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We study the stochastic optimal bounded control for minimizing the stationary response of
strongly nonlinear oscillators under combined harmonic and wide-band noise excitations. The
stochastic averagingmethod and the dynamical programming principle are combined to obtain the
fully averaged Itô stochastic differential equations which describe the original controlled strongly
nonlinear system approximately. The stationary joint probability density of the amplitude and
phase difference of the optimally controlled systems is obtained from solving the corresponding
reduced Fokker-Planck-Kolmogorov (FPK) equation. An example is given to illustrate the
proposed procedure, and the theoretical results are verified by Monte Carlo simulation.

1. Introduction

The well-known tool to solve the problem of stochastic optimal control is the dynamical
programming principle, which was proposed by Bellman [1]. According to this principle,
a stochastic optimal control problem may be transformed into the problem of finding a
solution to the so-called Hamilton-Jacobi-Bellman (HJB) equation. However, in most cases,
the HJB equation cannot be solved analytically [2], especially in the multidimensional case.
A powerful technique to solve stochastic optimal control problems is to combine the so-
called stochastic averaging method [3]with Bellman’s dynamic programming principle. The
idea is to replace the original stochastic system by the averaged one and then to apply
the dynamic programming principle to the averaged system. It has been justified that the
optimal control for the averaged system is nearly optimal for the original system [4]. This
combination strategy has two notable advantages. Firstly, the dimension of the averaged
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system can be reduced remarkably, and the corresponding HJB equation is low-dimensional.
Secondly, the diffusion matrix of the original stochastic system is usually singular, while the
averaged one is usually nonsingular. This unique characteristic enables the HJB equation for
the averaged system to have classical rather than viscous solution. In recent years, a notable
nonlinear stochastic optimal control strategy has been proposed for the control of quasi-
Hamiltonian systems under random excitations by Zhu based on the stochastic averaging
method for quasi-Hamiltonian systems and the stochastic dynamical programming principle
[3]. Examples have shown that this strategy is very effective and efficient.

In practice, the excitations of dynamical systems can be classified as either determin-
istic or random. The random excitation is often modeled as Gaussian white noise, wide-
band colored noise, or bounded noise. On the other hand, the magnitudes of the control
forces are usually limited due to the saturation in actuators; that is, the control forces
are bounded. The optimal bounded control of linear or nonlinear systems under random
excitations has been studied by many researchers [5–8]. In all these studies, the excitations of
the systems are random excitations alone. However, many physical or mechanical systems
are subjected to both random and deterministic harmonic excitations. For example, such
combined excitations arise in the study of stochastic resonance [9] or uncoupled flapping
motion of rotor blades of a helicopter in forward flight under the effect of atmospheric
turbulence [10]. Due to the existence of the deterministic harmonic excitation, the response
of the stochastic system is not time homogeneous and the stationary behavior is not easy
to capture. Stochastic averaging method is such a method that can approximate the original
system by time-homogeneous stochastic processes. By using stochastic averaging method,
many researchers have studied the linear or strongly nonlinear systems under combined
harmonic and wide-band random excitations [11–16]. On the other hand, optimal bounded
control of a linear or nonlinear oscillator subject to combined harmonic and Gaussian white
noise excitations has been studied [17–19]. However, Gaussian white noise is an ideal model.
In most cases, the random excitation should be modeled as wide-band colored noise. So far,
little work has been done on the optimal bounded control of a strongly nonlinear oscillator
subject to combined harmonic and wide-band noise excitations [20].

In the present paper, a procedure for designing optimal bounded control to minimize
the stationary response of a strongly nonlinear oscillator under combined harmonic and
wide-band colored noise excitations is proposed. In Section 2, based on the stochastic
averagingmethod, the equation ofmotion of aweakly controlled strongly nonlinear oscillator
under combined harmonic and wide-band noise excitations is reduced to partially averaged
Itô stochastic differential equations. In Section 3, a dynamical programming equation for
the control problem of minimizing response of the system is formulated from the partially
averaged Itô stochastic differential equations by applying the dynamical programming
principle. The optimal control law is determined by the dynamical programming equation
and the control constraint. In Section 4, the reduced FPK equation governing the stationary
joint probability density of the amplitude and phase difference of the optimally controlled
system is established. In Section 5, a nonlinearly damped Duffing oscillator under combined
harmonic and wide-band noise excitations is taken as an example to illustrate the application
of the proposed procedure. All theoretical results are verified by Monte Carlo simulation.

