i.i.d. ∼ Exp(2σ2). Therefore,

P(Dk) = P
(
Rk, . . . , Rn > a, Rn > cr

)

= P
(
Rn > cr | Rk, . . . , Rn > a

)
P(Rk, . . . , Rn > a)

= P(R1 + · · · + Rk−1 + (Rk − a) + · · · + (Rn − a) > ncr − (n − k + 1)a | Rk, . . . , Rn > a)

× P(Rk, . . . , Rn > a)

= [1 − Fσ(ncr − (n − k + 1)a)] exp
{
−(n − k + 1)a

2σ2

}
, k = 1, . . . , n + 1.

(A.3)

Then, for 0 ≤ l ≤ n,

P
(
Rn > cr, dn = l

)
=

(
n

l

)
P(Cn−l)

=

(
n

l

)
n−l∑
i=0

(−1)i
(
n − l

i

)
P(Dn−l+1−i)

=

(
n

l

)
n−l∑
i=0

(−1)i
(
n − l

i

)
[1 − Fσ(ncr − (l + i)a)] exp

{
−(l + i)a

2σ2

}
.

(A.4)

The proof is completed.
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