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By using the first integral method, the traveling wave solutions for the generalized Pochhammer-
Chree (PC) equations are constructed. The obtained results include complex exponential function
solutions, complex traveling solitary wave solutions, complex periodic wave solutions, and
complex rational function solutions. The power of this manageable method is confirmed.

1. Introduction

In this paper, we study the generalized Pochhammer-Chree (PC) equations:

utt − uttxx −
(
αu + βun+1 + νu2n+1

)
xx

= 0, n ≥ 1, (1.1)

where α, β, and ν are constants. Equation (1.1) represents a nonlinear model of longitudinal
wave propagation of elastic rods [1–14].The model for α = 1, β = 1/(n + 1), and ν = 0 was
studied in [4, 7, 8] where solitary wave solutions for this model were obtained for n = 1, 2,
and 4. A second model for α = 0, β = −1/2, and ν = 0 was studied by [9], and solitary wave
solutions were obtained as well.

However, a third model was investigated in [10–13] for n = 1, 2 where explicit solitary
wave solutions and kinks solutions were derived.

It is the objective of this work to further complement studies on a generalized PC
equations in [1–14].



2 Mathematical Problems in Engineering

The first integral method, which is based on the ring theory of commutative algebra,
was first proposed by Feng [15]. This method was further developed by the same author
in [16–21] and some other mathematicians [22–26]. Our first interest in the present work is
to implement the first integral method to stress its power in handling nonlinear equations,
so that one can apply it for solving various types of nonlinearity. The next interest is in
the determination of exact traveling wave solutions for the generalized PC equations. The
remaining structure of this paper is organized as follows: Section 2 is a brief introduction
to the first integral method. In Section 3, by implementing the first integral method, new
exact traveling wave solutions to the generalized PC equations are reported with the aid
of mathematical software Mathematica 8.0. This describes the ability and reliability of the
method. A conclusion is given in Section 4.

2. The First Integral Method

Consider a general nonlinear partial differential equation in the form

P(u, ut, ux, uxx, utt, uxt, uxxx, . . .) = 0. (2.1)

Using the wave variable ξ = x − ct carries (2.1) into the following ordinary differential
equation (ODE):

Q
(
U,U′, U′′, U′′′, . . .

)
= 0, (2.2)

where prime denotes the derivative with respect to the same variable ξ.
Next, we introduce new independent variables x = u, y = uξ which change (2.2) to a

system of ODEs:

x′ = y,

y′ = f
(
x, y
)
.

(2.3)

According to the qualitative theory of differential equations [27], if one can find the first
integrals to System (2.3) under the same conditions, the analytic solutions to (2.3) can be
solved directly. However, in general, it is difficult to realize this even for a single first integral,
because for a given plane autonomous system, there is no general theory telling us how to
find its first integrals in a systematic way. A key idea of this approach here to find the first
integral is to utilize the Division Theorem. For convenience, first let us recall the Division
Theorem for two variables in the complex domain C [15].

Division Theorem

Suppose that P(x, y) and Q(x, y) are polynomials of two variables x and y in C [x, y] and
P(x, y) is irreducible in C [x, y]. If Q(x, y) vanishes at all zero points of P(x, y), then there
exists a polynomial G(x, y) in C[x, y] such that

Q
(
x, y
)
= P
(
x, y
)
G
(
x, y
)
. (2.4)
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3. The Generalized PC Equations

We conduct our analysis by examining all possible cases of ν for the generalized PC equations
(1.1).

Case 1.

