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We study the general solution of equation �k
B,cu(x) = f(x), where �k

B,c is the ultrahyper-
bolic Bessel operator iterated k-times and is defined by �k

B,c = [(1/c2)(Bx1 + Bx2 + · · · + Bxp )−
(Bxp+1 + · · · + Bxp+q )]

k, p + q = n, n is the dimension of R
+
n = {x : x = (x1, x2, . . . , xn), x > 0, . . . , xn >

0}, Bxi
= ∂2/∂x2

i + (2vi/xi)(∂/∂xi), 2vi = 2βi + 1, βi > −1/2, xi > 0 (i = 1, 2, . . . , n), f(x) is a given
generalized function, u(x) is an unknown generalized function, k is a nonnegative integer, c is a
positive constant, and x ∈ R

+
n.

1. Introduction

The n-dimensional ultrahyperbolic operator �k iterated k-times is defined by

�k =

⎛
⎝ ∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
p

− ∂2

∂x2
p+1

− ∂2

∂x2
p+2

− · · · − ∂2

∂x2
p+q

⎞
⎠

k

, (1.1)

where p + q = n, n is the dimension of space R
n, and k is a nonnegative integer.

Consider the linear differential equation of the form

�ku(x) = f(x), (1.2)

where u(x) and f(x) are generalized functions and x = (x1, x2, . . . , xn) ∈ R
n.
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Gel’fand and Shilov [1] first introduced the fundamental solution of (1.2), which is a
complicated form. Later, Trione [2] has shown that the generalized function R2k(x), defined
by (2.8)with |v| = 0, is a unique fundamental solution of (1.2) and Téllez [3] also proved that
R2k(x) exists only in the case when p is oddwith n odd or even and p+q = n. Awealth of some
effective works on the fundamental solution of the n-dimensional classical ultrahyperbolic
operator have, presented by Kananthai and Sritanratana [4–9].

In 2004, Yildirim et al. [10] have introduced the Bessel ultrahyperbolic operator
iterated k-times with x ∈ R

+
n = {x : x = (x1, x2, . . . , xn), x1 > 0, . . . , xn > 0},

�k
B =
(
Bx1 + Bx2 + · · · + Bxp − Bxp+1 − · · · − Bxp+q

)k
, (1.3)

where p + q = n, Bxi = ∂2/∂x2
i + (2vi/xi)(∂/∂xi), 2vi = 2βi + 1, βi > −1/2 [11], k is a

nonnegative integer, and n is the dimension of R
+
n. They also have studied the fundamental

solution of Bessel ultrahyperbolic operator.
In 2007, Sarikaya and Yildirim [12] have studied the weak solution of the compound

Bessel ultrahyperbolic equation and also studied the Bessel ultrahyperbolic heat equation
[13].

In 2009, Saglam et al. [14] have developed the operator of (1.3), defined by (1.6), and
it is called the ultrahyperbolic Bessel operator iterated k-times. They have also studied the
product of the ultrahyperbolic Bessel operator related to elastic waves.

Next, Srisombat and Nonlaopon [15] have studied the weak solution of

�k
B,cu(x) = f(x), (1.4)

where u(x) and f(x) are some generalized functions. They have developed (1.4) into the
form

m∑
k=0

Ck�k
B,cu(x) = f(x), (1.5)

which is called the compound ultrahyperbolic Bessel equation. In finding the solution of (1.5),
they have used the properties of B-convolution for the generalized functions.