2. Partially Averaged Itô Stochastic Differential Equations

Consider a weakly controlled strongly nonlinear oscillator subject to weak linear or nonlinear
damping and weak external or parametric excitation by a combination of harmonic functions
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and wide-band colored noises. The equation of motion of the system has the following
form

Ẍ + g(X) = εf
(
X, Ẋ,Ωt

)
+ εu

(
X, Ẋ

)
+ ε1/2hk

(
X, Ẋ

)
ξk(t), k = 1, 2, . . . , r, (2.1)

where the term g(X) is stiffness, which is assumed as an arbitrary nonlinear function of X. ε
is a small parameter; εf(X, Ẋ,Ωt) accounts for light damping and weak harmonic excitation
with frequencyΩ; ε1/2hkξk(t) represent weak external and/or parametric random excitations;
ξk(t) are wide-band stationary and ergodic noises with zero mean and correlation functions
Rkl(τ) or spectral densities Skl(ω); εu denotes a weakly feedback control force. The repeated
subscripts indicate summation.

When u = 0, (2.1) describes a large class of physical or structural systems. Under the
conditions specified by Xu and Cheung [21], the solutions of system (2.1) can be expressed
as the following form:

X(t) = A cosΦ(t) + B(A), Ẋ(t) = −Aν(A,Φ) sinΦ(t), (2.2)

where

Φ(t) = μ(t) + Θ(t), (2.3)

ν(A,Φ) =
dμ

dt
=

√
2[P(A + B) − P(A cosΦ + B)]

A2sin2Φ
, (2.4)

P(x) =
∫x

0
g
(
y
)
dy. (2.5)

A, Φ, μ, Θ, and ν are all stochastic processes. P(x) is the potential energy of the
system (2.1). The functions cosΦ(t) and sinΦ(t) are called generalized harmonic functions.
Obviously ν(A,Φ) is the instantaneous frequency of the system (2.1).

When ε = 0, (2.1) degenerates to the following nonlinear conservative oscillator:

Ẍ + g(X) = 0. (2.6)

The average frequency of the conservative oscillator (2.6) can be obtained by the following
formula:

ω(A) =
2π

∫2π
0 dΦ/ν(A,Φ)

. (2.7)

Then the following approximate relation exists:

Φ(t) ≈ ω(A)t + Θ(t). (2.8)
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Treating (2.2) as generalized Van der Pol transformation from (X, Ẋ) to (A, Θ ), one
can obtain the following equations for A and Θ:

dA

dt
= εF

(1)
1 (A,Φ,Ωt) + εF

(2)
1 (A,Φ, u) + ε1/2U1k(A,Φ)ξk(t),

dΘ
dt

= εF
(1)
2 (A,Φ,Ωt) + εF

(2)
2 (A,Φ, u) + ε1/2U2k(A,Φ)ξk(t),

(2.9)

where

F
(1)
1 =

−A
g(A + B)(1 + h)

f(A cosΦ + B,−Aν(A,Φ) sinΦ,Ωt)ν(A,Φ) sinΦ,

F
(2)
1 =

−Au

g(A + B)(1 + h)
ν(A,Φ) sinΦ,

F
(1)
2 =

−1
g(A + B)(1 + h)

f(A cosΦ + B,−Aν(A,Φ) sinΦ,Ωt)ν(A,Φ)(cosΦ + h),

F
(2)
2 =

−u
g(A + B)(1 + h)

ν(A,Φ)(cosΦ + h),

U1k =
−A

g(A + B)(1 + h)
hk(A cosΦ + B,−Aν(A,Φ) sinΦ)ν(A,Φ) sinΦ,

U2k =
−1

g(A + B)(1 + h)
hk(A cosΦ + B,−Aν(A,Φ) sinΦ)ν(A,Φ)(cosΦ + h),

h =
dB

dA
=

g(−A + B) + g(A + B)
g(−A + B) − g(A + B)

.

(2.10)

According to the Stratonovich-Khasminskii limit theorem [22, 23], A and Θ converge
weakly to 2-dimensional diffusive Markov processes in a time interval of ε−1 order as ε → 0,
which can be represented by the following Itô stochastic differential equations:

dA = ε
[
S1(A,Φ,Ωt) + F

(2)
1 (A,Φ, u)

]
dt + ε1/2G1k(A,Φ)dBk(t),

dΘ = ε
[
S2(A,Φ,Ωt) + F

(2)
2 (A,Φ, u)

]
dt + ε1/2G2k(A,Φ)dBk(t),

(2.11)

where Bk(t) are independent unit Wiener processes,

Si = F
(1)
i +

∫0

−∞

[
∂Uik

∂A

∣∣∣∣
t

· U1l|t+τRkl(τ) +
∂Uik

∂Φ

∣∣∣∣
t

· U2l|t+τRkl(τ)
]
dτ,

bij = εGikGjk =
∫∞

−∞

[
Uik|t · Ujl

∣∣
t+τRkl(τ)

]
dτ, i, j = 1, 2, k, l = 1, . . . , r.

