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In this article, a new fault detection technique is proposed for squirrel cage induction motor
(SCIM) based on detection of rotor bar failure. This type of fault detection is commonly carried
out, while motor continues to work at a steady-state regime. Recently, several methods have been
presented for rotor bar failure detection based on evaluation of the start-up transient current. The
proposed method here is capable of fault detection immediately after bar breakage, where a three-
phase SCIM is modelled in finite element method (FEM) using Maxwell2D software. Broken rotor
bars are then modelled by the corresponding outer rotor impedance obtained by GA, thereby
presenting an analogue model extracted from FEM to be simulated in a flexible environment
such as MATLAB/SIMULINK. To improve the failure recognition, the stator current signal was
analysed using discrete wavelet transform (DWT).

1. Introduction

Induction motors (IMs) play an important role in many industrial processes. Hence, IM
failures should be detected at early stages before they become catastrophic and lead to shut-
downs and enhanced maintenance costs. Condition monitoring is desirable for increasing
machinery availability, reducing consequential damage, and improving operational efficiency
[1–3]. IM faults may occur in three main parts of the machine; stator, rotor, and bearings.
Rotor bars are commonly broken in squirrel cage induction motor (SCIM) due to several
causes [4, 5], including (1) thermal stress, (2) magnetic stress, (3) residual stresses from
manufacturing, (4) dynamic stress from shaft torques, (5) mechanical stress owed to bearing
failure, and (6) environmental stresses such as moisture.
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In terms of condition monitoring, fault detection in SCIM is studied in two categories;
steady-state condition and during start-up transient condition. For many years, researchers
have focused on fault detection methods which are based on steady state such as FFT.
Recently, following progress in signal processing, methods based on study of the start-
up transient current have attracted attention. Traditional methods for monitoring the rotor
conditions are based on frequency domain analysis of stator currents [6, 7], mechanical
vibrations [8], fluxes on search coils [9], and rotor speed [10] in steady state. Motor current
signature analysis (MCSA) is used by many researchers due to its availability and simplicity.
The broken bars induce some harmonic components with special frequencies in stator
currents (sideband frequencies), as below

fbb = (1 ± 2ks)f, k = 1, 2, . . . , (1.1)

where s is the slip and f is the supply frequency. Bar breakage occurs when the difference
between the amplitude of fundamental frequency and the left sideband component is less
than 50dB [11]. The frequency analysis such as FFT, STFFT and recently multiple signal
classification (MUSIC) and zoom-MUSIC are appropriate techniques to detect the sideband
frequencies in stator current spectrum [12]. Figure 1 shows how STFFT is able to diagnose the
broken bars in a full-load IM. Themain drawbacks to STFFT [13] include (1) load dependence
of the approach and (2) false diagnosis caused by ball bearing faults and voltage/load
fluctuations. Many researchers have tried to improve the diagnosis by introducing a new
criterion [14] or using such higher-frequency components as fault indicators which are not
affected by load [15]. In the last few years, start-up transient current has been studied
considering the progress made in signal processing techniques. Burnett et al. [16] andWatson
and Paterson [17] have shown the superiority of the wavelet decomposition over other signal
processing techniques for analysing the nonstationary signals. Discrete wavelet transform
(DWT) is used by [18] who has suggested that “the frequency of the left sideband varies within a
wide range during the start-up process and its amplitude reaches values that are several times higher
than those in a stationary regime, and this is true for any load condition.” The evolution of some
frequencies allows the diagnosis and identification of broken rotor bars in IM during the start-
up transient. According to the frequency of sideband harmonic (i.e., fL = (1 − 2s)f), when
the motor is switched on (s = 1), the left sideband component is equal to supply frequency.
However, fL becomes 0Hz when slip is reached half its value, and when the speed increases,
the slip drops and fL almost reaches again the supply frequency [18]. This approach needs
a minimum start-up time to avoid the electromagnetic transient which occurs immediately
after start-up and masks the left sideband component [19].