β /= 0, ν /= 0. (3.1)

Using the wave variable ξ = x − ct and integrating twice, we obtain

(
c2 − α

)
u − c2u′′ − βun+1 − νu2n+1 = 0, (3.2)

where prime denotes the derivative with respect to the same variable ξ. Making the following
transformation:

v = un, (3.3)

then (3.2) becomes

(
c2 − α

)
n2v2 − nc2vv′′ − c2(1 − n)

(
v′)2 − n2βv3 − n2νv4 = 0, (3.4)

where v′and v′′ denote dv/dξ and d2v/dξ2, respectively. Equation (3.4) is a nonlinear ODE,
and we can rewrite it as

v′′ − av + b
(v′)2

v
+ dv2 + fv3 = 0, (3.5)

where

a =
(
1 − α

c2

)
n, b =

1 − n

n
, d =

nβ

c2
, f =

nν

c2
. (3.6)

Let x = v, let y = dv/dξ, and let (3.5) be equivalent to the following two-dimensional
autonomous system

dx

dξ
= y,

dy

dξ
= ax − b

y2

x
− dx2 − fx3.

(3.7)

Assume that

dτ =
dξ

x
, (3.8)
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thus system (3.7) becomes

dx

dτ
= xy,

dy

dτ
= ax2 − by2 − dx3 − fx4.

(3.9)

Now, we are applying the Division Theorem to seek the first integral to system (3.9). Suppose
that x = x(τ), y = y(τ) are the nontrivial solutions to (3.9), and p(x, y) =

∑m
i=0 ai(x)yi is an

irreducible polynomial in C[x, y], such that

p
[
x(τ), y(τ)

]
=

m∑
i=0

ai(x(τ))y(τ)i = 0, (3.10)

where ai(x) (i = 0, 1, . . . , m) are polynomials of x and am(x)/= 0.We call (3.10) the first integral
of polynomial form to system (3.9). We start our study by assumingm = 1 in (3.10). Note that
dp/dτ is a polynomial in x and y, and p[x(τ), y(τ)] = 0 implies dp/dτ |(3.9) = 0. According
to the Division Theorem, there exists a polynomial H(x, y) = h(x) + g(x)y in C[x, y] such
that

dp

dτ

∣∣∣∣
(3.9)

=
(
∂p

∂x

∂x

∂τ
+
∂p

∂y

∂y

∂τ

)∣∣∣∣
(3.9)

=
1∑
i=0

(
a′
i(x)y

i · xy
)
+

1∑
i=0

(
iai(x)yi−1 ·

[
ax2 − by2 − dx3 − fx4

])

=
(
h(x) + g(x)y

)( 1∑
i=0

ai(x)yi

)
,

(3.11)

where prime denotes differentiation with respect to the variable x. On equating the
coefficients of yi (i = 2, 1, 0) on both sides of (3.11), we have

xa′
1(x) − ba1(x) = g(x)a1(x), (3.12)

xa′
0(x) = h(x)a1(x) + g(x)a0(x), (3.13)

a1(x)
[
ax2 − dx3 − fx4

]
= h(x)a0(x). (3.14)

Since, a1(x) is a polynomial of x, from (3.12)we conclude that a1(x) is a constant and g(x) =
−b. For simplicity, we take a1(x) = 1, and balancing the degrees of h(x) and a0(x)we conclude
that deg(h(x)) = 2 and deg(a0(x)) = 2 only. Now suppose that

h(x) = A2x
2 +A1x +A0, a0(x) = B2x

2 + B1x + B0 (A2 /= 0, B2 /= 0), (3.15)
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where Ai, Bi, (i = 0, 1, 2) are all constants to be determined. Substituting (3.15) into (3.13),
we obtain

h(x) = ((b + 2)B2)x2 + ((b + 1)B1)x + bB0. (3.16)

Substituting a0(x), a1(x), and h(x) in (3.14) and setting all the coefficients of powers x to be
zero, we obtain a system of nonlinear algebraic equations, and by, solving it, we obtain the
following solutions:

d = −
√
a(3 + 2b)

√
f√

−2 − b
√
1 + b

, B0 = 0, B1 = −
√
a√

1 + b
, B2 = −

√
f√

−2 − b
, (3.17)

d = −
√
a(3 + 2b)

√
f√

−2 − b
√
1 + b

, B0 = 0, B1 =
√
a√

1 + b
, B2 =

√
f√

−2 − b
, (3.18)

d =
√
a(3 + 2b)

