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A delay-dependent robust fuzzy control approach is developed for a class of nonlinear uncertain
interconnected time delay large systems in this paper. First, an equivalent T–S fuzzy model
is extended in order to accurately represent nonlinear dynamics of the large system. Then, a
decentralized state feedback robust controller is proposed to guarantee system stabilization with a
prescribed H∞ disturbance attenuation level. Furthermore, taking into account the time delays
in large system, based on a less conservative delay-dependent Lyapunov function approach
combining with linear matrix inequalities (LMI) technique, some sufficient conditions for the
existence of H∞ robust controller are presented in terms of LMI dependent on the upper bound
of time delays. The upper bound of time-delay and minimized H∞ performance index can be
obtained by using convex optimization such that the system can be stabilized and for all time
delays whose sizes are not larger than the bound. Finally, the effectiveness of the proposed
controller is demonstrated through simulation example.

1. Introduction

In recent years, interconnected large systems are very common in various fields, such
as power systems, industrial processes, and spacecraft dynamics. In interconnected large
systems, even if their subsystems have tractable models and interact with respective
neighbors in a simple and predictable fashion, the entire systems often display rich and
complex nonlinear behavior. Furthermore, due to the physical configuration and the high
dimensionality, information transmission delays commonly exist in the interconnected large
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systems too. Over the past decade and before, the stability analysis and synthesis of large
systems have been widely studied, and many different approaches have been proposed
to stabilize these systems. For instance, in [1], general modeling and control method
of large-scale systems is presented. Stabilization method of eigenvalue assignment for
interconnected systems is proposed based on local feedback in [2]. References [3] and [4]
display stability analysis and synthesis of large systems with time delay via Takagi-Sugeno
fuzzy models, respectively. In [5] and [6], delay-dependent robust stability and LMI-based
stability for fuzzy large-scale systems with time delays are researched, respectively. In [7],
a nonlinear decentralized state feedback controller is presented for uncertain fuzzy time
delay interconnected systems. The studies mentioned above indicate that in order to facilitate
real engineering application, it is a prime requirement to transform the nonlinear models
of large systems to linear models so as to enable them to be applicable into controller
design. However, linearization technique and linear robust control method are obviously
incompetent for controlling the complex nonlinear behavior of large systems, because the
nonlinear behavior plays vital role during the transient state of the systems and often
degrades system stability and dynamic performances. As an effective means, the nonlinear
control schemes are also presented in the studies mentioned above. But, the nonlinear control
schemes are so complicated that they are unfeasible for real applications. And they also post
additional difficulties to controller design. So far, stabilization problem for complex large
systems is still a baffling issue.

In general, due to the physical configuration and the high dimensionality, it is difficult
to design a global centralized controller for large systems. And a centralized control is
neither feasible nor economical. Due to decentralized control means that each subsystem is
controlled independently on its locally available information, this control scheme is preferred
in wide area control of large system. Many researchers have paid a great deal of attention
on decentralized controllers for large systems. For instance, decentralized stabilizers for
large interconnected power systems are designed in [8] and [9], respectively. In [10], robust
stabilization is researched for interconnected large systems based on decentralized fuzzy
control scheme. In [7] and [11], decentralized state feedback and decentralized guaranteed
cost control are presented for large-scale systems, respectively. All the results mentioned
above indicate that decentralized control scheme is more feasible and effective strategy for
stabilization problem research of interconnected large systems.

Furthermore, in many cases, it is very complicated and difficult, even not possible to
obtain the accurate nonlinear model of large systems. However, the nonlinearities should be
precisely approximated as they play vital role during the transient state of the system. In
order to facilitate real engineering application, in recent year, fuzzy logic model with if-then
rules has become one of the most useful modeling approaches for complex systems [12, 13].
The fuzzy-logic-based approach has the capability of approximating nonlinear processes to
arbitrary accurate degrees so as to enable the fuzzy logic model to be applicable to system
control [14, 15]. Therefore, in order to effectively handle the stabilization problem for complex
large systems, it is a straightforward idea to extend the T-S models that are interconnected,
time delay, and uncertain to represent large systems. The modeling procedure of fuzzy logic
model with if-then rules is given as follows: first, a nonlinear large system is decomposed
into a number of interconnected subsystems. Each subsystem again is decomposed into a set
of fuzzy regions, and in each region, local dynamic behavior of the subsystem is described by
a T-S fuzzy model. Then, each subsystem dynamic is captured by a set of fuzzy implications
that characterize local relations in the state space. Finally, the entire model of the nonlinear
large system can be achieved by smoothly connecting the local linear model in each fuzzy
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subspace together via the membership functions. The method of T-S model can provide an
effective solution to the control of complex large systems that are nonlinear, interconnected,
time delay, and uncertain.

Studying the stabilization problem for large systems, it cannot avoid taking into
consideration the transmission delays. The stabilization problem for time delay systems
can be classified into two types: delay-independent stabilization and delay-dependent
stabilization. The delay-independent stabilization for linear time delay system has been
extensively studied by many researchers for the last decades. However, it is considered more
conservative in general than the delay-dependent case, especially for time delay systems
whose delay size is not actually small [4]. Many researchers also realize it necessary to
develop delay-dependent stabilization method into control area of complex large systems
that are nonlinear, interconnected, time delay, and uncertain. But, so far there are seldom
relational contributions, mainly due to the complex nonlinear behavior in the systems bring
huge complication to controller design.