The purpose of this study is to find the general solution of equation �k
B,cu(x) = f(x),

where �k
B,c is the ultrahyperbolic Bessel operator iterated k-times and is defined by

�k
B,c =

[
1
c2

(
Bx1 + Bx2 + · · · + Bxp

)
−
(
Bxp+1 + · · · + Bxp+q

)]k
(1.6)

p + q = n, n is the dimension of R
+
n = {x : x = (x1, x2, . . . , xn), x1 > 0, . . . , xn > 0}, Bxi =

∂2/∂x2
i + (2vi/xi)(∂/∂xi), 2vi = 2βi + 1, βi > −1/2, xi > 0 (i = 1, 2, . . . , n), f(x) is a given

generalized function, u(x) is an unknown generalized function, k is a nonnegative integer, c
is a positive constant, and x ∈ R

+
n.
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2. Preliminaries

Let Ty
x be the generalized shift operator acting on the function ϕ, according to the law [11, 16]:

T
y
x ϕ(x) = C∗

v

∫π

0
· · ·
∫π

0
ϕ

(√
x2
1 + y2

1 − 2x1y1 cos θ1, . . . ,
√
x2
n + y2

n − 2xnyn cos θn
)

×
(

n∏
i=1

sin2vi−1θi

)
dθ1 · · ·dθn,

(2.1)

where x, y ∈ R
+
n and C∗

v =
∏n

i=1(Γ(vi + 1)/Γ(1/2)Γ(vi)). We remark that this shift operator is
closely connected to the Bessel differential operator [11]:

d2U

dx2
+
2v
x

dU

dx
=

d2U

dy2
+
2v
y

dU

dy
,

U(x, 0) = f(x),

Uy(x, 0) = 0.

(2.2)

The convolution operator is determined by the Ty
x as follows:

(
f ∗ ϕ)(y) =

∫

R
+
n

f
(
y
)
T
y
x ϕ(x)

(
n∏
i=1

y2vi

i

)
dy. (2.3)

The convolution (2.3) is known as a B-convolution. We note the following properties of the
B-convolution and the generalized shift operator.

(a) Ty
x · 1 = 1.

(b) T0
x · f(x) = f(x).

(c) If f(x), g(x) ∈ C(R+
n), g(x) is a bounded function all x > 0, and

∫

R
+
n

∣∣f(x)∣∣
(

n∏
i=1

x2vi

i

)
dx < ∞, (2.4)

then
∫

R
+
n

T
y
x f(x)g

(
y
)( n∏

i=1

y2vi

i

)
dy =

∫

R
+
n

f
(
y
)
T
y
x g(x)

(
n∏
i=1

y2vi

i

)
dy. (2.5)

(d) From (c), we have the following equality for g(x) = 1:

∫

R
+
n

T
y
x f(x)

(
n∏
i=1

y2vi

i

)
dy =

∫

R
+
n

f
(
y
)( n∏

i=1

y2vi

i

)
dy. (2.6)

(e) (f ∗ g)(x) = (g ∗ f)(x).
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Definition 2.1. Let x = (x1, x2, . . . , xn) be a point of the n-dimensional space R
+
n. Denote the

nondegenerated quadratic form by

V = c2
(
x2
1 + x2

2 + · · · + x2
p

)
− x2

p+1 − x2
p+2 − · · · − x2

p+q, (2.7)

where p + q = n. The interior of the forward cone is defined by Γ+ = {x = (x1, . . . , xn) ∈ R
+
n :

xi > 0, i = 1, . . . , n and V > 0}, where Γ+ designates its closure. For any complex number α,
we define

RH
α,c(x) =

⎧⎪⎨
⎪⎩

V (α−n−2|v|)/2

Kn(α)
, for x ∈ Γ+,

0, for x /∈ Γ+,
(2.8)

where

Kn(α) =
π(n+2|v|−1)/2Γ((2 + α − n − 2|v|)/2)Γ((1 − α)/2)Γ(α)

Γ
((
2 + α − p − 2|v|)/2)Γ((p + 2|v| − α

)
/2
) . (2.9)

The function RH
α,c(x) is introduced by [10, 12, 17, 18]. It is well known that RH

α,c(x) is an
ordinary function if Re(α) ≥ n and is the distribution of α if Re(α) < n. Let supp RH

α,c(x) ⊂ Γ+,
where suppRH

α,c(x) denotes the support of R
H
α,c(x).