√
f√

− 2 − b
√
1 + b

, B0 = 0, B1 = −
√
a√

1 + b
, B2 =

√
f√

−2 − b
, (3.19)

d =
√
a(3 + 2b)

√
f√

− 2 − b
√
1 + b

, B0 = 0, B1 =
√
a√

1 + b
, B2 = −

√
f√

−2 − b
. (3.20)

Setting (3.17) and (3.18) in (3.10), we obtain that System (3.9) has one first integral

y ∓
( √

f√
−2 − b

x2 +
√
a√

1 + b
x

)
= 0, (3.21)

respectively. Combining this first integral with (3.9), the second-order differential equation
(3.5) can be reduced to

dv

dξ
= ±
( √

f√
−2 − b

v2 +
√
a√

1 + b
v

)
. (3.22)

Solving (3.22) directly and changing to the original variables, we obtain the following
complex exponential function solutions to (1.1):

u1(x, t) =

⎛
⎜⎝ iR

exp
(
−n
√
1 − α/c2(x − ct) − iRc1

)
− √

ν/c

⎞
⎟⎠

1/n

, (3.23)

u2(x, t) =

⎛
⎜⎝ iR exp(iRc1)

exp
(
n
√
1 − α/c2(x − ct)

)
− (√ν/c

)
exp(iRc1)

⎞
⎟⎠

1/n

. (3.24)
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Similarly, for the cases of (3.19) and (3.20), we have another complex exponential function
solutions:

u3(x, t) =

(
iR

− exp(−n
√
1 − (α/c2) (x − ct) − iRc1) +

(√
ν/c
)
)1/n

, (3.25)

u4(x, t) =

⎛
⎜⎝ iR exp(iRc1)

− exp
(
n
√
1 − α/c2(x − ct)

)
+
√
ν/c exp(iRc1)

⎞
⎟⎠

1/n

, (3.26)

where, R =
√
1 − α/c2

√
1 + n, c1 is an arbitrary constant. These solutions are all new exact

solutions. Now we assume that m = 2 in (3.10). By the Division Theorem, there exists a
polynomial H(x, y) = h(x) + g(x)y in C [x, y] such that

dp

dτ

∣∣∣∣
(3.9)

=
(
∂p

∂x

∂x

∂τ
+
∂p

∂y

∂y

∂τ

)∣∣∣∣
(3.9)

=
2∑

m=1

(
a′
i(x)y

i · xy
)
+

2∑
m=1

(
iai(x)yi−1 ·

[
ax2 − by2 − dx3 − fx4

])

=
(
h(x) + g(x)y

)( 2∑
m=1

ai(x)yi

)
,

(3.27)

On equating the coefficients of yi (i = 3, 2, 1, 0) on both sides of (3.11), we have

xa′
2(x) − 2ba2(x) = g(x)a2(x), (3.28)

xa′
1(x) − ba1(x) = h(x)a2(x) + g(x)a1(x), (3.29)

xa′
0(x) + 2a2(x)

[
ax2 − dx3 − fx4

]
= h(x)a1(x) + g(x)a0(x), (3.30)

a1(x)
[
ax2 − dx3 − fx4

]
= h(x)a0(x). (3.31)

Since a2(x) is a polynomial of x, from (3.28) we conclude that a2(x) is a constant and g(x) =
−2b. For simplicity, we take a2(x) = 1, and balancing the degrees of h(x), a0(x), and a1(x)we
conclude that deg(h(x)) = 2 and deg(a1(x)) = 2. In this case, we assume that

h(x) = A2x
2 +A1x +A0, a1(x) = B2x

2 + B1x + B0 (A2 /= 0, B2 /= 0), (3.32)
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where Ai, Bi (i = 0, 1, 2) are constants to be determined. Substituting (3.32) into (3.29) and
(3.30), we have

h(x) = ((2 + b)B2)x2 + ((1 + b)B1)x + bB0,

a0(x) =

(
2f + (2 + b)B2

2

2(2 + b)

