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Using the fixed point theorem of cone expansion/compression, we consider the existence results
of positive solutions for a nonlinear semipositone telegraph system with repulsive weak singular
forces.

1. Introduction

In this paper, we are concerned with the existence of positive solutions for the nonlinear
telegraph system:

utt − uxx + c1ut + a1(t, x)u = f(t, x, v),

vtt − vxx + c2vt + a2(t, x)v = g(t, x, u),
(1.1)

with doubly periodic boundary conditions

u(t + 2π, x) = u(t, x + 2π) = u(t, x), (t, x) ∈ R2,

v(t + 2π, x) = v(t, x + 2π) = v(t, x), (t, x) ∈ R2.
(1.2)

In particular, the function f(t, x, v) may be singular at v = 0 or superlinear at v = +∞, and
g(t, x, u) may be singular at u = 0 or superlinear at u = +∞.
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In the latter years, the periodic problem for the semilinear singular equation

x′′ + a(t)x =
b(t)
xλ

+ c(t), (1.3)

with a, b, c ∈ L1[0, T] and λ > 0, has received the attention of many specialists in differential
equations. The main methods to study (1.3) are the following three common techniques:

(i) the obtainment of a priori bounds for the possible solutions and then the
applications of topological degree arguments;

(ii) the theory of upper and lower solutions;

(iii) some fixed point theorems in a cone.

We refer the readers to see [1–7] and the references therein.
Equation (1.3) is related to the stationary version of the telegraph equation

utt − uxx + cut + λu = f(t, x, u), (1.4)

where c > 0 is a constant and λ ∈ R. Because of its important physical background,
the existence of periodic solutions for a single telegraph equation or telegraph system has
been studied by many authors; see [8–16]. Recently, Wang utilize a weak force condition to
enable the achievement of new existence criteria for positive doubly periodic solutions of
nonlinear telegraph system through a basic application of Schauder’s fixed point theorem
in [17]. Inspired by these papers, here our interest is in studying the existence of positive
doubly periodic solutions for a semipositone nonlinear telegraph systemwith repulsive weak
singular forces by using the fixed point theorem of cone expansion/compression.

Lemma 1.1 (see [18]). Let E be a Banach space, and let K ⊂ E be a cone in E. Assume that Ω1,
Ω2 are open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let T : K ∩ (Ω2 \ Ω1) → K be a completely
continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2; or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then, T has a fixed point in K ∩ (Ω2 \Ω1).

This paper is organized as follows: in Section 2, some preliminaries are given; in
Section 3, we give the main results.

2. Preliminaries

Let �2 be the torus defined as

�2 =
(

R

2πZ

)
×
(

R

2πZ

)
. (2.1)

Doubly 2π-periodic functions will be identified to be functions defined on �2. We use
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the notations

Lp
(
�2
)
, C
(
�2
)
, Cα
(
�2
)
, D
(
�2
)
= C∞

(
�2
)
, . . . (2.2)

to denote the spaces of doubly periodic functions with the indicated degree of regularity. The
space D′(�2) denotes the space of distributions on �2.

By a doubly periodic solution of (1.1)-(1.2) we mean that a (u, v) ∈ L1(�2) × L1(�2)
satisfies (1.1)-(1.2) in the distribution sense; that is,

∫
�2
u
(
ϕtt − ϕxx − c1ϕt + a1(t, x)ϕ

)
dt dx =

∫
�2
f(t, x, v)ϕdt dx,

∫
�2
v
(
ϕtt − ϕxx − c2ϕt + a2(t, x)ϕ

)
dt dx =

∫
�2
g(t, x, u)ϕdt dx,

∀ϕ ∈ D
(
�2
)
. (2.3)

First, we consider the linear equation

utt − uxx + ciut − λiu = hi(t, x), in D′
(
�2
)
, (2.4)

where ci > 0, λi ∈ R, and hi(t, x) ∈ L1(�2), (i = 1, 2).
Let £λi be the differential operator

£λi = utt − uxx + ciut − λiu, (2.5)

acting on functions on �2. Following the discussion in [14], we know that if λi < 0, then £λi
has the resolvent Rλi :

Rλi : L
1
(
�2
)
−→ C

(
�2
)
, hi −→ ui, (2.6)

where ui is the unique solution of (2.4), and the restriction of Rλi on Lp(�2) (1 < p < ∞) or
C(�2) is compact. In particular, Rλi : C(�2) → C(�2) is a completely continuous operator.

