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Sea level fluctuation gains increasing interests in several fields, such as geoscience and ocean
dynamics. Recently, the long-range dependence (LRD) or long memory, which is measured by the
Hurst parameter, denoted by H, of sea level was reported by Barbosa et al. (2006). However, reports
regarding the local roughness of sea level, which is characterized by fractal dimension, denoted by
D, of sea level, are rarely seen. Note that a common model describing a random function with LRD
is fractional Gaussian noise (fGn), which is the increment process of fractional Brownian motion
(fBm) (Beran (1994)). If using the model of fGn, D of a random function is greater than 1 and less
than 2 because D is restricted by H with the restriction D = 2 − H. In this paper, we introduce
the concept of one-dimensional random functions with LRD based on a specific class of processes
called the Cauchy-class (CC) process, towards separately characterizing the local roughness and
the long-range persistence of sea level. In order to achieve this goal, we present the power spectrum
density (PSD) function of the CC process in the closed form. The case study for modeling real data
of sea level collected by the National Data Buoy Center (NDBC) at six stations in the Florida and
Eastern Gulf of Mexico demonstrates that the sea level may be one-dimensional but LRD. The case
study also implies that the CC process might be a possible model of sea level. In addition to these,
this paper also exhibits the yearly multiscale phenomenon of sea level.

1. Introduction

Although, in general, a secular change trend of relative mean sea level over a wide range
of time scale in one year, or 10 years, or 100 years, and a broad range of space scale, such
as global scale, is certainly a focus in the aspect of ocean dynamics, see, for example, [1, 2],
Lyard et al. [3], local fluctuations of sea level, or sea level dynamics at small-time scales,
such as daily or hourly, are essential for some practical issues, such as navigations, coastal
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engineering, military debarkation, and tide power production, see, for example, Liu [4],
[5, Chapter 8], Wyrtki and Nakahara [6].

Recently, Barbosa et al. [7] reported their work to exhibit that North Atlantic sea
level has the property of LRD. They analyzed the LRD behavior of the sea level based on
a commonly used asymptotic PSD expression of LRD random functions for f → 0, that is, the
PSD of 1/f noise, where f is frequency. However, they neither gave the analytic expression
of sea level in the closed form nor mentioned the local roughness of sea level. The aim of this
paper is to address our research in the aspect of fluctuations of sea level, towards making a
considerable step further with the contributions in the following three folds.

(i) We bring in the concept of LRD but one-dimensional random functions. This
concept is introduced based on the Cauchy-class (CC) process. The autocorrelation
function (ACF) of the CC process can be seen in the field of geostatistics [8], but
its PSD in the closed form is a problem unsolved. We will present a solution to that
problem in this paper.

(ii) In the aspect of fractal analysis of sea level, we will propose two new results.
One is that the sea level may be one-dimensional though LRD, quantitatively
characterizing the local roughness of sea level. The other is the Hurst parameter,
H, of sea level is time varying, exhibiting its multiscale property.

(iii) We will exhibit that the CC model well fits in with the sea level in the Florida and
Eastern Gulf of Mexico accurately. By accurately, we mean that the mean-square
error (MSE) between the PSD of the CC process and the measured PSD is in the
order of magnitude of 10−3 or less.

Note that LRD time series can be considered in the class of fractal time series, see, for
example, Beran [9], Mandelbrot [10]. The most commonly used LRD model is the fractional
Gaussian noise (fGn) introduced by Mandelbrot [11], where the fractal dimension D of fGn,
which measures the local roughness of fGn, linearly relates to its H by D = 2 −H [9, 10]. In this
paper, we separately characterize D and H of sea level. More precisely, with the CC model, D
of sea level keeps the constant one while H varies from 0.5 to 1.

In the rest of the paper, we present the closed form of the PSD of the CC process in
Section 2. Section 3 demonstrates the results of data modeling. Discussions are arranged in
Section 4. Finally, Section 5 concludes the paper.