)
x4 +

(
2d + (3 + 2b)B1B2

3 + 2b

)
x3

+

(−2a + (1 + b)B2
1 + 2(1 + b)B0B2

2(1 + b)

)
x2 + B0B1x +

B2
0

2
+ Fx−2b,

(3.33)

where F is an arbitrary integration constant. Substituting a0(x), a1(x), and h(x) in (3.31) and
setting all the coefficients of powers x to be zero, we obtain a system of nonlinear algebraic
equations, and by solving it we obtain

F = 0, a =
4(1 + b)d2

(3 + 2 b)2B2
2

, f = −1
4
(2 + b)B2

2 , B0 = 0, B1 = − 4d
(3 + 2b)B2

.

(3.34)

Setting (3.34) in (3.10), we obtain

y =
4dx − (3 + 2b)B2

2x
2

2(3 + 2b)B2
. (3.35)

Using this first integral, the second-order ODE (3.5) reduces to

dv

dξ
=

4dv − (3 + 2b)B2
2v

2

2(3 + 2b)B2
. (3.36)

Similarly, solving (3.36) and changing to the original variables, we obtain the exponential
function solutions:

u5(x, t) =

(
2β(2 + n)B2S

n exp
(
β[2B2(1 + 2/n)c1 − x + ct]S

)
+ (2 + n)B2

2

)1/n

, (3.37)

where S = 2n2/(2 + n)c2B2, c1 is an arbitrary constant. These solutions are all new exact
solutions.

Case 2.

β = 0, ν /= 0. (3.38)

We now investigate the generalized PC equation (1.1) for β = 0, then, we obtain

(
c2 − α

)
u − c2u′′ − νu2n+1 = 0, (3.39)
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where prime denotes the derivative with respect to ξ. Similarly as in Case 1, making then the
following transformation:

v = un, (3.40)

then (3.39) becomes

(
c2 − α

)
n2v2 − nc2vv′′ − c2(1 − n)

(
v′)2 − n2νv4 = 0, (3.41)

where v′and v′′ denote dv/dξ and d2v/dξ2, respectively. Let us rewrite (3.41) as

v′′ − av + b
(v′)2

v
+ fv3 = 0, (3.42)

where a, b, f are as given in (3.6). Let x = v, let y = dv/dξ, and (3.42) become the following
two-dimensional autonomous system:

dx

dξ
= y,

dy

dξ
= ax − b

y2

x
− fx3.

(3.43)

Assume that

dτ =
dξ

x
, (3.44)

thus system (3.43) becomes

dx

dτ
= xy,

dy

dτ
= ax2 − by2 − fx4.

(3.45)

Following the same procedures as in Case 1, so we are applying the Division Theorem to
seek the first integral to system (3.45). Suppose that x = x(τ) and y = y(τ) are the nontrivial
solutions to (3.45), and p(x, y) =

∑m
i=0 ai(x)yi is an irreducible polynomial in C[x, y], such

that

p
[
x(τ), y(τ)

]
=

m∑
i=0

ai(x(τ))y(τ)i = 0, (3.46)

where ai(x) (i = 0, 1, . . . , m) are polynomials of x and am(x)/= 0.We call (3.46) the first integral
of polynomial form to system (3.45). We start by assuming m = 1 in (3.46). Note that dp/dτ
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is a polynomial in x and y, and p[x(τ), y(τ)] = 0 implies dp/dτ |(3.44) = 0. According to the
Division Theorem, there exists a polynomial H(x, y) = h(x) + g(x)y in C[x, y] such that

dp

dτ

∣∣∣∣
(3.45)

=
(
∂p

∂x

∂x

∂τ
+
∂p

∂y

∂y
∂τ

)∣∣∣∣
(3.45)

=
1∑
i=0

(
a′
i(x)y

i · xy
)
+

1∑
i=0

(
iai(x)yi−1 ·

[
ax2 − by2 − fx4

])