For λi = −c2i /4, the Green function Gi(t, x) of the differential operator £λi is explicitly
expressed; see lemma 5.2 in [14]. From the definition of Gi(t, x), we have

Gi := ess infGi(t, x) =
e−3ciπ/2

(1 − e−ciπ)2
,

Gi := ess supGi(t, x) =
(1 + e−ciπ)

2(1 − e−ciπ)2
.

(2.7)

Let E denote the Banach space C(�2) with the norm ‖u‖ = max(t,x)∈�2 |u(t, x)|, then E is an
ordered Banach space with cone

K0 =
{
u ∈ E | u(t, x) ≥ 0, ∀(t, x) ∈ �2

}
. (2.8)

For convenience, we assume that the following condition holds throughout this paper:

(H1) ai(t, x) ∈ C(�2, R+), 0 < ai(t, x) ≤ c2i /4 for (t, x) ∈ �2, and
∫
�2 ai(t, x)dt dx > 0.
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Next, we consider (2.4) when −λi is replaced by ai(t, x). In [10], Li has proved the
following unique existence and positive estimate result.

Lemma 2.1. Let hi(t, x) ∈ L1(�2); E is the Banach space C(�2). Then; (2.4) has a unique solution
ui = Pihi; Pi : L1(�2) → C(�2) is a linear bounded operator with the following properties;

(i) Pi : C(�2) → C(�2) is a completely continuous operator;

(ii) if hi(t, x) > 0, then a.e. (t, x) ∈ �2, Pi[hi(t, x)] has the positive estimate

Gi‖hi‖L1 ≤ Pi[hi(t, x)] ≤ Gi

Gi‖ai‖L1
‖hi‖L1 . (2.9)

3. Main Result

In this section, we establish the existence of positive solutions for the telegraph system

vtt − vxx + c1vt + a1(t, x)v = f(t, x, u),

vtt − vxx + c2vt + a2(t, x)v = g(t, x, u).
(3.1)

where ai ∈ C(R2, R+) and f(t, x, v) may be singular at v = 0. In particular, f(t, x, v) may
be negative or superlinear at v = +∞. g(t, x, u) has the similar assumptions. Our interest is
in working out what weak force conditions of f(t, x, v) at v = 0, g(t, x, u) at u = 0 and what
superlinear growth conditions of f(t, x, v) at v = +∞, g(t, x, u) at u = +∞ are needed to obtain
the existence of positive solutions for problem (1.1)-(1.2).

We assume the following conditions throughout.

(H2) f, g : �2 × (0,∞) → R is continuous, and there exists a constant M > 0 such that

f1(t, x, u) +M ≥ 0, f2(t, x, u) +M ≥ 0, ∀(t, x) ∈ �2 and u, v ∈ (0,∞). (3.2)

(H3) F(t, x, v) = f(t, x, v) + M ≤ j1(v) + h1(v) for (t, x, v) ∈ �2 × (0,∞) with j1 > 0
continuous and nonincreasing on (0,∞), h1 ≥ 0 continuous on (0,∞) and h1/j1
nondecreasing on (0,∞).

G(t, x, u) = g(t, x, u) + M ≤ j2(u) + h2(u) for (t, x, u) ∈ �2 × (0,∞) with j2 > 0
continuous and nonincreasing on (0,∞), h2 ≥ 0 continuous on (0,∞) and h2/j2
nondecreasing on (0,∞).

(H4) F(t, x, v) = f(t, x, v) + M ≥ j3(v) + h3(v) for all (t, x, v) ∈ �2 × (0,∞) with j3 > 0
continuous and nonincreasing on (0,∞), h3 ≥ 0 continuous on (0,∞) with h3/j3
nondecreasing on (0,∞);

G(t, x, u) = g(t, x, u) + M ≥ j4(u) + h4(u) for all (t, x, u) ∈ �2 × (0,∞) with j4 > 0
continuous and nonincreasing on (0,∞), h4 ≥ 0 continuous on (0,∞) with h4/j4
nondecreasing on (0,∞).