2. CC Process: A One-Dimensional Random Function with LRD

In this section, we explain the CC process, which is a one-dimensional random function with
LRD. The aim of this section is to present the closed form of the PSD of the CC process with
LRD.

2.1. Brief of LRD Processes

Let X(t) be a stationary process with mean zero for −∞ < t <∞. Let R(τ) = E[X(t)X(t+τ)] be
the autocorrelation function (ACF) of X(t), where τ designates the time lag. Then, if R(τ) is
nonintegrable, X(t) is of LRD while it is of short-range dependence (SRD) ifR(τ) is integrable.
For the power-law type ACF that has the asymptotic property given by

R(τ) ∼ cτ−β, (t −→ 0), (2.1)
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where c > 0 is a constant, one has the LRD condition expressed by 0 < β < 1 [9, 10]. The
parameter β is the index of LRD. Expressing β by the Hurst parameter H so that β = 2 − 2H
yields the LRD condition 0.5 < H < 1. The larger the H value, the stronger the long-range
persistence.

Denote S(ω) the Fourier transform (FT) of R(τ). Then, near origin, S(ω) has the
asymptotic property expressed by

S(ω) ∼ c1ω
−(1+β) (ω −→ 0), (2.2)

which implies power-law type PSD, where c1 > 0 depends on c and β.

2.2. CC Process

2.2.1. ACF of CC Process

In this research, we focus on the ACF discussed in the geostatistics. It is given by (Chilès and
Delfiner [8, page 86])

C(τ) =

(
1 +
|τ |2

a2

)−b1

, τ ∈ R, a > 0, b1 > 0. (2.3)

We call a Gaussian process X(t) that follows (2.3) the CC process.
The above ACF is obviously regular for τ ≈ 0. Since one can replace |τ |/a by |τ |, we

simplify the above by the following:

C(τ) =
(

1 + |τ |2
)−b1

, τ ∈ R, b1 > 0. (2.4)

For facilitating the discussion of LRD, we rewrite the above by

C(τ) =
(

1 + |τ |2
)−b/2

, τ ∈ R, b > 0. (2.5)

Equation (2.5) reduces to the ordinary Cauchy model when b = 2.

2.2.2. LRD Condition of CC Process

It is obviously seen that the LRD condition of the CC process is 0 < b < 1 because C(τ) ∼
τ−b (τ → ∞). The SRD condition is b > 1. The Hurst parameter of the CC process is computed
by

H = 1 − b
2
. (2.6)
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Figure 1: ACF of CC process. Solid line: ACF for H = 0.95, dot line: ACF for H = 0.75, dash line: ACF for
H = 0.55.

For facilitating the illustration of C(τ) in terms of H, we write C(τ) by

C(τ,H) =
(

1 + |τ |2
)H−1

. (2.7)

Figure 1 indicates C(τ,H) for three values of H.

2.2.3. PSD of CC Process

Because C(τ) is nonintegrable for 0 < b < 1, the FT of C(τ) does not exist in the domain of
ordinary functions if 0 < b < 1. This reminds us that the PSD of the CC process with LRD
should be treated as a generalized function over the Schwartz space of test functions.

Note that the FT of C(τ) expressed by (2.5) remains unknown, to our best knowledge.
By computing the FT of C(τ) expressed by (2.5) in the domain of generalized functions (see
Gelfand and Vilenkin [12]), we obtain

S(ω) =
∫∞
−∞

(
1 + |τ |2

)−b/2
e−jωτdτ =

2(1−b)/2

√
πΓ(b/2)

|ω|1/2(b−1)K1/2(b−1)(|ω|), (2.8)

where Kν(·) is the modified Bessel function of the second kind (Olver [13, page 254]), which
is expressed by

Kν(z) =
Γ(ν + 1/2)(2z)ν√

π

∫∞
0

cos tdt

(t2 + z2)ν+1/2
. (2.9)
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The function S(ω) has the following asymptotic properties. When |z| is small, see [13,
(8.12), page 252], one has

Kν(z) ∼
1
2
Γ(ν)

(
1
2
z

)−ν
, for z −→ 0+, ν > 0. (2.10)

Therefore,

S(ω) ∼ Γ[(1/2)(1 − b)]
2b
√
πΓ(b/2)

|ω|b−1 (|ω| −→ 0). (2.11)

The above expression exhibits that S(ω) → ∞ if |ω| → 0 when 0 < b < 1. This is the LRD
condition described in the frequency domain, implying that the CC process with LRD is a
kind of 1/f noise.