An efficient condition monitoring system should be able to detect and use mea-
surements taken immediately after fault occurs. This is because detection of potentially
catastrophic faults in incipient stages prevents large power and production losses and also
reduces maintenance costs. In this study, a fault detection system in SCIM is developed by
assuming that a bar is suddenly broken, while SCIM operates in a steady state. Providing
that the fault is not diagnosed at its early stages, fault will propagate towards the adjacent
bars, causing local hot spots and interbar currents to appear leading to further damage
to the magnetic circuit. Diagnosis of the fault in the incipient steps is the key solution to
control and protect the SCIM. The developed diagnosis system here detects broken rotor
bars immediately after breakage at rated value condition. However, the study of broken bars
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Figure 1: Frequency spectrum of stator current for rotor broken bar case in full load.

immediately after breakage cannot take place in reality, due to lack of access to the rotor
during the operation of SCIM.

2. SCIM Analysis Using Finite Element Method

An effective diagnosis method requires an accurate and reliable SCIM model capable of
revealing accurately the behaviour of the machine. Within the last few decades, FE method
(FEM) has proved itself as an accurate and inexpensive technique for SCIM analysis by
modelling material properties, nonlinearity, and complex structures of the machine such as
rotating parts [20, 21]. In this regard, FE simulation has provided a powerful tool as well as a
good benchmark to study faulty machine behaviours, by comparing the available monitoring
techniques and signal processing methods devised for this purpose. However, despite FEM
capability for accurate modelling of SCIM through the well-known Maxwell’s equations, it
requires an extensive computational time due to the involved geometrical complexities of
machine parts.

Principles of symmetry are employed wherever possible on machine parts to reduce
the computation time. However, in the case of broken bars, this cannot be carried out due to
asymmetric magnetic fields imposed by the fault. Therefore, to ensure the correct magnetic
field distribution, the whole machine cross-section should be analysed. SCIM specifications
required for this study are presented in Table 1. Figure 2 shows the whole cross-section of the
simulated SCIM in theMaxwell2D [22, 23], supplied by a symmetrical three-phase sinusoidal
source with the stator windings in each of the three phases having identical turn number
(N = 180). Various sections of the machine are divided into small parts by mesh nodes as
illustrated in Figure 3 for rotor bars, air gap, and stator slots. The FE program Maxwell2D is
used here to evaluate the influence of the broken rotor bar (BRB) fault on motor performance
and generate virtual data in an accurate and cheap manner.

3. Broken Rotor Bars Modelling

Proper modelling of broken bars is needed for accurate and reliable diagnosis. In this context,
resistance of the broken bar is assumed to be as large as possible in the FEM, considering the
fact that in reality there is an interbar current among bars, leading to increased Joule losses in
the adjacent bars. Furthermore, distribution of flux lines around the broken bars is changed.
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Table 1: Characteristics of the studied induction motor.

3-phase squirrel cage induction motor
Rated power 5.5 KW
Supply frequency 60 HZ

Synchronous speed 1800 rpm
Line supply voltage 460 V
Power factor 0.87
Efficiency 0.83
Winding connection WYE

Number of rotor slots 26
Number of stator slots 36
Outer diameter of stator 190mm
Inner diameter of stator 111.4mm
Length of stator core 131.24mm
Stacking factor of stator core 0.92
Type of steel (stator and rotor) M19–24G
Number of conductors per slot 30
Wire wrap thickness 0.107mm
Coil pitch 9
Wire diameter 1.15mm
Net slot area 149.251mm2

Stator current density 9.27963A/mm2

Wire resistivity 0.0217Ohm·mm2/m
Air gap 0.175mm
Inner diameter of rotor 36mm
Length of rotor 131.24mm
Stacking factor of rotor core 0.92
Skew width 0.9949
Height of end ring 21.4093mm
Width of end ring 11.4465mm
Rotor bar current density 4.19715A/mm2

Rotor ring current density 2.94869A/mm2

Resistivity of rotor bar (at 75◦C) 0.0434783Ohm·mm2/m
Resistivity of rotor ring (at 75◦C) 0.0434783Ohm·mm2/m
Skew width 0.9949
Type of rotor bar Cast aluminium
Insulation class F
Temperature rise Class B
Protection degree IP55-IC411
Stator resistance 1.82583 ohm
Stator leakage inductance 0.00738598 H
Rotor resistance referred to the stator 1.25591 ohm
Rotor leakage inductance referred to the stator 0.00705748 H
Magnetizing inductance 0.1972858 H
Inertia 0.15
Friction factor 0.002
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Figure 3: Mesh operation of the Maxwell2D for various parts of the IM (rotor slots, rotor core, stator slots,
stator core, and air gap).

