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This paper is concerned with the existence of monotone positive solutions for an elastic beam
equation with nonlinear boundary conditions. By applying monotone iteration method, we not
only obtain the existence of monotone positive solutions but also establish iterative schemes for
approximating the solutions. It is worth mentioning that these iterative schemes start offwith zero
function or quadratic function, which is very useful and feasible for computational purpose. An
example is also included to illustrate the main results obtained.

1. Introduction

It is well known that beam is one of the basic structures in architecture. The deformations of
an elastic beam in equilibrium state can be described by the following equation of deflection
curve:

d2

dt2

(
EIz

d2u

dt2

)
= q(t), (1.1)

where E is Yang’s modulus constant, Iz is moment of inertia with respect to z axes, and q(t)
is loading at t. If the loading of beam considered is in relation to deflection and rate of change
of deflection, we need to study a more general equation:

u(4)(t) = f
(
t, u(t), u′(t)

)
. (1.2)



2 Mathematical Problems in Engineering

According to different forms of supporting, various boundary value problems (BVPs for
short) should be considered.

Owing to its importance in engineering, physics, and material mechanics, fourth-
order BVPs have attracted much attention from many authors; see, for example [1–15]
and the references therein. However, almost all of the papers we mentioned focused their
attention on the null boundary conditions. When the boundary conditions are nonzero or
nonlinear, fourth-order equations canmodel beams resting on elastic bearings located in their
extremities. Up to now, a little work has been done for fourth-order BVPs with nonlinear
boundary conditions. It is worth mentioning that, in 2009, Alves et al. [16] studied some
fourth-order BVPs with nonlinear boundary conditions, which models an elastic beamwhose
left end is fixed and right end is attached to a bearing device or sliding clamped. Their main
tool was monotone iterative method. For more on monotone iterative techniques, one can
refer to [17–20] and the references therein.

Motivated greatly by the above-mentioned excellent works, in this paper we consider
the existence and iteration of monotone positive solutions for the following fourth-order BVP
with nonlinear boundary conditions:

u(4)(t) = f
(
t, u(t), u′(t)

)
, t ∈ (0, 1),

u(0) = u′′(0) = 0,

u′(1) = 0, u′′′(1) = g(u(1)),

(1.3)

which models an elastic beam whose left end is simply supported and right end is sliding
clamped, given by the function g. By applyingmonotone iterativemethod, we not only obtain
the existence of monotone positive solutions for the BVP (1.3) but also establish iterative
schemes for approximating the solutions. These iterative schemes start offwith zero function
or quadratic function, which is very useful and feasible for computational purpose. Our main
tool is the following theorem [21].

Theorem 1.1. Let K be a normal cone of a Banach space E and v0 ≤ w0. Suppose that

(a1) T : [v0, w0] → E is completely continuous,

(a2) T is monotone increasing on [v0, w0],

(a3) v0 is a lower solution of T , that is, v0 ≤ Tv0,

(a4) w0 is an upper solution of T , that is, Tw0 ≤ w0.

Then the iterative sequences

vn = Tvn−1, wn = Twn−1 (n = 1, 2, 3, . . .) (1.4)

satisfy

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w1 ≤ w0 (1.5)

and converge to, respectively, v and w ∈ [v0, w0], which are fixed points of T .
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Throughout this paper, we always assume that the following conditions are satisfied:

(A1) f ∈ C([0, 1] × [0,+∞) × [0,+∞), [0,+∞));

(A2) g ∈ C([0,+∞), (−∞, 0]).

2. Preliminary

In order to obtain the main results of this paper, we first present several fundamental lemmas
in this section.