The PSD of the CC model with LRD has a singularity at ω = 0. However, we may
regularize it so that the regularized PSD is finite at ω = 0. Denote S0(ω) the regularized PSD
when 0 < b < 1. Then,

S0(ω) =
S(ω)

lim
ω→ 0

S(ω)
. (2.12)

In this case, limω→ 0S0(ω) = 1. In what follows, the PSD is assumed to be the regularized one
unless otherwise stated. Figure 2 illustrates the regularized PSD of the CC process with LRD.

2.2.4. Fractal Dimension of CC Process

Following the work by Adler [14], Hall and Roy [15], and Kent and Wood [16], one can obtain
the expression (2.13) if C(τ) is sufficiently smooth on (0,∞) and if

C(0) − C(τ) ∼ c|τ |α, for |τ | −→ 0, (2.13)

where c is a constant, then, the fractal dimension is given by

D = 2 − α
2
. (2.14)

Taking into account (2.14) and α = 2 in (2.5), we immediately obtain the fractal dimension of
the CC process, which is given by

D = 1, (2.15)

because for (2.5), we have

C(0) − C(τ) ∼ |τ |2, for |τ | −→ 0. (2.16)
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Figure 2: Regularized PSD. Solid line: PSD for H = 0.95, dot line: PSD for H = 0.75, dash line: PSD for H =
0.55.

3. Case Study in Sea Level

3.1. Data

NDBC, being a part of the US National Weather Service (NWS) [17], provides immense data
for the scientific research, ranging from air temperature to sea level. We use the data collected
at six stations named LONF1, LKWF1, SAUF1, SMKUF1, SPGF1, and VENF1, respectively.
They are located in the Florida and Eastern Gulf of Mexico, see [18].

The data are in the category of Water Level accessible from [19]. All data were hourly
recorded with ten devices denoted by TGn (n = 01,02,. . .,10). Without losing generality, the
following uses the data from the device TG01. Denote the data series by x s yyyy(t), where
s is the name of the measurement station and yyyy stands for the index of year. Denote
x s yyyy(t) and S s yyyy(f) as the measured time series and the measured PSD at the
measurement station s in the year of yyyy, respectively. For instance, x smkf1 2003(t) and
S smkf1 2003(f) represent the measured time series and the measured PSD at the station
SMKF1 in 2003, respectively.

The data that are labeled 99 are regarded as outliers or missing ones and they are
replaced by the mean of that series. According to the suggestion from NDBC, 10 ft was
subtracted from every value of x s yyyy(t) before estimating its PSD.

Practically, a spectrum is measured on a block-by-block basis (Mitra and Kaiser [20], Li
[21]). Therefore, there are errors (e.g., truncation error) in spectrum measurement. To reduce
errors, the spectrum is usually measured by averaging spectral estimates of blocks of data.
Let B be the block size and let M be the average count, respectively. We sectioned the data in
the nonoverlapping case. M is selected such that 0 < [L − (B ×M)] < B, where L is the total



Mathematical Problems in Engineering 7

Table 1: Measured data at LONF1.