Asymmetry of the flux lines is due to (a) eddy currents, especially in the rotor slots, (b)
severe changes of slip at the beginning of starting period, (c) elevated starting current, and (d)
injected harmonic currents and saturation due to broken bars. Before analysing the problem,
a series of small meshes on/in all parts of the machine is first created by FEM. Since there is
a marked difference in the node networks of faulty and healthy bars, in case of the rotor bar
failure, instantaneous analysis shortly after breakage in FEM becomes a complicated process.
Hence, another supplementary program, such as MATLAB is needed to diagnose a broken
bar failure immediately after bar breakage by modelling parameters like the corresponding
outer rotor impedance. The faulty impedance includes resistance (ΔRinc) and inductance
(ΔLinc) which are modelled in series in the rotor end as demonstrated in Figure 4.

Rotor bar fault is previously simulated [24, 25] using only one-phase resistance
increase of the rotor, while neglecting the resulting inductance involved. The increased
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Figure 4: Schematic of a fault impedance insertion.

increment resistance corresponding to the broken bars to be considered in the external rotor
circuit is computed as follow [25]:

ΔRinc =
n

N/3 − n
(2Ns)2

N/3
Rb, (3.1)

where, n is the number of contiguous broken bars, N is rotor bar number, Ns is turn
number of stator phase winding, and Rb is the rotor bar resistance. However, ΔRinc alone
is not accurate enough, and since computation of the broken bar resistance and inductance
(ΔLinc) is inherently a complicated process for which in general there is no reliable formula,
genetic algorithm (GA) has been employed in this new method to obtain both inductance
and resistance of the failed bars simultaneously as far as possible. The method for finding
fault impedance is described in the next section.

4. Genetic Algorithm and Proposed Objective Function

GA is a global optimization and search technique motivated by the process of genetics and
natural selection. In GA, a set of chromosomes (population) is led to evolve in a biased
manner toward the fittest chromosomes based on special rules [26, 27]. The flowchart of the
GA used in this work is presented in Figure 5. The goal is to search for an optimal solution
while finding faulty broken bar impedance (resistance and inductance) and minimizing the
objective function. To begin the GA process, an initial population size of 100 is randomly
selected in the interval [0, 0.1]. The faulty resistance and inductance that should be optimized
is being fitted as chromosome. Hence,

Chromosome = [ΔRinc,ΔLinc] (4.1)

MATLAB/SIMULINK is executed for all chromosomes to obtain the speed curve in the faulty
condition, and each chromosome’s worth is assessed by the objective function. It has to be
pointed out that, for more accuracy and close relationship between real and simulated case,
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Figure 5: Flowchart of a GA for finding the fault impedance.

FEM is also used and the mutation rate of 20% is selected. The objective function is then
defined as follow:

Objective Function =
N∑

n=0

(
speedMax[n] − speedMat[n]

)2

N
, (4.2)

where speedMax is the output speed in FEM using MAXWELL software, speedMat is the
output speed byMATLAB, andN is the total number of samples. Figure 6 shows a schematic
diagram of the proposed method for finding the fault impedance. As illustrated in Figures
7 and 8, using the simulating setup for modelling validation in both healthy and faulty
conditions, an analogous model is created in MATLAB/SIMULINK for both healthy and
faulty cases, where faulty impedance is obtained by GA and the value of the resistance and
inductance for one broken bar at rated condition is

ΔRinc = 0.175Ohm, ΔLinc = 0.002H. (4.3)
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Figure 6: Structure of the proposed technique in this work.
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Figure 7: Comparison of Maxwell2D and MATLAB curves in healthy condition (full-load operation).

5. Discrete Wavelet Transform

The excellent characteristic of the wavelet theory is that its frequency spectrum varies in time,
which makes it suitable for analysing the nonstationary signals [28, 29]. Time evolution of the
frequency components from the stator current signal depends on this specific phenomenon.
For instance, evolution of the left sideband frequency, during the start-up for the case of rotor
asymmetry, evolves in a particular way; when the machine is switched on, it is equal to the
supply frequency. Later, when the slip equals 0.5, it reaches 0Hz and increases again close to
the supply frequency, once the steady-state regime is achieved [18].
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Figure 8: Comparison of Maxwell2D and MATLAB curves in motor with one broken bar (full-load
operation).
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Figure 9: Frequency range of details and approximations in DWT.