=
(
h(x) + g(x)y

)( 1∑
i=0

ai(x)yi

)
,

(3.47)

where prime denotes differentiation with respect to the variable x. On equating the
coefficients of yi (i = 2, 1, 0) on both sides of (3.47), we have

xa′
1(x) − ba1(x) = g(x)a1(x), (3.48)

xa′
0(x) = h(x)a1(x) + g(x)a0(x), (3.49)

a1(x)
[
ax2 − fx4

]
= h(x)a0(x). (3.50)

Since, a1(x) is a polynomial of x, from (3.48)we conclude that a1(x) is a constant and g(x) =
−b. For simplicity, we take a1(x) = 1, and balancing the degrees of h(x) and a0(x)we conclude
that deg(h(x)) = 2 and deg(a0(x)) = 2 only. Now suppose that

h(x) = A2x
2 +A1x +A0, a0(x) = B2x

2 + B1x + B0 (A2 /= 0, B2 /= 0), (3.51)

where Ai, Bi, (i = 0, 1, 2) are constants to be determined. Substituting (3.51) into (3.49), we
have

h(x) = ((2 + b)B2)x2 + ((1 + b)B1)x + bB0. (3.52)

Substituting a0(x), a1(x), and h(x) in (3.50) and setting all the coefficients of powers x to be
zero, we obtain a system of nonlinear algebraic equations, and, by solving it, we obtain the
following solutions:

a = − 2
√
fB0√

−2 − b
, B2 = −

√
f√

−2 − b
, B1 = 0,

a =
2
√
fB0√

−2 − b
, B2 =

√
f√

−2 − b
, B1 = 0.

(3.53)
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Thus, by the similar procedure explained above in Case 1, the complex traveling solitary
wave and the complex periodic wave solutions to the generalized PC equations in this Case
2 are given, respectively, by

u1(x, t) =

⎛
⎜⎝−

q
√
B0

√
c tanh

[
p
(
x − ct − i

√
1 + 1/nc1

)√
B0 /

(
q
√
c
)]

p

⎞
⎟⎠

1/n

,

u2(x, t) =

⎛
⎜⎝−

q
√
B0

√
c tan

[
p
(
x − ct − i

√
1 + 1/nc1

)√
B0 /

(
q
√
c
)]

p

⎞
⎟⎠

1/n

,

(3.54)

where p = n1/4ν1/4, q = i1/4(1 + 1/n)1/4, c1 is an arbitrary constant. These solutions are all
new exact solutions. Now we assume that m = 2 in (3.46). By the Division Theorem, there
exists a polynomial H(x, y) = h(x) + g(x)y in C[x, y] such that

dp

dτ

∣∣∣∣
(3.45)

=
(

∂p

∂x

∂x

∂τ
+
∂p

∂y

∂y

∂τ

)∣∣∣∣
(3.45)

=
2∑
i=0

(
a′
i(x)y

i · xy
)
+

2∑
i=0

(
iai(x)yi−1 ·

[
ax2 − by2 − fx4

])

=
(
h(x) + g(x)y

)( 2∑
i=0

ai(x)yi

)
(3.55)

On equating the coefficients of yi (i = 3, 2, 1, 0) on both sides of (3.55), we have

xa′
2(x) − 2ba2(x) = g(x)a2(x), (3.56)

xa′
1(x) − ba1(x) = h(x)a2(x) + g(x)a1(x), (3.57)

xa′
0(x) + 2a2(x)

[
ax2 − fx4

]
= h(x)a1(x) + g(x)a0(x), (3.58)

a1(x)
[
ax2 − fx4

]
= h(x)a0(x). (3.59)

Since a2(x) is a polynomial of x, from (3.56) we conclude that a2(x) is a constant and g(x) =
−2b. For simplicity, we take a2(x) = 1, and balancing the degrees of h(x), a0(x) and a1(x)we
conclude that deg(h(x)) = 1, deg(a1(x)) = 1 and deg(h(x)) = 2, deg(a1(x)) = 2.