(2.12)
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System (2.1) has harmonic excitation and two cases can be classified: resonant case
and nonresonant case. In the nonresonant case, the harmonic excitation has no effect on the
first approximation of the response. Thus, we are interested in the resonant case, namely,

Ω
ω(A)

=
m

n
+ εσ, (2.13)

where m and n are relatively prime positive small integers and εσ is a small detuning
parameter. In this case, multiplying (2.13) by t and utilizing the approximate relation (2.8)
yield

Ωt =
m

n
Φ + εσμ − m

n
Θ. (2.14)

Introduce a new angle variable Γ such that

Γ = εσμ − m

n
Θ (2.15)

which is a measure of the phase difference between the response and the harmonic excitation.
Then (2.14) can be rewritten as

Ωt =
m

n
Φ + Γ. (2.16)

Using the Itô differential formula, one can obtain the following Itô stochastic differen-
tial equations for A, Γ, and Φ:

dA = ε
[
S1(A,Φ,Γ) + F

(2)
1 (A,Φ, u)

]
dt + ε1/2G1k(A,Φ)dBk(t),

dΓ = ε

{
σω(A) − m

n

[
S2(A,Φ,Γ) + F

(2)
2 (A,Φ, u)

]}
dt − ε1/2

m

n
G2k(A,Φ)dBk(t),

dΦ =
{
ω(A) + ε

[
S2(A,Φ,Γ) + F

(2)
2 (A,Φ, u)

]}
dt + ε1/2G2k(A,Φ)dBk(t).

(2.17)

Obviously,A and Γ are slowly varying processes, whileΦ is a rapidly varying process.
Averaging the drift and diffusion coefficients in (2.17) with respect to Φ yields the following
partially averaged Itô stochastic differential equations:

dA = ε
[
m

(1)
1 (A,Γ) +

〈
F
(2)
1 (A,Φ, u)

〉

Φ

]
dt + ε1/2σ1r(A)dBr(t),

dΓ = ε

[
m

(1)
2 (A,Γ) − m

n

〈
F
(2)
2 (A,Φ, u)

〉

Φ

]
dt + ε1/2σ2r(A)dBr(t),

(2.18)
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where

m
(1)
1 = 〈S1(A,Φ,Γ)〉Φ,

m
(1)
2 = σω(A) − m

n
〈S2(A,Φ,Γ)〉Φ,

b11(A) = εσ1rσ1r = 〈b11(A,Φ)〉Φ,

b22(A) = εσ2rσ2r =
m2

n2 〈b22(A,Φ)〉Φ,

b12(A) = b21(A) = εσ1rσ2r =
m

n
〈b12(A,Φ)〉Φ,

〈•〉Φ =
1
2π

∫2π

0
(•)dΦ.

(2.19)

Herein, 〈•〉Φ denotes the averaging with respect to Φ from 0 to 2π · bij are diffusion
coefficients.

Note that there are two procedures of averaging in this section. One is stochastic
averaging, and the other is deterministic time averaging. The procedures for obtaining Si

and bij in (2.12) are called stochastic averaging. The procedures for obtaining m
(1)
i and

bij are called deterministic time averaging. To complete averaging and obtain the explicit
expressions of Si and bij , the functions F

(1)
i andUik in (2.12) are expanded into Fourier series

with respect to Φ and the approximate relation (2.8) is used.

3. Dynamical Programming Equation and Optimal Control Law

For mechanical or structural systems, A(t) is the response amplitude and Γ(t) is the phase
difference between the response and the harmonic excitation. They represent the averaged
state of system (2.1). Usually, only the response amplitude is concerned, so it is meaningful
to control A(t) in a semi-infinite or finite time interval. Consider the ergodic control problem
of system (2.18) in a semi-infinite time interval with the following performance index:

J = lim
T →∞

1
T

∫T

0
f(A(t))dt. (3.1)

Herein, f is a cost function. Based on the stochastic dynamical programming principle [24],
the following simplified dynamical programming equation can be established from the first
equation of (2.18):

η = min
u

{

f(A) +
[
m

(1)
1 +

〈
F
(2)
1

〉

Φ

]dV
dA

+
1
2
b11

d2V

dA2

}

, (3.2)

where V (A) is called value function; minu∈U[•] denotes the minimum value of [•] with
respect to u; η is optimal performance index; u ∈ U indicates the control constraint.
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The optimal control law can be determined from minimizing the right-hand side of
(3.2) with respect to u under control constraint. Suppose that the control constraint is of the
form

|u(A,Φ)| ≤ u0, (3.3)

where u0 is a positive constant representing the maximum control force. The control u enters
the performance index (3.2) only through the term