The discrete wavelet transform (DWT) decomposed the sampled signal x[n] as:

X[n] =
∑

j

ai0,jϕi0,j[n] +
I−1∑

i=i0

∑

j

di,jψi,j[n], (5.1)

where ϕ[n] denotes the scaling function, ψ[n] is the mother wavelet, and ϕi0,j[n] =
2i0/2ϕ(2i0n − j) is the scaling function at a scale of s = 2i0 shifted by j. Also, ψi,j[n] =
2i/2ψ(2in− j) is the mother wavelet at a scale of s = 2i shifted by j, ai0,j are the approximation
coefficients at a scale of s = 2i0 , and similarly di,j are the detail coefficients at a scale of
s = 2i [30]. As shown in Figure 9, the frequency range of the approximation signal an, is
in the interval [0, 2−(n+1)fs], and the detail dj contains the components whose frequencies
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belong to the interval [2−(j+1)fs, 2−jfs], where fs is the sampling frequency. To decrease the
overlap between bands, a high-order wavelet (Daubechies 44) is used in this study to analyse
the stator current signal immediately after bar breakage. DWT is able to locate accurately the
frequencies and their exact time locations. Therefore, it can detect unforseen transient changes
that might occur in any steady state due to its time-frequency decomposition.

6. Simulation Result

Simulation of SCIM for rotor bar failure detection was carried out to validate the proposed
method. Figure 10 shows the schematic for detection of broken rotor bars in SCIM, shortly
after bar breakage in MATLAB/SIMULINK. As can be seen, the broken bar failure is
modelled by connecting impedance to the rotor end. To model the bar failure quickly after
breakage, an ideal switch is used in the outer circuit of the rotor. Figure 11 shows the



Mathematical Problems in Engineering 11

−50
0

50

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

S

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

−0.02
0

0.02

−50
0

50
d

7
a

7

(a)

− 0.2

0

0.2

− 0.1

0

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

d
5

d
6

d
4

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

− 0.1

0

0.1

(b)

− 0.05

0

0.05

− 0.02

0

− 0.01

0
0.01

d
3

d
2

d
1

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

0.02

(c)

Figure 12: Wavelet decomposition of stator current signal for one broken rotor bar at rated condition.
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simulation result of the current curve of an ideal switch used for modelling bar failure during
SCIM operation without having a significant effect on the motor performance. It is assumed
that a bar is broken two seconds after the motor has reached steady-state operation.

Considering the advantages offered by DWT, in signal processing, it was used for
stator current signal of the studied SCIM as depicted in Figure 12, in which healthy and
broken bars conditions could be distinguished. Upon the occurrence of a fault, the variations
in the DWT coefficients become higher thanwhat theywere prior to this incident. The seventh
approximation, (a7), corresponding to the low-frequency components (below 60Hz), shows
a meaningful variation following the fault. The peak variations after fault occurs are clearly
seen in the sixth detail signal (d6 which corresponds to the frequency range between 78Hz to
156Hz) and other detail signals. Much higher variations, representing the high-frequency
content of the current signal, can be seen in details one to five (d1–d5) which cover the
frequency range between 156 to 5000Hz. Figure 12 shows how the harmonics appear in the
wavelet coefficients after broken rotor bar fault.

7. Conclusion

Fault detection in incipient stages is important for control and protection of the SCIM. This
paper aims to develop a diagnosis system of bar failure immediately after its breakage.
By using FEM, GA, and MATLAB, an accurate model is simulated for fast fault detection
using DWT to the stator current. Wavelet decomposition shows the meaningful variations in
details numbered 1–5 and an approximation at level 7 (referred to as a7), which correspond
to the faulty bandwidth frequencies. Simulated start-up current DWT for full-load machine
indicates that the breakage in one bar can be diagnosed correctly in its incipient stages. The
simulation results indicate that the proposed technique is able to simulate accurately bar
failure immediately after bar breakage.
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