Lemma 2.1. Let γ be a constant and y ∈ C[0, 1]. Then the BVP

u(4)(t) = y(t), t ∈ (0, 1),

u(0) = u′′(0) = 0,

u′(1) = 0, u′′′(1) = γ

(2.1)

has a unique solution

u(t) =
∫1

0
G(t, s)y(s)ds − γφ(t), t ∈ [0, 1], (2.2)

where

G(t, s) =
1
6

⎧⎨
⎩
s
(
6t − 3t2 − s2

)
, 0 ≤ s ≤ t ≤ 1,

t
(
6s − 3s2 − t2

)
, 0 ≤ t ≤ s ≤ 1,

φ(t) =
1
2
t − 1

6
t3, t ∈ [0, 1].

(2.3)

Proof. Let u be a solution of the BVP (2.1). Then we may suppose that

u(t) =
∫1

0
G(t, s)y(s)ds +At3 + Bt2 + Ct +D, t ∈ [0, 1]. (2.4)

By the boundary conditions in (2.1), we have

A =
γ

6
, B = 0, C = −γ

2
, D = 0. (2.5)

Therefore, the BVP (2.1) has a unique solution

u(t) =
∫1

0
G(t, s)y(s)ds − γφ(t), t ∈ [0, 1]. (2.6)
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Lemma 2.2. For any (t, s) ∈ [0, 1] × [0, 1], one has

0 ≤ ∂G(t, s)
∂t

≤ (1 − t)s,
1
3
t2s ≤ G(t, s) ≤ 1

2

(
2t − t2

)
s. (2.7)

Proof. For any fixed s ∈ [0, 1], it is easy to know that

∂G(t, s)
∂t

=

⎧⎪⎨
⎪⎩
(1 − t)s, 0 ≤ s ≤ t ≤ 1,

(1 − t)s − 1
2
(s − t)2, 0 ≤ t ≤ s ≤ 1,

(2.8)

which shows that

0 ≤ ∂G(t, s)
∂t

≤ (1 − t)s for (t, s) ∈ [0, 1] × [0, 1], (2.9)

and so

G(t, s) =
∫ t

0

∂G(τ, s)
∂τ

dτ ≤
∫ t

0
s(1 − τ)dτ =

1
2

(
2t − t2

)
s for (t, s) ∈ [0, 1] × [0, 1]. (2.10)

On the other hand, it follows from the expression of G(t, s) that

G(t, s) =
1
6
s
(
6t − 3t2 − s2

)
≥ 1

6
s
(
6t − 4t2

)
≥ 1

3
t2s, 0 ≤ s ≤ t ≤ 1,

G(t, s) =
1
6
t
(
6s − 3s2 − t2

)
≥ 1

6
t
(
6s − 4s2

)
≥ 1

3
t2s, 0 ≤ t ≤ s ≤ 1.

(2.11)

Lemma 2.3. For any t ∈ [0, 1], one has

0 ≤ φ(t) ≤ 1
2

(
2t − t2

)
, 0 ≤ φ′(t) ≤ 1 − t. (2.12)

Proof. It is obvious.

3. Main Results

Theorem 3.1. Assume that f(t, 0, 0)/≡ 0 for t ∈ [0, 1] and there exists a constant a > 0 such that the
following conditions are satisfied:

(H1) f(t, u1, v1) ≤ f(t, u2, v2) ≤ a, 0 ≤ t ≤ 1, 0 ≤ u1 ≤ u2 ≤ a, 0 ≤ v1 ≤ v2 ≤ a;

(H2) (−a/2) ≤ g(z2) ≤ g(z1), 0 ≤ z1 ≤ z2 ≤ a.

Then the BVP (1.3) has monotone positive solutions.
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Proof. Let E = C1[0, 1] be equipped with the norm

‖u‖ = max
{
max
t∈[0,1]

|u(t)|, max
t∈[0,1]

∣∣u′(t)
∣∣},

K =
{
u ∈ E : u(t) ≥ 0, u′(t) ≥ 0 for t ∈ [0, 1]

}
.