Series name Record date and time L B M

x lonf11 1998(t) 0:00, 3 Nov.–23:00, 31 Dec. 1998 1416 256 5
x lonf1 1999(t) 0:00, 1 Jan.–21:00, 31 Dec. 1999 8757 256 34
x lonf1 2000(t) 0:00, 1 Jan.–23:00, 31 Dec. 2000 8484 256 33
x lonf1 2001(t) 0:00, 1 Jan.–23:00, 31 Dec. 2001 8760 256 34
x lonf1 2002(t) 0:00, 1 Jan.–23:00, 31 Dec. 2002 8760 256 34
x lonf1 2003(t) 0:00, 1 Jan.–23:00, 31 Dec. 2003 8697 256 33
x lonf1 2004(t) 0:00, 1 Jan.–23:00, 31 Dec. 2004 8758 256 34
x lonf1 2005(t) 0:00, 1 Jan.–23:00, 31 Dec. 2005 8750 256 34

Table 2: Measured data at LKWF1.

Series name Record date and time L B M

x lkwf1 1996(t) 0:00, 1 Jan.–23:00, 31 Dec. 1996 8208 256 32
x lkwf1 1997(t) 0:00, 1 Jan.–23:00, 31 Dec. 1997 7776 256 30
x lkwf1 1998(t) 0:00, 1 Jan.–23:00, 31 Dec. 1998 8736 256 34
x lkwf1 1999(t) 0:00, 1 Jan.–23:00, 31 Dec. 1999 8760 256 34
x lkwf1 2000(t) 0:00, 1 Jan.–17:00, 26 Feb. 2000 1362 256 5
x lkwf1 2001(t) 17:00, 8 Aug.–23:00, 31 Dec. 2001 2972 256 11
x lkwf1 2002(t) 0:00, 1 Jan.–23:00, 31 Dec. 2002 8740 256 34
x lkwf1 2003(t) 0:00, 1 Jan.–23:00, 31 Dec. 2003 8582 256 33
x lkwf1 2004(t) 0:00, 1 Jan.–14:00, 5 Oct. 2004 6655 256 25

length of x s yyyy(t). Tables 1, 2, 3, 4, 5, and 6 list the measured data and the settings for the
spectrum measurements.

3.2. Fitting the Data of PSD and H Estimations

The key parameter for characterizing the LRD of the sea level is H. The literature regarding
H estimation is affluent. Commonly used estimators of H are R/S analysis, maximum
likelihood method, variogram-based methods, box-counting, detrended fluctuation analysis,
spectrum regression, correlation regression, see, for example, [10, 11], Peng et al. [22],
Kantelhardt et al. [23], Taqqu et al. [24], and Yin et al. [25]. In this paper, we use the method
of spectrum regression to estimate H.

After obtaining a measured PSD S s yyyy(f), we do the data fitting with the theoretic
PSD S0(f) of the CC process by using the least-square fitting. Denote the cost function by

J(b) =
2
B

∑
k

[
S0(f) − S s yyyy

(
f
)]2

, (3.1)

where S s yyyy(f) is in the normalized case. The derivative of J with respect to b, which will
be zero when J is minimum, yields b0 or equivalently H0, which is the solution of dJ/db = 0.

Figure 3 indicates 4 series at the station LONF1. Each starts from the first data point
to the 256th one, that is, about the first 10 days of data. The data fitting between the
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Table 3: Measured data at SAUF1.

Series name Record date and time L B M

x sauf1 1996(t) 0:00, 1 Jan.–14:00, 10 Aug. 1996 5511 256 21
x sauf1 1997(t) 0:00, 25 Feb.–23:00, 31 Dec. 1997 6240 256 24
x sauf1 1998(t) 0:00, 1 Jan. –23:00, 31 Dec. 1998 8736 256 34
x sauf1 1999(t) 0:00, 1 Jan. –23:00, 31 Dec. 1999 8136 256 31
x sauf1 2000(t) 0:00, 1 Jan. –23:00, 31 Dec. 2000 8715 256 34
x sauf1 2001(t) 0:00, 1 Jan. –21:00, 31 Dec. 2001 8758 256 34
x sauf1 2002(t) 20:00, 6 Feb. –23:00, 20 Aug. 2002 4684 256 18

Table 4: Measured data at SMKF1.