In this paper, in order to effectively solve stabilization problem for complex large
systems, we rigorously develop a less conservative delay-dependent robust stabilization
method into the wide area control area of the large systems that are nonlinear, interconnected,
time delay, and uncertain. The research is decomposed in several stages, starting with
extending the T-S model that is interconnected, time delay, and uncertain to accurately
represent nonlinear processes of the large systems. On the next stage, we propose
a decentralized state-feedback fuzzy controller. Based on delay-dependent Lyapunov
functional approach integrating theH∞ robust control technique, some sufficient conditions
for existence of the controller can be cast into the feasible problem of LMIs dependent on
the upper bound size of time delays, by which the system can be robustly stabilized for
all considered uncertainties and time delays whose sizes are not larger than their bounds.
On the final stage, a procedure is also given to select suitable controller parameters that are
optimal in the sense of minimizing the guaranteed H∞ performance index by the modified
generalized eigenvalue minimization problem technique in Matlab. The proposed method
effectively handles the problems related to nonlinearities, time delays and uncertainties in
large systems so as to enable controller to be more feasible and effective for real engineering
application, which is a considerable contribution. The effectiveness of the proposed control
method is demonstrated through simulation examples.

The paper is organized as follows. The problem is first formulated in Section 2.
The delay-dependent stabilization problem via decentralized fuzzy controller is studied in
Section 3. In Section 4, simulation case is provided to demonstrate the effectiveness of the
proposed method. Finally, concluding remarks are given in Section 5.

2. Problem Formulation

Consider a class of nonlinear uncertain time delay large systems which are interconnected by
N subsystems as follows:

ẋi(t) = fi(xi(t), xi(t − τii),ui(t),ωi(t)) + Δfi(xi(t), xi(t − τii),ui(t),ωi(t))

+
N∑

j=1,j /= i

[
fij

(
xj(t), xj

(
t − τij

))
+ Δfij

(
xj(t), xj

(
t − τij

))]
,
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yi(t) = gi(xi(t),ωi(t)) + Δgi(xi(t),ωi(t)),

xi(t) = ϕi(t), t ∈ [−τii, 0], xj(t) = ϕj(t), t ∈ [−τij , 0
]
, 0 < τii, τij ≤ τ,

(2.1)

where xi(t) ∈ Rni , xj(t) ∈ Rnj are state vectors of the ith and jth subsystems, respectively,
i, j = 1, 2, . . . ,N. ui(t) ∈ Rmi is control input. yi(t) andωi(t) are controlled output and external
disturbance of the ith subsystem, respectively. fi(·), gi(·), Δfi(·), Δgi(·), fij(·), and Δfij(·)
are the smooth nonlinear functions. fij(·) and Δfij(·) denote the interconnection functions
between the ith and jth subsystem, Δfi(·), Δgi(·), and Δfij(·) represent uncertainties in the
ith subsystem model. τii and τij are the constant but unknown delay in the states, τ is the
upper bound value of all time delays.

Here, the T-S fuzzy model is extended to represent the system (2.1). The model is
described by fuzzy if-then rules in the following form.

The kth rule of T-S fuzzy model for the ith subsystem: Rk
i : If zi1(t) is Fk1, . . ., and zigi(t)

is Fkgi , Then,

ẋi(t) = Aikxi(t) +Adikxi(t − τii) + B1ikui(t) + B2ikωi(t) + ΔAikxi(t)

+ ΔAdikxi(t − τii) + ΔB1ikui(t) + ΔB2ikωi(t)

+
N∑

j=1,j /= i

[
Aijkxj(t) +Adijkxj

(
t − τij

)
+ ΔAijkxj(t) + ΔAdijkxj

(
t − τij

)]
,

yi(t) = Cikxi(t) + ΔCikxi(t) +Dikωi(t) + ΔDikωi(t),

(2.2)

where k = 1, 2, . . . , l, l is the number of if-then rules Fk1, . . . , Fkgi are the fuzzy sets;
zi1(t), . . . , zigi(t) are the premise variables. Aik, Adik, Aijk, Adijk, B1ik, B2ik, Cik, and Dik are
constant coefficient matrices with appropriate dimensions.ΔAik,ΔAdik,ΔAijk,ΔAdijk,ΔB1ik,
ΔB2ik, ΔCik, and ΔDik are uncertain matrices with appropriate dimensions.

Then, the overall fuzzy model of the ith subsystem can be rearranged in the following
form:

ẋi(t) =
l∑

k=1

hk(zi(t))

⎧
⎨

⎩Aikxi(t) +Adikxi(t − τii) + B1ikui(t) + B2ikωi(t) + ΔAikxi(t)

+ ΔAdikxi(t − τii) + ΔB1ikui(t) + ΔB2ikωi(t)

+
N∑

j=1,j /= i

[
Aijkxj(t) +Adijkxj

(
t − τij

)
+ ΔAijkxj(t) + ΔAdijkxj

(
t − τij

)]
⎫
⎬

⎭,

yi(t) =
l∑

k=1

hk(zi(t)){Cikxi(t) + ΔCikxi(t) +Dikωi(t) + ΔDikωi(t)},

xi(t) = ϕi(t), t ∈ [−τii, 0], xj(t) = ϕj(t), t ∈ [−τij , 0
]
,

(2.3)
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where μk(zi(t)) =
∏gi

j=1Fkj(zij(t)), hk(zi(t)) = μk(zi(t))/
∑l

k=1 μk(zi(t)), zi(t) = [zi1(t),
zi2(t), . . . , zigi(t)], and Fkgi(zigi(t)) is the grade of membership of zigi(t) in Fkgi . Assume
that μk(z(t)) ≥ 0, for k = 1, 2, . . . , l and all t. Then, hk(z(t)) ≥ 0, for k = 1, 2, . . . , l, and∑l

k=1 hk(z(t)) = 1.