By putting p = c = 1 into (2.7), (2.8), and (2.9), and using the Legendre’s duplication
of Γ(z),

Γ(2z) = 22z−1π−1/2Γ(z)Γ
(
z +

1
2

)
, (2.10)

the formula (2.8) is reduced to

MH
α (x) =

⎧⎪⎨
⎪⎩

V ((α−n−2|v|)/2)

Hn(α)
, for x ∈ Γ+,

0, for x /∈ Γ+,
(2.11)

where V = x2
1 − x2

2 − · · · − x2
n and

Hn(α) = π(n+2|v|−1)/22α−1Γ
(
2 + α − n − 2|v|

2

)
Γ
(α
2

)
. (2.12)

Note that the function MH
α (x) is precisely the Bessel hyperbolic kernel of Marcel Riesz.

Lemma 2.2. Given the equation

�k
B,cu(x) = δ(x), (2.13)
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where �k
B,c is defined by (1.6) and x ∈ R

+
n, then we obtain u(x) = RH

2k,c(x) as a fundamental solution
of (2.13), where RH

2k,c(x) is defined by (2.8).

The proof of this Lemma is given in [14].

Lemma 2.3. The B-convolutions of tempered distributions.

(a) (�k
B,cδ) ∗ u(x) = �k

B,cu(x), where u(x) is any tempered distribution.

(b) Let RH
2k,c(x) and RH

2m,c(x) be defined by (2.8); then RH
2k,c(x) ∗ RH

2m,c(x) exists and is
a tempered distribution.

(c) Let RH
2k,c(x) and RH

2m,c(x) be defined by (2.8); then RH
2k,c(x) ∗ RH

2m,c(x) = RH
2k+2m,c

(x),
where k and m are nonnegative integers.

The proof of this Lemma is given in [15].

Lemma 2.4. Given that P is a hypersurface

Pδ(m)(P) +mPδ(m−1)(P) = 0, (2.14)

where δ(m) is the Dirac-delta distribution with m derivatives.

The proof of this Lemma is given in [1].

Lemma 2.5. Given the equation

�k
B,cu(x) = 0, (2.15)

where �k
B,c is the ultrahyperbolic Bessel operator iterated k-times, as defined by (1.6), and x ∈ R

+
n,

then

u(x) =
[
RH

2(k−1),c(x)
](m)

, (2.16)

defined by (2.8) withm derivatives, as a solution of (2.15) withm = ((n + 2|v| − 4)/2), n + 2|v| ≥ 4
and n is an even dimension.

Proof. We first show that the generalized function δ(m)(c2r2 − s2), where r2 = x2
1 + x2

2 + · · · +
x2
p, s

2 = x2
p+1 + x2

p+2 + · · · + x2
p+q, p + q = n, is a solution of

�B,cu(x) = 0, (2.17)

and �B,c is defined by (1.6)with k = 1 and x ∈ R
+
n. Now for 1 ≤ i ≤ p, we have

∂

∂xi
δ(m)
(
c2r2 − s2

)
= 2c2xiδ

(m+1)
(
c2r2 − s2

)
,

∂2

∂x2
i

δ(m)
(
c2r2 − s2

)
= 2c2δ(m+1)

(
c2r2 − s2

)
+ 4c4x2

i δ
(m+2)

(
c2r2 − s2

)
.

(2.18)
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Thus, we have

1
c2

p∑
i=1

[
∂2

∂x2
i

δ(m)
(
c2r2 − s2

)
+
2vi

xi

∂

∂xi
δ(m)
(
c2r2 − s2

)]

= 2pδ(m+1)
(
c2r2 − s2

)
+ 4c2r2δ(m+2)

(
c2r2 − s2

)
+ 4
∣∣v′∣∣δ(m+1)

(
c2r2 − s2

)

=
(
2p + 4

∣∣v′∣∣)δ(m+1)
(
c2r2 − s2

)
+ 4
(
c2r2 − s2

)
δ(m+2)