(H5) There exists

r >
M‖ω1‖

δ1
, (3.3)
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such that

r ≥ 4π2G1

G1‖a1‖L1
I1 · I2, (3.4)

here

I1 = j1

(
G2j4(r)

{
1 +

h4(δ1r −M‖ω1‖)
j4(δ1r −M‖ω1‖)

}
4π2 −M‖ω2‖

)
,

I2 = 1 +
h1

((
4π2G2/G2‖a2‖L1

)
j2(δ1r −M‖ω1‖)

{
1 + h2(r)/j2(r)

})

j1
((

4π2G2/G2‖a2‖L1

)
j2(δ1r −M‖ω1‖)

{
1 + h2(r)/j2(r)

}) ,
(3.5)

where δi = (Gi
2‖ai‖L1/Gi) ∈ (0, 1), and ωi(t, x) is the unique solution to problem:

utt − uxx + ciut + ai(t, x)u = 1,

u(t + 2π, x) = u(t, x + 2π) = u(t, x),
(t, x) ∈ R2. (3.6)

(H6) There exists R > r, such that

4π2G1I3 · I4 ≥ R,

δ2j4(R)
{
1 +

h4(δ1r −M‖ω1‖)
j4(δ1r −M‖ω1‖)

}
> M,

(3.7)

where

I3 = G1j3

(
4π2G2

G2‖a2‖L1
j2(δ1R −M‖ω1‖)

{
1 +

h2(R)
j2(R)

})
,

I4 = 1 +
h3

(
G2j4(R)

{
1 + h4(δ1R −M‖ω1‖)/j4(δ1R −M‖ω1‖)

}
4π2 −M‖ω2‖

)

j3
(
G2j4(R)

{
1 + h4(δ1R −M‖ω1‖)/j4(δ1R −M‖ω1‖)

}
4π2 −M‖ω2‖

) .
(3.8)

Theorem 3.1. Assume that (H1)–(H6) hold. Then, the problem (1.1)-(1.2) has a positive doubly
periodic solution (u, v).

Proof. To show that (1.1)-(1.2) has a positive solution, we will proof that

utt − uxx + c1ut + a1(t, x)u = F(t, x, v −Mω2),
vtt − vxx + c2vt + a2(t, x)v = G(t, x, u −Mω1)

(3.9)
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has a solution (ũ, ṽ) = (u+Mω1, v+Mω2)with ũ > Mω1, ṽ > Mω2 for (t, x) ∈ �2. In addition,
by Lemma 2.1, it is clear to see that (u, v) ∈ C2(�2) ×C2(�2) is a solution of (3.9) if and only if
(u, v) ∈ C(�2) × C(�2) is a solution of the following system:

u = P1(F(t, x, v −Mω2)),
v = P2(G(t, x, u −Mω1)).

(3.10)

Evidently, (3.10) can be rewritten as the following equation:

u = P1(F(t, x, P2(G(t, x, u −Mω1)) −Mω2)). (3.11)

Define a cone K ⊂ E as

K = {u ∈ E : u ≥ 0, u ≥ δ1‖u‖}. (3.12)

We define an operator T : E → K by

(Tu)(t, x) = P1(F(t, x, P2(G(t, x, u −Mω1)) −Mω2)) (3.13)

for u ∈ E and (t, x) ∈ �2. We have the conclusion that T : E → E is completely continuous and
T(K) ⊆ K. The complete continuity is obvious by Lemma 2.1. Now, we show that T(K) ⊆ K.

For any u ∈ K, we have

Tu = P1(F(t, x, P2(G(t, x, u −Mω1)) −Mω2)). (3.14)

From (H1)–(H3) and Lemma 2.1, we have

Tu = P1(F(t, x, P2(G(t, x, u −Mω1)) −Mω2))

≥ G1‖F(t, x, P2(G(t, x, u −Mω1)) −Mω2)‖L1 ,

‖Tu‖ = ‖P(F(t, x, P2(G(t, x, u −Mω1)) −Mω2))‖

≤ G1

G1‖a1‖L1
‖F(t, x, P2(G(t, x, u −Mω1)) −Mω2)‖L1 .