3. Delay-Dependent Robust Stabilization via
Decentralized Fuzzy Control

In the following, if not stated, matrices are assumed to have compatible dimensions. The
identify and zeromatrices are denoted by I and 0, respectively. The notation ∗ always denotes
the symmetric block in one symmetric matrix. The standard notation > (<) is used to denote
the positive (negative) definite ordering of matrices. Inequality X > Y shows that the matrix
X − Y is positive definite.

First, the decentralized fuzzy controller is designed to deal with the robust
stabilization problem for the above system in the following form:

Rk
i : If zi1(t) is Fk1, . . . , and zigi(t) is Fkgi , then ui(t) = Kikxi(t). (3.1)

Then, the overall controller has the form

ui(t) =
l∑

k=1

hk(zi(t))Kikxi(t). (3.2)

Substituting (3.2) into (2.3) yields the ith closed-loop decentralized controlled
subsystem as follows:

ẋi(t) =
l∑

k=1

l∑

m=1

hk(zi(t))hm(zi(t))

×
⎧
⎨

⎩(Aik + BikKim)xi(t) +Adikxi(t − τii) + ΔAdikxi(t − τii) + B2ikωi(t)

+ ΔB2ikωi(t) + (ΔAik + ΔBikKim)xi(t)

+
N∑

j=1,j /= i

[
Aijkxj(t) +Adijkxj

(
t − τij

)
+ ΔAijkxj(t) + ΔAdijkxj

(
t − τij

)]
⎫
⎬

⎭,

yi(t) =
l∑

k=1

hk(zi(t))[Cikxi(t) + ΔCikxi(t) +Dikωi(t) + ΔDikωi(t)],

xi(t) = ϕi(t), t ∈ [−τii, 0], xj(t) = ϕj(t), t ∈ [−τij , 0
]
.

(3.3)

Here, the uncertainties in the system are represented by the uncertain matrices with
appropriate dimensions. We may make the following assumption concerning the uncertain
matrices.
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Assumption 1 (see [16]). The uncertainties considered here are norm-bounded in the form

[
ΔAik ΔB1ik ΔAdik ΔAijk ΔAdijk ΔB2ik ΔCik ΔDik

]

= HikFik(t)
[
E1ik E2ik E3ik E4ijk E5ijk E6ik E7ik E8ik

]
,

(3.4)

where Hik, E1ik, E2ik, E3ik, E4ijk, E5ijk, E6ik, E7ik, and E8ik are the real constant matrices
known of appropriate dimensions and Fik(t) is an unknown matrix function with Lebesgue-
measurable elements and satisfies FT

ik
(t)Fik(t) ≤ I.

Accordingly, substituting (3.4) into (3.3) yields the ith closed-loop decentralized
controlled subsystem as follows:

ẋi(t) =
l∑

k=1

l∑

m=1

hk(zi(t))hm(zi(t))

×
⎧
⎨

⎩[Aik + B1ikKim +HikFik(t)(E1ik + E2ikKim)]xi(t) + (Adik +HikFik(t)E3ik)xi(t − τii)

+
N∑

j=1,j /= i

[(
Aijk +HikFik(t)E4ijk

)
xj(t) +

(
Adijk +HikFik(t)E5ijk

)
xj
(
t − τij

)]

+(B2ik +HikFik(t)E6ik)ωi(t)

⎫
⎬

⎭,

yi(t) =
l∑

k=1

hk(zi(t))[(Cik +HikFik(t)E7ik)xi(t) + (Dik +HikFik(t)E8ik)ωi(t)].

(3.5)

Equation (3.5) can be rearranged in the following form:

ẋi(t) =
l∑

k=1

l∑

m=1

hk(zi(t))hm(zi(t))

×
⎧
⎨

⎩[Aik + B1ikKim +HikFik(t)(E1ik + E2ikKim) +Adik +HikFik(t)E3ik]xi(t)

− (Adik +HikFik(t)E3ik)
∫ t

t−τii
ẋi(α)dα

+
N∑

j=1,j /= i

[(
Aijk +HikFik(t)E4ijk

)
xj(t) +

(
Adijk +HikFik(t)E5ijk

)
xj
(
t − τij

)]
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+(B2ik +HikFik(t)E6ik)ωi(t)

⎫
⎬

⎭,

yi(t) =
l∑

k=1

hk(zi(t))[(Cik +HikFik(t)E7ik)xi(t) + (Dik +HikFik(t)E8ik)ωi(t)].