〈
F
(2)
1

〉

Φ

dV

dA
=
〈
− u

g(A + B)(1 + h)
Aν(A,Φ) sinΦ

〉

Φ

dV

dA
. (3.4)

This expression attains its minimum value for u = ±u0, depending on the sign of the
coefficient of u in (3.4). So the optimal control is

u∗ = u0 sgn
{
Aν(A,Φ) sinΦ
g(A + B)(1 + h)

· dV
dA

}
, (3.5)

where sgn denotes sign function.
It is reasonable to assume that the cost function f is a monotonously increasing

function of A(t) because the controller must do more work to suppress larger amplitudes
A(t). Then dV (A)/dA is positive. Under the specified conditions [21], g(A + B) and (1 + h)
are both positive. Equation (3.5) is reduced to

u∗ = −u0 sgn(−Aν(A,Φ) sinΦ) = −u0 sgn
(
Ẋ(t)

)
. (3.6)

Equation (3.6) implies that the optimal control is a bang-bang control. u∗ has a constant
magnitude u0. It is in the opposite direction of Ẋ(t) and changes its direction at Ẋ(t) = 0.

For the optimal bounded control of system (2.18) in a finite time interval, the following
performance index is taken:

J = E

[∫ tf

0
f(A(t))dt + χ

(
A
(
tf
))
]

, (3.7)

where tf is the final control time and χ is the final cost function. E[•] denotes the expectation
operator. The following simplified dynamical programming equation can be established from
the first equation of (2.18):

∂V

∂t
= −min

u

{

f(A) +
[
m

(1)
1 +

〈
F
(2)
1

〉

Φ

]∂V
∂A

+
1
2
b11

∂2V

∂A2

}

, (3.8)

where V = V (A, t) is the value function. Equation (3.8) is subject to the following final time
condition:

V
(
A, tf

)
= χ

(
A
(
tf
))
. (3.9)
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It is obvious that the same optimal control law as that in (3.6) can be derived if the
control constraint is of the form of (3.3).

Note that the optimal control for the averaged system (2.18) is nearly optimal for the
original system (2.1). For simplicity, here it is called optimal control for both original and
averaged systems.

4. Stationary Response of Optimally Controlled System

Inserting u∗ from (3.6) into (2.18) to replace u and averaging F
(2)
i , the following fully

averaged Itô stochastic differential equations for A and Γ can be obtained:

dA = εm1(A,Γ)dt + ε1/2σ1k(A)dBk(t),

dΓ = εm2(A,Γ)dt + ε1/2σ2k(A)dBk(t),
(4.1)

where

m1(A,Γ) = m
(1)
1 +

〈−u∗Aν(A,Φ) sinΦ
g(A + B)(1 + h)

〉

Φ
,

m2(A,Γ) = m
(1)
2 +

m

n

〈
u∗ν(A,Φ)(cosΦ + h)

g(A + B)(1 + h)

〉

Φ
.

(4.2)

The reduced FPK equation for the optimally controlled system is of the following form

0 = − ∂

∂a

(
m1p

)
− ∂

∂γ

(
m2p

)
+
1
2

∂2

∂a2

(
b11p

)
+

∂2

∂a∂γ

(
b12p

)
+
1
2

∂2

∂γ2

(
b22p

)
, (4.3)

where p = p(a, γ) is the stationary joint probability density of the amplitude A and the phase
difference Γ. Since p is a periodic function of γ , it satisfies the following periodic boundary
condition with respect to γ :

p
(
a, γ

)
= p

(
a, γ + 2π

)
. (4.4)

The boundary condition with respect to a = 0 is

p = finite at a = 0 (4.5)

which implies that a = 0 is a reflecting boundary. The other boundary condition is

p,
∂p

∂a
−→ 0 as a −→ ∞. (4.6)
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In addition to the boundary conditions, the stationary joint probability density p(a, γ)
satisfies the following normalization condition:

∫2π

0

∫∞

0
p
(
a, γ

)
dadγ = 1. (4.7)

Usually, the partial differential equation (4.3) can be solved only numerically.