Series name Record date and time L B M

x smkf1 1998(t) 0:00, 3 Nov.–23:00, 31 Dec. 1998 1416 256 5
x smkf1 1999(t) 0:00, 1 Jan.–23:00, 31 Dec. 1999 7775 256 30
x smkf1 2000(t) 0:00, 1 Aug.–23:00, 31 Dec. 2000 3542 256 13
x smkf1 2001(t) 0:00, 1 Jan.–23:00, 31 Dec. 2001 5776 256 22
x smkf1 2002(t) 0:00, 1 Jan.–23:00, 31 Dec. 2002 8742 256 34
x smkf1 2003(t) 0:00, 1 Jan.–23:00, 31 Dec. 2003 5851 256 22
x smkf1 2004(t) 0:00, 1 Jan.–23:00, 31 Dec. 2004 8439 256 32
x smkf1 2005(t) 0:00, 1 Jan.–23:00, 31 Dec. 2005 8667 256 33

measured PSD and the theoretical one for each series is demonstrated in Figure 4. By the least
square fitting, we have the estimated H values 0.973, 0.975, 0.991, 0.990 for x lonf1 1998(t),
x lonf1 1999(t), x lonf1 2002(t), x lonf1 2005, respectively (Table 7). The MSE for the data
fitting of each series is in the order of magnitude of 10−5 (Table 7). Estimates of H for other
series are summarized in Tables 7, 8, 9, 10, 11, and 12.

3.3. Summarized Results of H Estimation

See Tables 7–12.

4. Discussions

It is worth noting that the real data of sea level at several sites may not be enough to infer that
the discussed CC model provides us with a general pattern of sea level. However, considering
that the MSEs of the curve fitting for all measured series being in the order of magnitude
of 10−4 or less, see Tables 7–12, the CC process might yet be useful for studying sea level
modeling as well as fluctuations of sea level at both large-time scales and small-time ones.
This research suggests that sea level may be one-dimensional as (2.15) implied, which is a
quantitative description of the local roughness of sea level.

Judging from the results in Tables 7–12, we see that sea level is LRD since all values
of Hs are greater than 0.5. However, H varies yearly, see Tables 7–12. Hence, sea level is
multiscaled. Considering the Taqqu’s theorem for the relationship between LRD and heavy-
tailed probability density (see Samorodnitsky and Taqqu [26], Abry et al. [27]), we infer that
the sea level is heavy-tailed. Therefore, as a side product, the present results support the point
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Table 5: Measured data at SPGF1.

Series name Record date and time L B M

x spgf1 1996(t) 0:00, 1 Jan.–23:00, 15 Dec. 1996 8616 256 33
x spg1 1997(t) 0:00, 6 Mar.–23:00, 15 Dec. 1997 7080 256 27
x spg1 1998(t) 0:00, 1 Jan.–23:00, 7 Jan. 1998 168 32 5

Table 6: Measured data at VENF1.

Series name Record date and time L B M

x venf1 2002(t) 0:00, 1 Oct.–23:00, 31 Dec. 2002 2208 256 8
x ven1 2003(t) 0:00, 1 Jan.–23:00, 31 Dec. 2003 8760 256 34
x ven1 2004(t) 0:00, 1 Jan.–16:00, 7 Jan. 2004 634 256 2

Table 7: H estimates at LONF1.

Series name b0 H0 MSE
x lonf11 1998(t) 0.054 0.973 7.944 ×10−5

x lonf1 1999(t) 0.050 0.975 6.919 ×10−5

x lonf1 2000(t) 0.280 0.986 2.107 ×10−5

x lonf1 2001(t) 0.021 0.990 1.390 ×10−5

x lonf1 2002(t) 0.018 0.991 1.156 ×10−5

x lonf1 2003(t) 0.019 0.991 1.253 ×10−5

x lonf1 2004(t) 0.017 0.991 1.241 ×10−5

x lonf1 2005(t) 0.020 0.990 1.462 ×10−5

Table 8: H estimates at LKWF1.