(3.6)

Let us define a delay-independent Lyapunov function for the system (3.6) as

Vi(t) = Vi1(t) + Vi2(t) + Vi3(t),

Vi1(t) = xTi (t)Piixi(t),

Vi2(t) =
∫ t

t−τii
xTi (τ)Siixi(τ)dτ,

Vi3(t) =
∫ 0

−τii

∫ t

t+β
ẋTi (α)Ziiẋi(α)dαdβ,

(3.7)

where Pii, Sii, Zii are symmetric positive definite weighting matrices.
Furthermore, for robust stabilization purpose, H∞ performance related to the

controlled output is proposed in the following form:

Ji =
∫ tf

0

[
ρi

−1yTi (t)yi(t) − ρiω
T
i (t)ωi(t)

]
dt. (3.8)

Considering the initial condition, the H∞ performance can be rewritten as follows:

∫ tf

0
yTi (t)yi(t)dt ≤ ρ2i

∫ tf

0
ωT

i (t)ωi(t)dt + Vi(0), (3.9)

where ρi is a prescribed attenuation level.

Remark 3.1. The physical meaning of (3.9) is that the every time delay interconnected
subsystem is stable in the sense of Lyapunov, and the effect of any ωi(t) on output yi(t)
must be attenuated below a desire level ρi from the viewpoint of energy. No matter what
ωi(t) is, the L2 gain fromωi(t) to yi(t)must be equal to or less than a prescribed value ρ2i . The
H∞ performance with a prescribed attenuation level is useful for a robust design without
knowledge of ωi(t).

Remark 3.2. The purpose of this study is to guarantee stability of the system (3.6) via the
decentralized fuzzy controller (3.2). Thereafter, the attenuation level ρi can also be minimized
so that the H∞ performance as (3.9) is reduced as small as possible for all ωi(t) and i =
1, 2, . . . ,N.
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The following lemmas will play important roles in obtaining results in this paper. We
show them as follows.

Lemma 3.3 (see [16]). For all vectors a and b matricesN, X, Y, and Z with appropriate dimensions,
if
[ X Y
YT Z

] ≥ 0, one has

−2aTNb ≤ inf
X,Y,Z

⎧
⎨

⎩

[
a

b

]T[
X Y −N

YT −NT Z

][
a

b

]⎫⎬

⎭, (3.10)

where X and Z are symmetrical positive matrices.

Lemma 3.4 (see [17]). For matrices (or vectors) Y, D, and E with appropriate dimensions, one has

Y +DFE + ETFTDT < 0, (3.11)

where Y is a symmetric matrix. For all F satisfy FTF ≤ I, if and only if a set of scalar quantity ε > 0
exist, one gains

Y + εDDT + ε−1ETE < 0. (3.12)

Based on delay-dependent Lyapunov function integrating theH∞ performance, some
sufficient conditions for the system robust stabilization are shown in Theorem 3.5.

Theorem 3.5. The interconnected uncertain time delay fuzzy system (3.6) is asymptotically stable
via the decentralized fuzzy controller in (3.2) and satisfies the H∞ control performance in (3.9)
for a prescribed ρ2i when ωi(t)/= 0, only if Pii = PT

ii > 0, Sii = ST
ii > 0, Zii = ZT

ii > 0,
are the common solutions of the following matrix inequalities for i, j = 1, 2, . . . ,N (j /= i) and

k,m = 1, 2, . . . , l
[

Xii Yii

Yii
T Zii

]
≥ 0, and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Zijkm Ẑik

�
Zijk Zijk Z̆ik ΦT

ikm (Cik +HikFik(t)E7ik)T

∗ −Sii 0 0 0 [Adik +HikFik(t)E3ik]T 0

∗ ∗ 0 0 0
[
Aijk +HikFik(t)E4ijk

]T 0

∗ ∗ ∗ 0 0
[
Adijk +HikFik(t)E5ijk

]T 0

∗ ∗ ∗ ∗ −ρ2i [B2ik +HikFik(t)E6ik]T (Dik +HikFik(t)E8ik)T

∗ ∗ ∗ ∗ ∗ −τ −1Z−1
ii 0

∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0, (3.13)
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where

Zikm = Pii[Aik + B1ikKim +HikFik(t)(E1ik + E2ikKim)]

+ [Aik + B1ikKim +HikFik(t)(E1ik + E2ikKim)]TPii + τXii + Yii + YT
ii + Sii,

Ẑik = Pii(Adik +HikFik(t)E3ik) − Yii,
�
Zijk = Pii

(
Aijk +HikFik(t)E4ijk

)
,

Zijk = Pii

(
Adijk +HikFik(t)E5ijk

)
, Z̆ik = Pii(B2ik +HikFik(t)E6ik),

Φikm = Aik + B1ikKim +HikFik(t)(E1ik + E2ikKim).

(3.14)

The proof is introduced in Appendix A.
There is an unknown matrix function Fik(t) in (3.13), let us deal with the parameter

uncertainty problem as follow.