5. Example

To illustrate the proposed strategy in the previous sections, take the following controlled
nonlinearly damped Duffing oscillator as an example. Duffing oscillator is a typical model in
nonlinear analysis. The equation of motion of the system is of the form

Ẍ +
(
β1 + β2X

2
)
Ẋ +ω2

0X + αX3 = E cosΩt + ξ1(t) +Xξ2(t) + u, (5.1)

where β1, β2, ω0, α, E, and Ω are positive constants; u is the feedback control with the
constraint defined by (3.3); ξk(t) (k = 1, 2) are independent stationary and ergodic wide-
band noises with zero mean and rational spectral densities

Si(ω) =
Di

π

1
ω2 +ω2

i

, i = 1, 2. (5.2)

ξi(t) can be regarded as the output of the following first-order linear filter:

ξ̇i +ωiξi = Wi(t), i = 1, 2, (5.3)

whereWi(t) are Gaussian white noises in the sense of Stratonovich with intensities 2Di. Note
that the maximum value of Si(ω) is Di/(πω2

i ). It is assumed that β1, Di/(πω2
i ), and E are all

small.
For the system (5.1), the instantaneous frequency defined by (2.4) has the following

form:

ν(A,Φ) =

[(
ω2

0 + 3αA2

4

)

(1 + λ cos 2Φ)

]1/2

,

λ =
αA2

4
((
ω2

0 + 3αA2
)
/4

) .

(5.4)

ν(A,Φ) can be approximated by the following finite sumwith a relative error less than 0.03%:

ν(A,Φ) = b0(A) + b2(A) cos 2Φ + b4(A) cos 4Φ + b6(A) cos 6Φ, (5.5)
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where

b0(A) =

(
ω2

0 + 3αA2

4

)1/2(

1 − λ2

16

)

,

b2(A) =

(
ω2

0 + 3αA2

4

)1/2(
λ

2
+
3λ3

64

)

,

b4(A) =

(
ω2

0 + 3αA2

4

)1/2(

−λ
2

16

)

,

b6(A) =

(
ω2

0 + 3αA2

4

)1/2(
λ3

64

)

.

(5.6)

Then the averaged frequency ω(A) of the system (5.1) can be approximated by b0(A).
In the case of primary external resonance,

Ω
ω(A)

= 1 + εσ. (5.7)

Introduce the new angel variable defined by (2.15), and complete the procedures
shown in Sections 2–4 we obtain the following fully averaged Itô stochastic differential
equations for A and Γ:

dA = m1(A,Γ)dt +
√
b11(A)dB1(t),

dΓ = m2(A,Γ)dt +
√
b22(A)dB2(t),

(5.8)

wheremi and bii (i = 1, 2) are drift and diffusion coefficients, respectively.mi and bii are given
in the appendix.

The stationary joint probability density p(a, γ) of the optimally controlled system (5.1)
is governed by the following reduced FPK equation:

0 = − ∂

∂a

(
m1p

) − ∂

∂γ

(
m2p

)
+
1
2

∂2

∂a2

(
b11p

)
+
1
2

∂2

∂γ2

(
b22p

)
. (5.9)

Solving the FPK equation (5.9) by finite difference method under the conditions (4.4)–
(4.7), the stationary joint probability density of the amplitude and the phase difference of
the optimally controlled system (5.1) can be obtained. Furthermore, the stationary mean
amplitude of the optimally controlled system (5.1) can be obtained as follows:

E[a] =
∫∞

0

∫2π

0
ap

(
a, γ

)
dadγ. (5.10)
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Figure 1: Sample function of wide-band noise ξ1(t) ·D1 = 10, ω1 = 30.
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Figure 2: Sample function of the control force u, u0 = 0.1.

To check the accuracy of the proposed method, Monte Carlo digital simulation of
the original system (5.1) is performed. The sample functions of independent wide-band
noise ξi(t) were generated by inputting Gaussian white noises to the linear filter (5.3). The
response of system (5.1) was obtained numerically by using the fourth-order Runge-Kutta
method with time step 0.02. The long-time solution after 1500,000 steps was regarded as the
stationary ergodic response. 100 samples are used. For every sample, the amplitude A and
angle variable Γ are calculated from step 1500,001 to step 2000000 to obtain the statistical
probability density of p(a, γ). Figures 1 and 2 show the typical sample function of wide-
band noise ξ1(t) and control force u, respectively. Figure 3 shows p(a, γ) of the optimal
controlled system (5.1). It is seen that the theoretical result agrees very well with that from
digital simulation. Figures 4(a) and 4(b) show the sample functions of displacement and
velocity of the system (5.1), respectively. It is obvious that the bounded control can reduce
the displacement and velocity. Also, the amplitude of the original system (5.1) is reduced by
control, which is verified by Figure 5.
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Figure 3: Stationary joint probability density p(a, γ) of the optimally controlled system (5.1) in primary
external resonance case. ω0 = 1.0, Ω = 1.1, α = 1.0, E = 0.3, βi = 0.05, ωi = 30, D1 = 10, D2 = 5, u0 = 0.1
(i = 1, 2). (a) Theoretical result; (b) Monte Carlo simulation of the original system (5.1); (c) stationary
marginal probability density p(a); (d) stationary marginal probability density p(γ). — theoretical results;
• results from Monte Carlo simulation.