(3.15)

So, we get

Tu ≥
G1

2‖a1‖L1

G1

‖Tu‖ ≥ δ1‖Tu‖, (3.16)

namely, T(K) ⊆ K.
Let

Ωr = {u ∈ E : ‖u‖ < r}, ΩR = {u ∈ E : ‖u‖ < R}. (3.17)

Since r ≤ ‖u‖ ≤ R for any u ∈ K ∩ (ΩR \Ωr), we have 0 < δ1r −M‖ω‖ ≤ u −Mω1 ≤ R.
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First, we show

‖Tu‖ ≤ ‖u‖, for u ∈ K ∩ ∂Ωr . (3.18)

In fact, if u ∈ K ∩ ∂Ωr , then ‖u‖ = r and u ≥ δ1r > M‖ω1‖ for(t, x) ∈ �2. By (H3) and (H4),
we have

P2(G(t, x, u −Mω1)) ≤ G2

G2‖a2‖L1
‖G(t, x, u −Mω1)‖L1

≤ G2

G2‖a2‖L1

∥∥∥∥j2(u −Mω1)
(
1 +

h2(u −Mω1)
j2(u −Mω1)

)∥∥∥∥
L1

≤ G2

G2‖a2‖L1
j2(δ1r −M‖ω1‖)

{
1 +

h2(r)
j2(r)

}
4π2,

(3.19)

P2(G(t, x, u −Mω1)) ≥ G2‖G(t, x, u −Mω1)‖L1

≥ G2

∥∥∥∥j4(u −Mω1)
(
1 +

h4(u −Mω1)
j4(u −Mω1)

)∥∥∥∥
L1

≥ G2j4(r)
{
1 +

h4(δ1r −M‖ω1‖)
j4(δ1r −M‖ω1‖)

}
4π2.

(3.20)

In addition, we also have

P2(G(t, x, u −Mω1)) ≥ G2j4(r)
{
1 +

h4(δ1r −M‖ω1‖)
j4(δ1r −M‖ω1‖)

}
4π2

≥ G2j4(R)
{
1 +

h4(δ1r −M‖ω1‖)
j4(δ1r −M‖ω1‖)

}
4π2

>
G2

G2‖a2‖L1
M4π2

≥ Mω2,

(3.21)

by (H5), (H6), and (3.20).
So, we have

Tu = P1(F(t, x, v −Mω2))

≤ G1

G1‖a1‖L1
‖F(t, x, v −Mω2)‖L1

≤ G1

G1‖a1‖L1

∥∥∥∥j1(v −Mω2)
{
1 +

h1(v −Mω2)
j1(v −Mω2)

}∥∥∥∥
L1
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≤ G1

G1‖a1‖L1

∥∥j1(P2(G(t, x, u −Mω1)) −Mω2)

×
{
1 +

h1(P2(G(t, x, u −Mω1)) −Mω2)
j1(P2(G(t, x, u −Mω1)) −Mω2)

}∥∥∥∥
L1

≤ G1

G1‖a1‖L1
j1

(
G2j4(r)

{
1 +

h4(δ1r −M‖ω1‖)
j4(δ1r −M‖ω1‖)

}
4π2 −M‖ω2‖

)

×
⎧⎨
⎩1 +

h1

((
G2/G2‖a2‖L1

)
j2(δ1r −M‖ω1‖)

{
1 + h2(r)/j2(r)

}
4π2
)

j1
((

G2/G2‖a2‖L1

)
j2(δ1r −M‖ω1‖)

{
1 + h2(r)/j2(r)

}
4π2
)
⎫⎬
⎭4π2

≤ r = ‖u‖
(3.22)

for (t, x) ∈ �2, since δ1r −M‖ω1‖ ≤ u −Mω1 ≤ r.
This implies that ‖Tu‖ ≤ ‖u‖; that is, (3.18) holds.
Next, we show

‖Tu‖ ≥ ‖u‖, for u ∈ K ∩ ∂ΩR. (3.23)

If u ∈ K ∩ ∂ΩR, then ‖u‖ = R and u ≥ δR > M‖ω1‖ for (t, x) ∈ �2. From (H4) and (H6), we
have

Tu = P1(F(t, x, v −Mω1))

≥ G1

∥∥∥∥j3(v −Mω2)
{
1 +

h3(v −Mω2)
j3(v −Mω2)