Theorem 3.6. The uncertain interconnected fuzzy system with time delays (3.6) is asymptotically
stable via the decentralized fuzzy controller in (3.2) and satisfies theH∞ performance in (3.9) with a
prescribed ρ2i , only if a set of scalar quantity εi > 0, γi > 0 and matrices Pii = PT

ii > 0, Sii = ST
ii > 0,

Zii = ZT
ii > 0 are the common solutions of the following matrix inequalities:

[
Xii Yii

Yii
T Zii

]
≥ 0, and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z′
ikm Ẑ′

ik

�
Z
′
ijk Z

′
ijk Z̆′

ik (Aik + B1ikKim)
T CT

ik PiiHik 0 (E1ik + E2ikKim)T ET
5ik

∗ −Sii 0 0 0 AT
dik 0 0 0 ET

3ik 0
∗ ∗ 0 0 0 AT

ijk 0 0 0 ET
4ijk 0

∗ ∗ ∗ 0 0 AT
dijk 0 0 0 ET

5ijk 0

∗ ∗ ∗ ∗ −ρ2i I BT
2ik DT

ik 0 0 ET
6ik ET

6ik

∗ ∗ ∗ ∗ ∗ −τ−1Z−1
ii 0 Hik 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −I 0 Hik 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε−1i I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ−1i I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −εiI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γiI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0,

(3.15)

where

Z′
ikm = Pii[Aik + B1ikKim] + [Aik + B1ikKim]TPii + τXii + Yii + YT

ii + Sii,

Ẑ′
ik = PiiAdik − Yii,

�
Z
′
ijk = PiiAijk, Z

′
ijk = PiiAdijk, Z̆′

ik = PiiB2ik.

(3.16)

The proof of Theorem 3.6 is easy to obtain. By Lemma 3.4 and Schur decomposition
[19], the inequality (3.13) is equivalent to the inequality (3.15).
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The inequality (3.15) just relates into the upper bound size of time delays and
determined norm-bounds of uncertainties. However it is not linear, let us left multiply and
right multiply matrix Wii = diag{p−1

ii , I, I, I, I, I, I, I, I, I, I}, (3.15) is equivalent to LMI (3.17)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z′′
ikm

Ẑ′′
ik

Aijk Adijk B2ik

(
AikXii + B1ikYim

)T (
CikXii

)T
Hik 0

(
E1ikXii + E2ikYim

)T (
E5ikXii

)T

∗ −Sii 0 0 0 AT
dik 0 0 0 ET

3ik 0

∗ ∗ 0 0 0 AT
ijk

0 0 0 ET
4ijk 0

∗ ∗ ∗ 0 0 AT
dijk

0 0 0 ET
5ijk 0

∗ ∗ ∗ ∗ −ρ2i I BT
2ik DT

ik
0 0 ET

6ik ET
6ik

∗ ∗ ∗ ∗ ∗ −τ−1Z−1
ii 0 Hik 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −I 0 Hik 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε−1i I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ−1i I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −εiI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γiI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0,
(3.17)

where

Z′′
ikm =

[
AikXii + B1ikYim

]
+
[
AikXii + B1ikYim

]T
+ τiiX̃ii + Ỹii + ỸT

ii + S̃ii, X̃ii = P−1
ii XiiP−1

ii ,

Xii = P−1
ii , Ỹii = P−1

ii YiiP−1
ii , S̃ii = P−1

ii SiiP−1
ii ,

Yim = KimP−1
ii , Ẑ′′

ik = Adik − XiiYii = Adik − Ŷii.

(3.18)

Remark 3.7. To obtain better robust performance, the H∞ control performance can be treated
as the following minimization problem so that the H∞ performance in (3.9) is reduced as
small as possible

J∗ = min[αi + Trace(Mi) + Trace(Θi) + Trace(Λi)]

s.t. (i) The inequality (3.17), (ii)

[
Xii Yii

YT
ii Zii

]
≥ 0, (iii)

[ −αi xTi (0)

xi(0) −Xii

]
< 0,

(iv)

[−Θi ΠT
i

Πi −S−1
ii

]
< 0, (v)

[−Λi ΨT
i

Ψi −Z−1
ii

]
< 0, (vi)

[−Mi NT
i

Ni −ρ−2i I

]
< 0,

(3.19)
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Figure 1: Four-machine interconnected power system.

where

∫ tf

0
ωT

i (t)ωi(t)dt = NT
i Ni,

∫ 0

−τii
ϕi

T (t)ϕi(t)dt = ΠT
i Πi,

∫ 0

−τii

∫ 0

β

ϕ̇T
i (α)ϕ̇i(α)dα dβ = ΨT

i Ψi.

(3.20)

The minimization problem in (3.19) can be transformed into LMI optimization
problem. By convex optimization techniques of LMI via MATLAB tool boxes, the H∞
performance index is minimized, and the parameters of controller are obtained. Thereafter,
the fuzzy decentralized controller in (3.2) is designed.

4. Simulation Example

We consider a four-machine power system that is a typical nonlinear interconnected uncertain
large system as shown in Figure 1 to demonstrate the effectiveness of the proposed control
method via the dynamic responses after faults. The dynamic equations of each synchronous
generator are expressed as follows [19]:

δ̇i(t) = ωi(t) −ω0,

ω̇i(t) =
ω0

Mi
Pmi − Di

Mi
(ωi(t) −ω0) − ω0

Mi
Pei(t),

Ė′
qi(t) = − 1

T ′
doi

[
E′
qi(t) + Idi(t)

(
xdi − x′di

)]
+

1
T ′
doi

Vfi(t),

yi1(t) = δi(t),

yi2(t) = Pei(t),

(4.1)
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Table 1: Synchronous generator parameters.

Parameter Generator 1 Generator 2 Generator 3 Generator 4
xd p.u. 1.843 2.432 2.654 2.076
x′
d
p.u. 0.254 0.302 0.365 0.282

xT p.u. 0.123 0.115 0.132 0.142
xad p.u. 1.723 1.723 1.723 1.723
T ′
do

p.u. 6.45 7.68 8.24 7.04
M s 4.0 5.2 6.4 4.5
D p.u. 5.0 3.0 3.0 4.5
Pm p.u. 1.00 1.10 1.15 1.05

ω0 rad/s 314.159

Table 2: Transformer parameters.