Note that the system (5.1) is strongly nonlinear. Increasing the nonlinearity coefficients
β1 or α in (5.1), one can see that the agreement between theoretical results and Monte
Carlo digital simulation is still acceptable (see Figures 6 and 7). This demonstrates that the
proposed method is powerful to deal with strongly nonlinear problems, even though the
nonlinearity is extremely strong.
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Figure 4: Sample functions of displacement and velocity of the system (5.1), u0 = 0.4. Other parameters
are the same as those in Figure 3. Red line: with control; blue line: without control.
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Figure 5: Mean amplitude of the response of the optimally controlled system (5.1) in primary external
resonance. The parameters are the same as those in Figure 3 except that u0 is a variable. — theoretical
results; • � results from Monte Carlo simulation.
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Figure 6: Stationary marginal probability density p(a) of the optimally controlled system (5.1) in primary
external resonance case. Other parameters are the same as those in Figure 3. — theoretical results; • � �
results from Monte Carlo simulation.
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Figure 7: Stationary marginal probability density p(a) of the optimally controlled system (5.1) in primary
external resonance case. Other parameters are the same as those in Figure 3. — theoretical results; • � �
results from Monte Carlo simulation.

6. Conclusions

In the present paper, a combination procedure of the stochastic averaging method and
Bellman’s dynamic programming for designing the optimal bounded control to minimize
the response of strongly nonlinear systems under combined harmonic and wide-band noise
excitations has been proposed. The procedure consists of applying the stochastic averaging
method for weakly controlled strongly nonlinear systems under combined harmonic and
wide-band noise excitations, establishing the dynamical programming equation for the
control problem of minimizing the response based on the partially averaged Itô stochastic
differential equations and the dynamical programming principle, determining the optimal
control from the dynamical programming equation and the control constraint without
solving the dynamical programming equation. Then the stationary joint probability density
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and mean amplitude of the optimally controlled averaged system are obtained from solving
the reduced FPK equation associated with the fully averaged Itô stochastic differential
equations. A nonlinearly damped Duffing oscillator with hardening stiffness has been taken
as an example to illustrate the application of the proposed procedure. The comparison
between the theoretical results and those from Monte Carlo simulation shows that the
proposed procedure works quite well even though the nonlinearity is extremely strong. The
results show that the response amplitude of the system can be reduced remarkably by the
feedback control.

The advantages of the proposed method are obvious. Note that; in the example, the
wide-band noise is generated by a first-order linear filter. In principle, one could apply the
stochastic dynamical programming method to the extended system [X, Ẋ, ξ1, ξ2]

T to study
the optimal control problem. However, the corresponding HJB equation is 5-dimensional
or 4 dimensional. The corresponding reduced FPK equation is 4 dimensional, which is
very difficult to solve. After stochastic averaging, the original system is represented by
two-dimensional time-homogeneous diffusion Markov processes of amplitude and phase
difference with nondegenerate diffusion matrix. The dynamical programming equation
derived from the averaged equations is two dimensional or one dimensional. The
corresponding reduced FPK equation is two dimensional, which is easy to solve. The other
advantage of the proposed procedure is that it is not necessary to solve the dynamical
programming equation for obtaining the optimal control law. Furthermore, the proposed
method can be extended to multi-degrees-of-freedom (MDOF) systems easily. This will be
our future work.

Appendix

The drift coefficients in (5.8) are as follows:

m1 = H1(A) + F10(A,Γ) +
2u0[−105b0(A) + 35b2(A) + 7b4(A) + 3b6(A)]

105π
(
ω2

0 + αA2
) ,

m2 = H2(A) + Ω − b0(A) +
E cos Γ[2b0(A) + b2(A)]

[
4A

(
αA2 +ω2

0

)] ,

F10(A,Γ) =
E sin Γ[2b0(A) − b2(A)]

[
4
(
αA2 +ω2

0

)]

− A
[
β1
(
16ω2

0 + 10αA2) +A2β2
(
4ω2

0 + 3αA2)]

[
32
(
αA2 +ω2

0

)] ,

H1(A) = m11 +m12 +m13 +m14,

H2(A) = m21 +m22 +m23 +m24,

m11 = m111S1(ω(A)) +m113S1(3ω(A)) +m115S1(5ω(A)) +m117S1(7ω(A)),

m13 = m131S1(ω(A)) +m133S1(3ω(A)) +m135S1(5ω(A)) +m137S1(7ω(A)),

m12 = m122S2(2ω(A)) +m124S2(4ω(A)) +m126S2(6ω(A)) +m128S2(8ω(A)),
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m14 = m142S2(2ω(A)) +m144S2(4ω(A)) +m146S2(6ω(A)) +m148S2(8ω(A)),

m21 = m211I1(ω(A)) +m213I1(3ω(A)) +m215I1(5ω(A)) +m217I1(7ω(A)),

m23 = m231I1(ω(A)) +m233I1(3ω(A)) +m235I1(5ω(A)) +m237I1(7ω(A)),

m22 = m222I2(2ω(A)) +m224I2(4ω(A)) +m226I2(6ω(A)) +m228I2(8ω(A)),

m24 = m242I2(2ω(A)) +m244I2(4ω(A)) +m246I2(6ω(A)) +m248I2(8ω(A)),

Ii(ω) =
Di

ωi

ω

ω2 +ω2
i

(i = 1, 2),

m111 = π[b2(A) − 2b0(A)]