}∥∥∥∥
L1

≥ G1

∥∥∥∥j3(P2(G(t, x, u −Mω1)) −Mω2) ×
{
1 +

h3(P2(G(t, x, u −Mω1)) −Mω2)
j3(P2(G(t, x, u −Mω1)) −Mω2)

}∥∥∥∥
L1

≥ G1

∥∥∥∥∥j3
(

G2

G2‖a2‖L1
j2(δ1R −M‖ω1‖)

{
1 +

h2(R)
j2(R)

}
4π2

)

×
⎧⎨
⎩1 +

h3

(
G2j4(R)

{
1 + h4(δ1R −M‖ω1‖)/j4(δ1R −M‖ω1‖)

}
4π2 −M‖ω2‖

)

j3
(
G2j4(R)

{
1 + h4(δ1R −M‖ω1‖)/j4(δ1R −M‖ω1‖)

}
4π2 −M‖ω2‖

)
⎫⎬
⎭

∥∥∥∥∥∥∥
L1

≥ R = ‖u‖
(3.24)

for (t, x) ∈ �2, since δ1R −M‖ω1‖ ≤ u −Mω1 ≤ R.
This implies that Tu ≥ ‖u‖; that is, (3.23) holds.
Finally, (3.18), (3.23), and Lemma 1.1 guarantee that T has a fixed point u ∈ K∩ΩR\Ωr

with r ≤ ‖u‖ ≤ R. Clearly, u > Mω1.
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Since

P2(G(t, x, u −Mω1)) ≥ G2‖G(t, x,Mω1)‖L1

≥ G2

∥∥∥∥j4(u −Mω1)
(
1 +

h4(u −Mω1)
j4(u −Mω1)

)∥∥∥∥
L1

≥ G2j4(R)
{
1 +

h4(δ1r −M‖ω1‖)
j4(δ1r −M‖ω1‖)

}
4π2

>
G2

G2‖a2‖L1
M4π2

≥ Mω2,

(3.25)

then we have a doubly periodic solution (u, v) of (3.9) with u > Mω1, v > Mω2, namely,
(u −Mω1, v −Mω2) > (0, 0) is a positive solution of (1.1) with (1.2).

Similarly, we also obtain the following result.

Theorem 3.2. Assume that (H1)–(H4) hold. In addition, we assume the following.

(H7) There exists

r >
M‖ω2‖

δ2
, (3.26)

such that

r ≥ 4π2G2

G2‖a2‖L1
I5 · I6, (3.27)

here

I5 = j2

(
4π2G1j3(r)

{
1 +

h3(δ2r −M‖ω2‖)
j3(δ2r −M‖ω2‖)

}
−M‖ω1‖

)
,

I6 = 1 +
h2

((
4π2G1/G1‖a1‖L1

)
j1(δ2r −M‖ω2‖)

{
1 + h1(r)/j1(r)

})

j2
((

4π2G1/G1‖a1‖L1

)
j1(δ2r −M‖ω2‖)

{
1 + h1(r)/j1(r)

}) .
(3.28)

(H8) There exists R > r, such that

4π2G2I7 · I8 ≥ R,

δ1j3(R)
{
1 +

h3(δ2r −M‖ω2‖)
j3(δ2r −M‖ω2‖)

}
> M,

(3.29)
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where

I7 = j4

(
4π2G1

G1‖a1‖L1
j1(δ2R −M‖ω2‖)

{
1 +

h1(R)
j1(R)

})
,

I8 = 1 +
h4

(
4π2G1j3(R)

{
1 + h3(δ2R −M‖ω2‖)/j3(δ2R −M‖ω2‖)

} −M‖ω1‖
)

j4
(
4π2G1j3(R)

{
1 + h3(δ2R −M‖ω2‖)/j3(δ2R −M‖ω2‖)

} −M‖ω1‖
) .

(3.30)

Then, problem (1.1)-(1.2) has a positive periodic solution.