(
c2r2 − s2

)
+ 4s2δ(m+2)

(
c2r2 − s2

)

=
(
2p + 4

∣∣v′∣∣)δ(m+1)
(
c2r2 − s2

)
− 4(m + 2)δ(m+1)

(
c2r2 − s2

)
+ 4s2δ(m+2)

(
c2r2 − s2

)

=
[
2p + 4

∣∣v′∣∣ − 4(m + 2)
]
δ(m+1)

(
c2r2 − s2

)
+ 4s2δ(m+2)

(
c2r2 − s2

)

(2.19)

by applying Lemma 2.4 with P = c2r2 − s2, where |v′| = v1 + v2 + · · · + vp.
Similarly, we have

p+q∑
i=p+1

[
∂2

∂x2
i

δ(m)
(
c2r2 − s2

)
+
2vi

xi

∂

∂xi
δ(m)
(
c2r2 − s2

)]

=
[−(2q + 4

∣∣v′′∣∣) + 4(m + 2)
]
δ(m+1)

(
c2r2 − s2

)
+ 4c2r2δ(m+2)

(
c2r2 − s2

)
(2.20)

by applying Lemma 2.4 with P = c2r2 − s2, where |v′′| = vp+1 + vp+2 + · · · + vp+q.
Thus, we have

�B,cδ
(m)
(
c2r2 − s2

)
=

1
c2

p∑
i=1

[
∂2

∂x2
i

+
2vi

xi

∂

∂xi

]
δ(m)
(
c2r2 − s2

)

−
p+q∑
i=p+1

[
∂2

∂x2
i

+
2vi

xi

∂

∂xi

]
δ(m)
(
c2r2 − s2

)

=
[
2
(
p + q + 2|v|) − 8(m + 2)

]
δ(m+1)

(
c2r2 − s2

)

− 4
(
c2r2 − s2

)
δ(m+2)

(
c2r2 − s2

)

= [2(n + 2|v|) − 8(m + 2)]δ(m+1)
(
c2r2 − s2

)
+ 4(m + 2)δ(m+1)

(
c2r2 − s2

)

= [2(n + 2|v|) − 4(m + 2)]δ(m+1)
(
c2r2 − s2

)

(2.21)

by applying Lemma 2.4 with P = c2r2 − s2, where |v| = |v′| + |v′′|.
If [2(n + 2|v|) − 4(m + 2)] = 0, we obtain

�B,cδ
(m)
(
c2r2 − s2

)
= 0. (2.22)
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That is, u(x) = δ(m)(c2r2 − s2) is a solution of (2.15)withm = (n+ 2|v| − 4)/2, n+ 2|v| ≥ 4, and
n is an even dimension. Now �k

B,cu(x) = 0 can be written in the form

�B,c

(
�k−1

B,c u(x)
)
= 0. (2.23)

From (2.17), we have

�k−1
B,c u(x) = δ(m)

(
c2r2 − s2

)
(2.24)

with m = (n + 2|v| − 4)/2, n + 2|v| ≥ 4, and n being an even dimension. By Lemma 2.3(a), we
can write (2.24) in the from

�k−1
B,c δ ∗ u(x) = δ(m)

(
c2r2 − s2

)
. (2.25)

B-convolving both sides of the above equation with the function RH
2(k−1),c(x), we obtain

RH
2(k−1),c(x) ∗ �k−1

B,c δ ∗ u(x) = RH
2(k−1),c(x) ∗ δ(m)(c2r2 − s2

)
,

�k−1
B,c

[
RH

2(k−1),c(x)
]
∗ u(x) =

[
RH

2(k−1),c(x)
](m)

,

δ ∗ u(x) = u(x) =
[
RH

2(k−1),c(x)
](m)

,

(2.26)

by Lemma 2.2.
It follows that u(x) = [RH

2(k−1),c(x)]
(m) is a solution of (2.15)withm = (n+2|v|−4)/2, n+2|v| ≥ 4

and n is an even dimension.
The generalized function δ(m)(c2r2−s2)mentioned in Lemma 2.5 has been also studied

on the aspect of multiplicative product, distributional product and applications, for more
details, see [19–23].