Bus Resist. React. Bus Resist. React.
1–3 0.0034 0.0200 7–9 0.0114 −0.0552
1–4 0.0067 0.0350 8-9 0.0098 −0.0430
3–6 0.0123 −0.0450 8–14 0.0072 −0.0342
5-6 0.0087 −0.0320 9–13 0.0023 0.0215
5–9 0.1376 −0.6543 10–12 0.0069 −0.0307
6–7 0.1203 −0.5120 11-12 0.1480 −0.6056
7-8 0.0033 −0.0160 9-10 0.0082 0.0429

where i = 1, 2, 3, 4, is the number of generator

Pei(t) = E′
qi(t)

N∑

j=1

E′
qj

(
t − τij

)[
Bij sin

(
δi(t) − δj

(
t − τij

))
+Gij cos

(
δi(t) − δj

(
t − τij

))]
,

Idi(t) =
N∑

j=1

E′
qj

(
t − τij

)[
Gij sin

(
δi(t) − δj

(
t − τij

)) − Bij cos
(
δi(t) − δj

(
t − τij

))]
.

(4.2)

The generator parameter notions are introduced in Appendix B. The system parameter
values used in the simulation are given in Tables 1 and 2.

The decentralized coordinated excitation control input limitations are

−3 ≤ vfi = ulpss(t) + uspss(t) ≤ 6, i = 1, 2, 3, 4. (4.3)

The fault considered in the simulation is a symmetrical three-phase short circuit fault
that occurs on the transmission line between the bus-6 and the bus-7. ζ is the fraction of the
line to the left of the fault. If ζ = 0, the fault is on the bus bar of no. 6, ζ = 0.5 puts the fault in
the middle of the bus-6 and the bus-7. The fault sequence considered is the following.

Stage 1. The system is in prefault steady state.

Stage 2. A fault occurs at t = 0.1 s.

Stage 3. The fault is removed by opening the breakers of the faulted line at t = 0.25 s.
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Stage 4. The transmission lines are restored with the fault cleared at t = 1.0 s.

Stage 5. The system is in post-fault state.

The triangle type membership functions are proposed for the fuzzy logic model with
if-then rules in this paper. To minimize the design effort and complexity, we try to use as few
rules as possible to represent the system. Here, considering the paper length, the coefficient
matrices of the T-S fuzzymodel are not displayed. For simulation study, four operating points
are selected as follows.

Case 1. The operating points are

⎡
⎢⎢⎢⎢⎢⎣

δ10

δ20

δ30

δ40

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

54.18◦

54.35◦

54.30◦

53.24◦

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

z11

z21

z31

z41

⎤
⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎣

Pm10

Pm20

Pm30

pm40

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

1.10

1.10

1.05

1.05

⎤
⎥⎥⎥⎥⎥⎦
p.u. =

⎡
⎢⎢⎢⎢⎢⎣

z12

z22

z32

z42

⎤
⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎣

Vt1

Vt2

Vt3

Vt4

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

1.04

1.02

1.01

1.02

⎤
⎥⎥⎥⎥⎥⎦
p.u. =

⎡
⎢⎢⎢⎢⎢⎣

z13

z23

z33

z43

⎤
⎥⎥⎥⎥⎥⎦
,

(4.4)

Case 2. The operating points are

⎡
⎢⎢⎢⎢⎢⎣

δ10

δ20

δ30

δ40

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

32.98◦

33.22◦

31.35◦

35.11◦

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

z11

z21

z31

z41

⎤
⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎣

Pm10

Pm20

Pm30

pm40

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0.30

0.40

0.30

0.35

⎤
⎥⎥⎥⎥⎥⎦
p.u. =

⎡
⎢⎢⎢⎢⎢⎣

z12

z22

z32

z42

⎤
⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎣

Vt1

Vt2

Vt3

Vt4

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

0.83

0.87

0.85

0.84

⎤
⎥⎥⎥⎥⎥⎦
p.u. =

⎡
⎢⎢⎢⎢⎢⎣

z13

z23

z33

z43

⎤
⎥⎥⎥⎥⎥⎦
,

(4.5)

Case 3. The operating points are

⎡
⎢⎢⎢⎢⎢⎣

δ10

δ20

δ30

δ40

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

41.84◦

40.12◦

40.65◦

41.15◦

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

z11

z21

z31

z41

⎤
⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎣

Pm10

Pm20

Pm30

pm40

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0.90

0.92

0.91

0.90

⎤
⎥⎥⎥⎥⎥⎦
p.u. =

⎡
⎢⎢⎢⎢⎢⎣

z12

z22

z32

z42

⎤
⎥⎥⎥⎥⎥⎦
,



14 Mathematical Problems in Engineering

⎡
⎢⎢⎢⎢⎢⎣

Vt1

Vt2

Vt3

Vt4

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

0.94

0.93

0.93

0.94

⎤
⎥⎥⎥⎥⎥⎦
p.u. =

⎡
⎢⎢⎢⎢⎢⎣

z13

z23

z33

z43

⎤
⎥⎥⎥⎥⎥⎦
,

(4.6)