(3.1)

ThenK is a normal cone in Banach space E. Note that this induces an order relation ≤ in E by
defining u ≤ v if and only if v − u ∈ K. If we define an operator T : K → E by

(Tu)(t) =
∫1

0
G(t, s)f

(
s, u(s), u′(s)

)
ds − g(u(1))φ(t), t ∈ [0, 1], (3.2)

then

(Tu)′(t) =
∫1

0

∂G(t, s)
∂t

f
(
s, u(s), u′(s)

)
ds − g(u(1))φ′(t), t ∈ [0, 1], (3.3)

which together with (A1), (A2), and Lemmas 2.2 and 2.3 implies that T : K → K. Obviously,
fixed points of T are monotone nonnegative solutions of the BVP (1.3).

Let v0(t) ≡ 0 and w0(t) = a(2t − t2)/2, t ∈ [0, 1]. First, it is easy to verify that T :
[v0, w0] → K is completely continuous by an application of Arzela-Ascoli theorem. Now, we
divide our proof into the following steps.

Step 1. We assert that T is monotone increasing on [v0, w0].
Suppose that u, v ∈ [v0, w0] and u ≤ v. Then 0 ≤ u(t) ≤ v(t) ≤ a and 0 ≤ u′(t) ≤ v′(t) ≤

a for t ∈ [0, 1]. By (H1) and (H2), we have

(Tu)(t) =
∫1

0
G(t, s)f

(
s, u(s), u′(s)

)
ds − g(u(1))φ(t)

≤
∫1

0
G(t, s)f

(
s, v(s), v′(s)

)
ds − g(v(1))φ(t)

= (Tv)(t), t ∈ [0, 1],

(Tu)′(t) =
∫1

0

∂G(t, s)
∂t

f
(
s, u(s), u′(s)

)
ds − g(u(1))φ′(t)

≤
∫1

0

∂G(t, s)
∂t

f
(
s, v(s), v′(s)

)
ds − g(v(1))φ′(t)

= (Tv)′(t), t ∈ [0, 1],

(3.4)

which shows that Tu ≤ Tv.
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Step 2. We prove that v0 is a lower solution of T .
For any t ∈ [0, 1], we know that

(Tv0)(t) =
∫1

0
G(t, s)f(s, 0, 0)ds − g(0)φ(t) ≥ 0 = v0(t),

(Tv0)′(t) =
∫1

0

∂G(t, s)
∂t

f(s, 0, 0)ds − g(0)φ′(t) ≥ 0 = v′
0(t),

(3.5)

which implies that v0 ≤ Tv0.

Step 3. We show that w0 is an upper solution of T .
It follows from Lemmas 2.2 and 2.3, (H1), and (H2) that

(Tw0)(t) =
∫1

0
G(t, s)f

(
s,w0(s), w′

0(s)
)
ds − g(w0(1))φ(t)

≤ 2t − t2

2

∫1

0
sf
(
s,w0(s), w′

0(s)
)
ds +

a
(
2t − t2

)
4

≤ a
(
2t − t2

)
4

+
a
(
2t − t2

)
4

= w0(t), t ∈ [0, 1],

(Tw0)′(t) =
∫1

0

∂G(t, s)
∂t

f
(
s,w0(s), w′

0(s)
)
ds − g(w0(1))φ′(t)

≤ (1 − t)
∫1

0
sf
(
s,w0(s), w′

0(s)
)
ds +

a(1 − t)
2

≤ a(1 − t)
2

+
a(1 − t)

2

= w′
0(t), t ∈ [0, 1],

(3.6)

which indicates that Tw0 ≤ w0.