4. An Example

Consider the following system:

utt − uxx + 2ut + sin2(t + x)u = μ
(
v−α + vβ + k1(t, x)

)
,

vtt − vxx + 2vt + cos2(t + x)v = λ
(
u−τ + uσ + k2(t, x)

)
,

u(t + 2π, x) = u(t, x + 2π) = u(t, x), (t, x) ∈ R2,

v(t + 2π, x) = v(t, x + 2π) = v(t, x), (t, x) ∈ R2,

(4.1)

where c1 = c2 = 2, μ, λ > 0, α, τ > 0, β, σ > 1, a1(t, x) = sin2(t + x), a2(t, x) = cos2(t + x) ∈
C(�2, R+), ki : �2 → R is continuous. When μ is chosen such that

μ < sup
u∈((M‖ω1‖)/δ1,∞)

G‖a1‖L1

G4π2

I1

I2
, (4.2)

here we denote

I1 = u
(
Gλu−τ{1 + (δ1u −M‖ω1‖) σ+τ}4π2 −M‖ω2‖

)α
,

I2 = 1 +

(
G

G‖a2‖L1
λ(δ1u −M‖ω1‖)−τ(1 + uσ+τ + 2Huτ)4π2

)β+α

+ 2H

(
G

G‖a2‖L1
λ(δ1u −M‖ω1‖)−τ(1 + uσ+τ + 2Huτ)4π2

)
,

(4.3)

where H = max{‖k1‖, ‖k2‖} and the Green function G1 = G2 = G. Then, problem (4.1) has a
positive solution.
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To verify the result, we will apply Theorem 3.1 withM = max{μH, λH} and

j1(v) = j3(v) = μv−α, h1(v) = μ
(
vβ + 2H

)
, h3(v) = μvβ,

j2(u) = j4(u) = λu−τ , h2(u) = μ(uσ + 2H), h4(u) = μuσ.

(4.4)

Clearly, (H1)–(H4) are satisfied.
Set

T(u) =
G‖a1‖L1

G4π2

I1

I2
, u ∈

(
(M‖ω1‖)

δ1
,+∞

)
. (4.5)

Obviously, T((M‖ω1‖)/δ1) = 0, T(∞) = 0, then there exists r ∈ ((M‖ω1‖)/δ1,+∞) such that

T(r) = sup
u∈((M‖ω1‖)/δ1,∞)

G‖a1‖L1

G4π2

I1

I2
. (4.6)

This implies that there exists

r ∈
(
(M‖ω1‖)

δ1
,+∞

)
, (4.7)

such that

μ < sup
u∈((M‖ω1‖)/δ1,∞)

G‖a1‖L1

G4π2

I1

I2
. (4.8)

So, (H5) is satisfied.
Finally, since

R
((

G/G‖a2‖L1

)
λ(δ1R −M‖ω1‖)−τ(1 + Rσ+τ + 2HRτ)4π2

)α

μG
[
1 +
(
GλR−τ{1 + (δ1R −M‖ω1‖)σ+τ

}
4π2 −M‖ω2‖

)α+β] −→ 0 as R −→ ∞, (4.9)

this implies that there exists R. In addition, for fixed r, R, choosing λ sufficiently large, we
have

δ2λR
−τ{1 + (δ1r −M‖ω1‖) σ+τ } > M. (4.10)

Thus, (H6) is satisfied. So, all the conditions of Theorem 3.1 are satisfied.
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[14] R. Ortega and A. M. Robles-Pérez, “A maximum principle for periodic solutions of the telegraph
equation,” Journal of Mathematical Analysis and Applications, vol. 221, no. 2, pp. 625–651, 1998.

[15] F. Wang and Y. An, “Nonnegative doubly periodic solutions for nonlinear telegraph system,” Journal
of Mathematical Analysis and Applications, vol. 338, no. 1, pp. 91–100, 2008.

[16] F. Wang and Y. An, “Existence and multiplicity results of positive doubly periodic solutions for
nonlinear telegraph system,” Journal of Mathematical Analysis and Applications, vol. 349, no. 1, pp. 30–
42, 2009.

[17] F. Wang, “Doubly periodic solutions of a coupled nonlinear telegraph system with weak
singularities,” Nonlinear Analysis. Real World Applications. An International Multidisciplinary Journal,
vol. 12, no. 1, pp. 254–261, 2011.

[18] D. J. Guo and V. Lakshmikantham, Nonlinear problems in abstract cones, vol. 5 of Notes and Reports in
Mathematics in Science and Engineering, Academic Press Inc., Boston, MA, 1988.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