Case 4. The operating points are

⎡
⎢⎢⎢⎢⎢⎣

δ10

δ20

δ30

δ40

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

71.24◦

72.75◦

73.31◦

71.23◦

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

z11

z21

z31

z41

⎤
⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎣

Pm10

Pm20

Pm30

pm40

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

1.10

1.00

1.10

1.00

⎤
⎥⎥⎥⎥⎥⎦
p.u. =

⎡
⎢⎢⎢⎢⎢⎣

z12

z22

z32

z42

⎤
⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎣

Vt1

Vt2

Vt3

Vt4

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

1.01

1.01

1.02

1.01

⎤
⎥⎥⎥⎥⎥⎦
p.u. =

⎡
⎢⎢⎢⎢⎢⎣

z13

z23

z33

z43

⎤
⎥⎥⎥⎥⎥⎦
,

(4.7)

Next, we will test the effectiveness of proposed controller at different fault locations.
We solve the control parameters using the LMI optimization toolbox in Matlab. When

the operating points are chosen in Case 1, we find that the system is robustly stable for any
constant time delays that satisfy 0 ≤ τ ≤ 1.5643 s. Figures 2, 3, and 4 compares the power
angles of the generators no. 2 and no. 3 with different fault locations: ζ = 0.05, ζ = 0.50,
ζ = 0.95.

From the results shown above, it can be shown that the proposed decentralized
controller can rapidly damp down power angle oscillation of the generators no. 2 and no.
3 at different fault locations.

In Figure 5, the power angle responses of generator no. 2 are shown, respectively, for
different maximum time delays with ζ = 0.50 in Case 2. It can be seen from Figure 5 that
the proposed controller still ensures sufficient damping of system oscillation and keep the
system stable regardless of variations of maximum time delay. It demonstrates that the delay-
dependent method is effective for all time delay whose sizes are not larger than the upper
bound.

When the operating points are chose in Case 3, the power angle responses of all
generators with ζ = 1.0 are given in Figure 6.

It can be seen from Figure 6 that not only the generator no. 2 and no. 3 settle down
quickly, but also the others have better dynamic performances by the proposed controller.

The terminal voltages of the generator no. 2 and no. 3 with fault location ζ = 0.30 are
shown in Figure 7. From the results of Figure 7, it can be shown that the proposed control
scheme guarantees better voltage quality.
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Figure 2: The responses of power angle of the generator no. 2 and no. 3 with fault location ζ = 0.05 (The
solid line: the generator no. 2, the dotted line: the generator no. 3).
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Figure 3: The responses of power angle of the generator no. 2 and no. 3 with fault location ζ = 0.50 (The
solid line: the generator no. 2, the dotted line: the generator no. 3).
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Figure 4: The responses of power angle of the generator no. 2 and no. 3 with fault location ζ = 0.95 (The
solid line: the generator no. 2, the dotted line: the generator no. 3).

5. Conclusion

Based on decentralized state feedback control structure, a delay-dependent H∞ robust
fuzzy control method is presented for stabilization performance enhancement of the
large systems that are nonlinear, interconnected, time delay, and uncertain by using T-
S fuzzy model. The main contribution of this paper is to effectively deal with the
problems related to nonlinearities, time delays and uncertainties in large systems so that
the system can be stabilized for all considered uncertainties and time delays whose
sizes are not larger than their upper bounds. Another contribution is that the sufficient
conditions for existence of the controller are transformed into the problem of LMIs,



16 Mathematical Problems in Engineering

1
2

3
4

Time (s)

Po
w
er

an
gl
es

(d
eg

)

20

30

40

50

60

0 2 4 6 8 10 12

Figure 5: The responses of power angle of the generator no. 2 with fault location ζ = 0.50 (line no. 1:
maximum time delays are 100ms; line no. 2: maximum time delays are 400ms; line no. 3: maximum time
delays are 40ms; line no. 4: maximum time delays are 200ms).
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Figure 6: The power angle responses of the all generatorwith fault location ζ = 1.0 (Line no. 1: the generator
no. 1; line no. 2: the generator no. 2; line no. 3: the generator no. 3; line no. 4: the generator no. 4).
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Figure 7: Terminal voltages of generators no. 2 and no. 3 with fault location ζ = 0.30 (The solid line: the
generator no. 2, the dotted line: the generator no. 3).
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by which the H∞ performance index and control parameters can be solved efficiently
and rapidly by using convex optimization techniques via the available LMI toolbox. It
enables controller to be more feasible and convenient for real engineering application. The
proposed robust control scheme is demonstrated on a large four-machine power system.
Simulation results have shown that the dynamic performance of the system is greatly
improved regardless of different operating points, various time delays and faults in different
locations.

Appendices

A. The proof of the Theorem 3.5

Proof. The derivative of Vi1(t) along the trajectory of system (3.6)

V̇i1(t) =
l∑

k=1

l∑

m=1

hk(zi(t))hm(zi(t))

×
⎧
⎨

⎩2xTi (t)Pii[Aik + B1ikKim +HikFik(t)(E1ik + E2ikKim) +Adik +HikFik(t)E3ik]xi(t)

−
∫ t

t−τii
2xTi (t)Pii(Adik +HikFik(t)E3ik)ẋi(α)dα

+
N∑

j=1,j /= i

[
2xTi (t)Pii

(
Aijk +HikFik(t)E4ijk

)
xj(t)

+2xTi (t)Pii

(
Adijk +HikFik(t)E5ijk

)
xj
(
t − τij

)]

+2xTi (t)Pii(B2ik +HikFik(t)E6ik)ωi(t)

⎫
⎬

⎭.