Step 4. We claim that the BVP (1.3) has monotone positive solutions.
In fact, if we construct sequences {vn}∞n=1 and {wn}∞n=1 as follows:

vn = Tvn−1, wn = Twn−1, n = 1, 2, 3, . . . , (3.7)

then it follows from Theorem 1.1 that

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w1 ≤ w0, (3.8)
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and {vn}∞n=0 and {wn}∞n=0 converge to, respectively, v and w ∈ [v0, w0], which are monotone
solutions of the BVP (1.3). Moreover, for any t ∈ (0, 1], by Lemmas 2.2 and 2.3, we know that

(Tv0)(t) =
∫1

0
G(t, s)f(s, 0, 0)ds − g(0)φ(t)

≥ t2

3

∫1

0
sf(s, 0, 0)ds

> 0,

(3.9)

and so

0 < (Tv0)(t) ≤ (Tv)(t) = v(t) ≤ w(t), t ∈ (0, 1], (3.10)

which shows that v and w are positive solutions of the BVP (1.3).

4. An Example

Example 4.1. Consider the BVP

u(4)(t) =
1
4
u(t) +

1
16

(1 + t)
(
u′(t)

)2 + 1, t ∈ (0, 1),

u(0) = u′′(0) = 0,

u′(1) = 0, u′′′(1) = −1
4
(u(1))2.

(4.1)

If we let f(t, u, v) = (1/4)u + 1/16(1 + t)v2 + 1 for (t, u, v) ∈ [0, 1] × [0,+∞) ×
[0,+∞) and g(u) = −(1/4)u2 for u ∈ [0,+∞), then all the hypotheses of Theorem 3.1 are
fulfilled with a = 2. It follows from Theorem 3.1 that the BVP (4.1) has monotone positive
solutions v and w. Moreover, the two iterative schemes are

v0(t) ≡ 0, t ∈ [0, 1],

vn+1(t) =
1
6

∫ t

0
s
(
6t − 3t2 − s2

)(1
4
vn(s) +

1
16

(1 + s)
(
v′
n(s)
)2 + 1

)
ds

+
1
6

∫1

t

t
(
6s − 3s2 − t2

)(1
4
vn(s) +

1
16

(1 + s)
(
v′
n(s)
)2 + 1

)
ds

+
1
4
(vn(1))2

(
1
2
t − 1

6
t3
)
, t ∈ [0, 1], n = 0, 1, 2, . . . ,
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w0(t) = 2t − t2, t ∈ [0, 1],

wn+1(t) =
1
6

∫ t

0
s
(
6t − 3t2 − s2

)(1
4
wn(s) +

1
16

(1 + s)
(
w′

n(s)
)2 + 1

)
ds

+
1
6

∫1

t

t
(
6s − 3s2 − t2

)(1
4
wn(s) +

1
16

(1 + s)
(
w′

n(s)
)2 + 1

)
ds

+
1
4
(wn(1))2

(
1
2
t − 1

6
t3
)
, t ∈ [0, 1], n = 0, 1, 2, . . . .

(4.2)

The first, second, and third terms of the two schemes are as follows:

v0(t) ≡ 0,

v1(t) =
1
3
t − 1

6
t3 +

1
24

t4,

v2(t) =
205151
580608

t − 169109
967680

t3 +
145
3456

t4 +
13

17280
t5 − 1

17280
t6 − 1

15120
t7 +

19
967680

t8

+
1

580608
t9 − 1

580608
t10 +

1
4561920

t11,

w0(t) = 2t − t2,

w1(t) =
263
480

t − 73
288

t3 +
5
96

t4 +
1
480

t5 − 1
720

t6 +
1

3360
t7,

w2(t) =
21844130402150536441991
58425017821892349788160

t − 53437308090412822335713
292125089109461748940800

t3 +
3755569
88473600

t4

+
574129

442368000
t5 − 19199

132710400
t6 − 12433

103219200
t7 +

47291
1238630400

t8 +
8953

1592524800
t9

− 17377
4644864000

t10 +
19373

51093504000
t11 +

161
2919628800

t12 − 269
12651724800

t13

+
31

14760345600
t14 +

1
6709248000

t15 − 1
23003136000

t16 +
1

210567168000
t17.

(4.3)
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