×
{
2αA[2b0(A) − b2(A)] +

(
A2α +ω2

0

)
[(db2(A)/dA) − 2(db0(A)/dA)]

}

[
8
(
A2α +ω2

0

)3] ,

m113 = π[b2(A) − b4(A)]

×
{
2αA[b4(A) − b2(A)] +

(
A2α +ω2

0

)
[(db2(A)/dA) − (db4(A)/dA)]

}

[
8
(
A2α +ω2

0

)3] ,

m115 = π[b4(A) − b6(A)]

×
{
2αA[b6(A) − b4(A)] +

(
A2α +ω2

0

)
[(db4(A)/dA) − (db6(A)/dA)]

}

[
8
(
A2α +ω2

0

)3] ,

m117 =
πb6(A)

{−2αAb6(A) +
(
A2α +ω2

0

)
(db6(A)/dA)

}

[
8
(
A2α +ω2

0

)3] ,

m122 = πA[2b0(A) − b4(A)]

×
{
[2b0(A)−b4(A)]

(
A2α −ω2

0

) −A
(
A2α +ω2

0

)
[(2db0(A)/dA) − (db4(A)/dA)]

}

[
32
(
A2α +ω2

0

)3] ,

m124 = πA[b2(A) − b6(A)]

×
{
[b6(A)−b2(A)]

(
A2α−ω2

0

)
+A

(
A2α+ω2

0

)
[(db2(A)/dA)−(db6(A)/dA)]

}

[
32
(
A2α +ω2

0

)3] ,

m126 =
πAb4(A)

{
b4(A)

(
A2α −ω2

0

)
+A

(
A2α +ω2

0

)
(db4(A)/dA)

}

[
32
(
A2α +ω2

0

)3] ,

m128 =
πAb6(A)

{
b6(A)

(
A2α −ω2

0

)
+A

(
A2α +ω2

0

)
(db6(A)/dA)

}

[
32
(
A2α +ω2

0

)3] ,
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m131 =
−π[b22(A) − 4b20(A)

]

[
8A

(
A2α +ω2

0

)2] ,

m133 =
−3π[b24(A) − b22(A)

]

[
8A

(
A2α +ω2

0

)2] ,

m135 =
−5π[b26(A) − b24(A)

]

[
8A

(
A2α +ω2

0

)2] ,

m137 =
7πb26(A)

[
8A

(
A2α +ω2

0

)2] ,

m142 =
πA[2b0(A) − b4(A)][2b0(A) + 2b2(A) + b4(A)]

[
16
(
A2α +ω2

0

)2] ,

m144 =
πA[b2(A) − b6(A)][b2(A) + 2b4(A) + b6(A)]

[
8
(
A2α +ω2

0

)2] ,

m146 =
3πAb4(A)[b4(A) + 2b6(A)]

[
16
(
A2α +ω2

0

)2] ,

m148 =
πAb26(A)

[
4
(
A2α +ω2

0

)2] ,

m211 =
[2b0(A) + b2(A)]2
[
8A2

(
αA2 +ω2

0

)2] ,

m213 =
3[b2(A) + b4(A)]2
[
8A2

(
αA2 +ω2

0

)2] ,

m215 =
5[b4(A) + b6(A)]2
[
8A2

(
αA2 +ω2

0

)2] ,

m217 =
7[b6(A)]2

[
8A2

(
αA2 +ω2

0

)2] ,

m222 =
[2b0(A) + 2b2(A) + b4(A)]2

[
16
(
αA2 +ω2

0

)2] ,

m224 =
[b2(A) + 2b4(A) + b6(A)]2

[
8
(
αA2 +ω2

0

)2] ,
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m226 =
3[b4(A) + 2b6(A)]2
[
16
(
αA2 +ω2

0

)2] ,

m228 =
[b6(A)]2

[
4
(
αA2 +ω2

0

)2] ,

m231 = [2b0(A) − b2(A)]

×
{−[b2(A)+2b0(A)]

(
3A2α+ω2

0

)
+A

(
αA2+ω2

0

)
[2(db0(A)/dA) + (db2(A)/dA)]