3. Main Result

Theorem 3.1. Given the equation

�k
B,cu(x) = f(x), (3.1)

where �k
B,c is the ultrahyperbolic Bessel operator iterated k-times and is defined by (1.6), f(x) is a

generalized function, u(x) is an unknown generalized function, x ∈ R
+
n, and n is an even, then (3.1)

has the general solution

u(x) =
[
RH

2(k−1),c(x)
](m)

+ RH
2k,c(x) ∗ f(x), (3.2)

where [RH
2k,c(x)]

(m)
is a function defined by (2.8) withm derivatives.
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Proof. B-convolving both sides of (3.1) with RH
2k,c(x), we obtain

RH
2k,c(x) ∗

(
�k

B,cu(x)
)
= RH

2k,c(x) ∗ f(x). (3.3)

By Lemma 2.2, we have

�k
B,c

(
RH

2k,c(x)
)
∗ u(x) = δ ∗ u(x) = RH

2k,c(x) ∗ f(x). (3.4)

So, we obtain that

u(x) = RH
2k,c(x) ∗ f(x) (3.5)

is the solution of (3.1).
For a homogeneous equation �k

B,cu(x) = 0, we have a solution

u(x) =
[
RH

2(k−1),c(x)
](m)

(3.6)

by Lemma 2.5. Thus the general solution of (3.1) is

u(x) =
[
RH

2(k−1),c(x)
](m)

+ RH
2k,c(x) ∗ f(x). (3.7)

This completes the proof.

By putting c = 1, (3.1) becomes the Bessel ultrahyperbolic equation

�k
Bw(x) = f(x), (3.8)

where �k
B is the Bessel ultrahyperbolic operator iterated k-times, and is defined by (1.3), f(x)

is a generalized function and w(x) is an unknown generalized function. From (3.5) we have
that

w(x) = RH
2k(x) ∗ f(x) (3.9)

is a solution of (3.8), where RH
2k(x) = RH

2k,1(x) defined by (2.8).
From (3.2), we obtain that the general solution of the Bessel ultrahyperbolic equation

is

w(x) =
[
RH

2(k−1)(x)
](m)

+ RH
2k(x) ∗ f(x). (3.10)
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Moreover, if we put k = 1, p = 1 and x1 = t(times), then (3.8) is reduced to the Bessel wave
equation

�Bw(x) =

(
Bt −

n∑
i=2

Bxi

)
w(x) = f(x), (3.11)

where

�B = Bt −
n∑
i=2

Bxi (3.12)

is the Bessel wave operator and Bxi = ∂2/∂x2
i + (2vi/xi)(∂/∂xi).

Thus, we obtain w(x) = M2(x) ∗ f(x) as a solution of the Bessel wave equation, since
RH

2 (x) becomes MH
2 (x), where MH

2 (x) is the Bessel ultrahyperbolic kernel of Marcel Riesz,
and is defined by (2.11) with α = 2. And from (3.2), we obtain the general solution of Bessel
wave equation as

w(x) = δ(m)(x) +MH
2 (x) ∗ f(x), (3.13)

where δ(m)(x) is a solution of

(
Bt −

n∑
i=2

Bxi

)
w(x) = 0. (3.14)

Now we put V = t2 − x2
2 − x2

3 − · · · − x2
n and s2 = x2

2 + x2
3 + · · · + x2

n. By [24], we obtain that

w(x, t) = δ(m)
(
t2 − s2

)
(3.15)

is the solution of (3.14) with the initial conditions w(x, 0) = 0 and ∂w(x, 0)/∂t =
(−1)m2πm+1δ(x) at t = 0 and x = (x2, x3, . . . , xn) ∈ R

+
n−1.
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