(A.1)

By Lemma 3.3, if
[
Xii Yii

YT
ii Zii

]
≥ 0, we obtains

− 2xTi (t)Pii(Adik +HikFik(t)E3ik)ẋi(α)

≤ xTi (t)Xiixi(t) + ẋTi (α)
[
YT
ii − (Pii(Adik +HikFik(t)E3ik))T

]
xi(t)

+ xTi (t)[Yii − Pii(Adik +HikFik(t)E3ik)]ẋi(α) + ẋTi (α)Ziiẋi(α).

(A.2)
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Then, we gain

V̇i1(t) ≤
l∑

k=1

l∑

m=1

N∑

j=1,j /= i

hk(zi(t))hm(zi(t))

×
⎧
⎨

⎩xTi (t){Pii[Aik + B1ikKim +HikFik(t)(E1ik + E2ikKim)]

+[Aik + B1ikKim +HikFik(t)(E1ik + E2ikKim)]TPii + τXii + Yii + YT
ii

}
xi(t)

− 2xTi (t)[Yii − Pii(Adik +HikFik(t)E3ik)]xi(t − τii) +
∫ t

t−τii
ẋTi (α)Ziiẋi(α)dα

+
N∑

j=1,j /= i

[
2xTi (t)Pii

(
Aijk +HikFik(t)E4ijk

)
xj(t)

+2xTi (t)Pii

(
Adijk +HikFik(t)E5ijk

)
xj
(
t − τij

)]

+2xTi (t)Pii(B2ik +HikFik(t)E6ik)ωi(t)

⎫
⎬

⎭,

V̇i2(t) = xTi (t)Siixi(t) − xTi (t − τii)Siixi(t − τii)

V̇i3(t) = τiiẋTi (t)Ziiẋi(t) −
∫ t

t−τii
ẋTi (α)Ziiẋi(α)dα.

(A.3)

Based on the delay-independent Lyapunov function and theH∞ performance (3.9), it is easy
to obtain:

∫ tf

0
yTi yidt

= Vi(0) − Vi

(
tf
)
+
∫ tf

0

[
yTi yi + V̇i(t)

]
dt

≤ Vi(0) +
∫ tf

0

l∑

k=1

l∑

m=1

N∑

j=1,j /= i

hk(zi(t))hm(zi(t))

×
⎧
⎨

⎩xTi (t)

⎧
⎨

⎩Pii[Aik + B1ikKim +HikFik(t)(E1ik + E2ikKim)]

+[Aik + B1ikKim +HikFik(t)(E1ik + E2ikKim)]TPii + τXii + Yii + YT
ii

}
xi(t)

+
∫ t

t−τii
ẋTi (α)Ziiẋi(α)dα − 2xTi (t)[Yii − Pii(Adik +HikFik(t)E3ik)]xi(t − τii)
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+
N∑

j=1,j /= i

[
2xTi (t)Pii

(
Aijk +HikFik(t)E4ijk

)
xj(t)

+2xTi (t)Pii

(
Adijk +HikFik(t)E5ijk

)
xj
(
t − τij

)]

+2xTi (t)Pii(B2ik +HikFik(t)E6ik)ωi(t)

⎫
⎬

⎭

+ xTi (t)Siixi(t) − xTi (t − τii)Siixi(t − τii) + τ ẋTi (t)Ziiẋi(t) −
∫ t

t−τii
ẋTi (α)Ziiẋi(α)dα

+ [(Cik +HikFik(t)E7ik)xi(t) + (Dik +HikFik(t)E8ik)ωi(t)]T

× [(Cik +HikFik(t)E7ik)xi(t) + (Dik +HikFik(t)E8ik)ωi(t)]

+ρ2iω
T
i (t)ωi(t) − ρ2iω

T
i (t)ωi(t)

⎫
⎬

⎭dt.

(A.4)

By the above result and Schur [18] complement, it is easy to obtain that if (3.13) is
satisfied,

∫ tf
0 yTi (t)yi(t)dt ≤ ρ2i

∫ tf
0 ωT

i (t)ωi(t)dt + Vi(0). Therefore, only if (3.13) is satisfied,
the system (3.6) is asymptotically stable via the decentralized fuzzy controller in (3.2) and
satisfies theH∞ performance in (3.9) with a prescribed ρ2i . This completes the proof.

B. Notation

δi(t): Power angle of the ith generator, in rad

ωi(t): The angular velocity of the ith generator, in rad/s

ω0: Synchronous machine speed, in rad/s

E′
qi(t): q axis transient potential, in p.u.

Vfi(t): Control input, excitation voltage, in p.u.

xdi: d-axis synchronous reactance, in p.u.

x′
di: d-axis transient reactance, in p.u.

Yij = Gij + jBij : Modulus of the transfer admittance between the ith and jth
generator, in p. u.

Pmi: Mechanical input power, in p. u., which is a constant

Pei: Electrical power, in p. u.

Di: Damping coefficient of ith generator

Mi: Stored energy at rated speed, inertia constant, in seconds

T ′
doi: d-axis open circuit transient time constant, in seconds

Idi: Direct axis current, in p.u.
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