}

[
8A2

(
αA2 +ω2

0

)3] ,

m233 = [b2(A) − b4(A)]

×
{−[b2(A) + b4(A)]

(
3A2α +ω2

0

)
+A

(
αA2 +ω2

0

)
[(db2(A)/dA) + (db4(A)/dA)]

}

[
8A2

(
αA2 +ω2

0

)3] ,

m235 =
[b4(A) − b6(A)]

[
8A2

(
αA2 +ω2

0

)3]

×
{−[b4(A) + b6(A)]

(
3A2α +ω2

0

)
+A

(
αA2 +ω2

0

)
[(db4(A)/dA) + (db6(A)/dA)]

}

[
8A2

(
αA2 +ω2

0

)3] ,

m237 =
b6(A)

{−b6(A)
(
3A2α +ω2

0

)
+A

(
αA2 +ω2

0

)
(db6(A)/dA)

}

[
8A2

(
αA2 +ω2

0

)3] ,

m242 =
{
−2Aα[2b0(A) + 2b2(A) + b4(A)]+

(
A2α +ω2

0

)[2db0(A)
dA

+
2db2(A)

dA
+
db4(A)
dA

]}

× A[2b0(A) − b4(A)]
[
32
(
αA2 +ω2

0

)3] ,

m244 =
{
−2Aα[b2(A) + 2b4(A) + b6(A)] +

(
A2α +ω2

0

)[db2(A)
dA

+
2db4(A)

dA
+
db6(A)
dA

]}

× A[b2(A) − b6(A)]
[
32
(
αA2 +ω2

0

)3] ,

m246 = Ab4(A)

×
{−2Aα[b4(A) + 2b6(A)] +

(
A2α +ω2

0

)
[(db4(A)/dA) + (2db6(A)/dA)]

}

[
32
(
αA2 +ω2

0

)3] ,

m248 =
Ab6(A)

{−2Aαb6(A) +
(
A2α +ω2

0

)
(db6(A)/dA)

}

[
32
(
αA2 +ω2

0

)3] .

(A.1)
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The diffusion coefficients in (5.8) are as follows:

b11 = b111 + b112,

b22 = b221 + b222,

bij = 0, i /= j,

b111 = b1111S1(ω(A)) + b1113S1(3ω(A)) + b1115S1(5ω(A)) + b1117S1(7ω(A)),

b221 = b2211S1(ω(A)) + b2213S1(3ω(A)) + b2215S1(5ω(A)) + b2217S1(7ω(A)),

b112 = b1122S2(2ω(A)) + b1124S2(4ω(A)) + b1126S2(6ω(A)) + b1128S2(8ω(A)),

b222 = b2220S2(0) + b2222S2(2ω(A)) + b2224S2(4ω(A)) + b2226S2(6ω(A)) + b2228S2(8ω(A)),

b1111 =
π[b2(A) − 2b0(A)]2
[
4
(
αA2 +ω2

0

)2] ,

b1113 =
π[b2(A) − b4(A)]2
[
4
(
αA2 +ω2

0

)2] ,

b1115 =
π[b4(A) − b6(A)]2
[
4
(
αA2 +ω2

0

)2] ,

b1117 =
πb26(A)

[
4
(
αA2 +ω2

0

)2] ,

b1122 =
πA2[b4(A) − 2b0(A)]2

[
16
(
αA2 +ω2

0

)2] ,

b1124 =
πA2[b2(A) − b6(A)]2
[
16
(
αA2 +ω2

0

)2] ,

b1126 =
πA2b24(A)

[
16
(
αA2 +ω2

0

)2] ,

b1128 =
πA2b26(A)

[
16
(
αA2 +ω2

0

)2] ,

b2211 =
π[2b0(A) + b2(A)]2
[
4A2

(
αA2 +ω2

0

)2] ,

b2213 =
π[b2(A) + b4(A)]2
[
4A2

(
αA2 +ω2

0

)2] ,
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b2215 =
π[b4(A) + b6(A)]2
[
4A2

(
αA2 +ω2

0

)2] ,

b2217 =
πb26(A)

[
4A2

(
αA2 +ω2

0

)2] ,

b2220 =
π[2b0(A) + b2(A)]2
[
8
(
αA2 +ω2

0

)2] ,

b2222 =
π[2b0(A) + 2b2(A) + b4(A)]2

[
16
(
αA2 +ω2

0

)2] ,

b2224 =
π[b2(A) + 2b4(A) + b6(A)]2

[
16
(
αA2 +ω2

0

)2] ,

b2226 =
π[b4(A) + 2b6(A)]2
[
16
(
αA2 +ω2

0

)2] ,

b2228 =
πb26(A)

[
16
(
αA2 +ω2

0

)2] .
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