Series name b0 H0 MSE
x lkwf1 1996(t) 0.055 0.973 2.234 ×10−4

x lkwf1 1997(t) 0.060 0.970 2.174 ×10−4

x lkwf1 1998(t) 0.055 0.973 2.150 ×10−4

x lkwf1 1999(t) 0.056 0.972 2.140 ×10−4

x lkwf1 2000(t) 0.065 0.967 2.385 ×10−4

x lkwf1 2001(t) 0.060 0.970 1.725 ×10−4

x lkwf1 2002(t) 0.045 0.977 1.814 ×10−4

x lkwf1 2003(t) 0.043 0.978 3.144 ×10−4

x lkwf1 2004(t) 0.040 0.980 1.789 ×10−4

Table 9: H estimates at SAUF1.

Series name b0 H0 MSE
x sauf1 1996(t) 0.130 0.935 7.606 ×10−4

x sauf1 1997(t) 0.100 0.950 5.376 ×10−4

x sauf1 1998(t) 0.100 0.950 5.614 ×10−4

x sauf1 1999(t) 0.150 0.925 8.320 ×10−4

x sauf1 2000(t) 0.085 0.985 4.797 ×10−4

x sauf1 2001(t) 0.082 0.959 4.697 ×10−4

x sauf1 2002(t) 0.075 0.962 4.070 ×10−4
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Figure 3: Data series at LONF1. (a) x lonf1 1998(t). (b) x lonf1 1999(t). (c) x lonf1 2002(t). (d)
x lonf1 2005(t).

Table 10: H estimates at SMKF1.

Series name b0 H0 MSE
x smkf1 1998(t) 0.035 0.983 9.632 ×10−5

x smkf1 1999(t) 0.045 0.977 8.555 ×10−5

x smkf1 2000(t) 0.045 0.977 7.955 ×10−5

x smkf1 2001(t) 0.035 0.983 7.963 ×10−5

x smkf1 2002(t) 0.025 0.987 7.369 ×10−5

x smkf1 2003(t) 0.022 0.989 7.322 ×10−5

x smkf1 2004(t) 0.019 0.991 7.268 ×10−5

x smkf1 2005(t) 0.019 0.989 6.910 ×10−5

Table 11: H estimates at SPGF1.

Series name b0 H0 MSE
x spgf1 1996(t) 0.045 0.977 2.217 ×10−4

x spgf1 1997(t) 0.055 0.973 2.158 ×10−4

x spgf1 1998(t) 0.085 0.960 9.074 ×10−4
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Fitting the data for S lonf1 2002(f)

0.0180.01350.0090.00450

f (Hz)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

PS
D

(l
og

)

(c)

Fitting the data for S lonf1 2005(f)
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Figure 4: Fitting the data of PSD at LONF1. Dot line: measured PSD, solid line: theoretical PSD. (a) Fitting
the data for S lonf1 1998(f). (b) Fitting the data for S lonf1 1999(f). (c) Fitting the data for S lonf1 2002(f).
(d) Fitting the data for S lonf1 2005(f).

Table 12: H estimates at VENF1.

Series name b0 H0 MSE

x venf1 2002(t) 0.042 0.979 8.091 ×10−5

x venf1 2003(t) 0.039 0.981 8.147 ×10−5

x venf1 2004(t) 0.030 0.985 1.204 ×10−4

of view that heavy-tailed distributions, equivalently LRD, play a role in the field of disaster
analysis in geoscience as Pisarenko and Rodkin noted [28].

Note the selection of the test data used in this research is arbitrary, only for the purpose
of demonstrating the application case of the CC process to the dynamics of sea level. This
paper may be a beginner to investigate dynamics of sea level using a type of one-dimensional
random functions with LRD. Other methods [29–41], such as wavelets and short-term pulses
may be helpful for the research in this regard.
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5. Conclusions

We have presented the closed form of the PSD of the CC process. We have explained that this
class of processes is one dimensional but LRD. Applying it to modeling the sea level in the
Florida and Eastern Gulf of Mexico implies a suggestion that the discussed CC process might
be a candidate in sea level modeling.
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