Subcase 2.1. deg(h(x)) = 1 and deg(a1(x)) = 1. In this case, we assume that

h(x) = A1x +A0, a1(x) = B1x + B0 (A1 /= 0, B1 /= 0), (3.60)
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where Ai, Bi (i = 0, 1) are constants to be determined. Inserting (3.60) into (3.57) and (3.58),
we deduce that

h(x) = ((1 + b)B1)x + bB0

a0(x) =
(

f

2 + b

)
x4 +

(−2a + (1 + b)B2
1

2(1 + b)

)
x2 + B0B1x +

B2
0

2
+ Fx−2b,

(3.61)

where F is an arbitrary integration constant. Substituting a0(x), a1(x), and h(x) in (3.59) and
setting all the coefficients of powers x to be zero, we obtain a system of nonlinear algebraic
equations, and by solving it we obtain

a =
1
4
B2
1(1 + b), F = 0, B0 = 0. (3.62)

Then, by the similar procedure explained above, we get the complex exponential function
solutions which can be expressed as

u3(x, t) =

(
iK exp(KB1c1)

− exp((B1/2)(x − ct)) + (2K/c)
√
ν
√
n exp(KB1c1)

)1/n

,

u4(x, t) =

(
− iK exp(KB1c1)

− exp((B1/2)(x − ct)) + (2K/c)
√
ν
√
n exp(KB1c1)

)1/n

,

(3.63)

where K =
√
1 + 1/n. These solutions are all new exact solutions.

Subcase 2.2. deg(h(x)) = 2 and deg(a1(x)) = 2. Now suppose that

h(x) = A2x
2 +A1x +A0, a1(x) = B2x

2 + B1x + B0 (A2 /= 0, B2 /= 0), (3.64)

where, Ai, Bi, (i = 0, 1, 2) are constants to be determined. Substituting (3.64) into (3.57) and
(3.58), we have

h(x) = ((2 + b)B2)x2 + ((1 + b)B1)x + bB0 (3.65)

a0(x) =

(
2f + (2 + b)B2

2

2 (2 + b)

)
x4 + B1B2x

3

+

(−2a + (1 + b)B2
1 + 2(1 + b)B0B2

2(1 + b)

)
x2 + B0B1x +

B2
0

2
+ Fx− 2b,

(3.66)
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where F is an arbitrary integration constant. Substituting a0(x), a1(x), and h(x) in (3.59) and
setting all the coefficients of powers x to be zero, we obtain a system of nonlinear algebraic
equations, and, by solving it, we obtain the following solutions:

F = 0, a = 0, B0 = 0, B1 = 0, B2 = − 2
√
f√

−2 − b
,

F = 0, a = 0, B0 = 0, B1 = 0, B2 =
2
√
f√

−2 − b
.

(3.67)

Thus, as above, we obtain the complex rational function solutions which can be written as

u5(x, t) =

(
iK√

n
√
ν
(∓x/√α + t

) − iKc1

)1/n

,

u6(x, t) =

(
− iK√

n
√
ν
(∓x/√α + t

)
+ iKc1

)1/n

,

(3.68)

where K as defined above. These solutions are all new exact solutions.

Notice that the results in this paper are based on the assumption of m = 1, 2 for the
generalized PC equations. For the cases of m = 3, 4 for these equations, the discussions
become more complicated and involves the irregular singular point theory and the elliptic
integrals of the second kind and the hyperelliptic integrals. Some solutions in the functional
form cannot be expressed explicitly. One does not need to consider the casesm ≥ 5 because it
is well known that an algebraic equationwith the degree greater than or equal to 5 is generally
not solvable.

4. Conclusion

In this work, we are concerned with the generalized PC equations for seeking their traveling
wave solutions. We first transform each equation into an equivalent two-dimensional planar
autonomous system then use the first integral method to find one first integral which enables
us to reduce the generalized PC equations to a first-order integrable ordinary differential
equations. Finally, a class of traveling wave solutions for the considered equations are
obtained. These solutions include complex exponential function solutions, complex traveling
solitary wave solutions, complex periodic wave solutions, and complex rational function
solutions. We believe that this method can be applied widely to many other nonlinear
evolution equations, and this will be done in a future work.
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