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A real undisturbed soil-column infiltrating experiment in Zibo, Shandong, China, is investigated,
and a nonlinear transport model for a solute ion penetrating through the column is put
forward by using nonlinear Freundlich’s adsorption isotherm. Since Freundlich’s exponent and
adsorption coefficient and source/sink terms in the model cannot be measured directly, an inverse
problem of determining these parameters is encountered based on additional breakthrough
data. Furthermore, an optimal perturbation regularization algorithm is introduced to determine
the unknown parameters simultaneously. Numerical simulations are carried out and then the
inversion algorithm is applied to solve the real inverse problem and reconstruct the measured data
successfully. The computational results show that the nonlinear advection-dispersion equation
discussed in this paper can be utilized by hydrogeologists to research solute transport behaviors
with nonlinear adsorption in porous medium.

1. Introduction

Soil and groundwater pollution has become a serious threat to sustainable development
throughout the world. It is important to characterize physical/chemical reactions quanti-
tatively in the solute transport processes in the soil and groundwater. To understand the
behaviors of the soil in the presence of infiltrating contaminants, soil-column experiments
are often performed in laboratory or in field. There are disturbed and undisturbed soil-
column experiments. For an undisturbed soil-column experiment, the structure of the soil
layers and any contaminants within the column is preserved when the soil is transferred to
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the experimental apparatus. Generally speaking, for an undisturbed soil-column experiment,
some complicated physical/chemical reactions could happen in the liquid phase and the solid
phase when solute ions are being transported through the column with the inflow.

As we know, there are a lot of researches on solute transport behaviors in soil-column
infiltrating experiments since the 1980s. Typical work could belong to the researching group
of Nielsen and Van Genuchten. Nielsen et al. [1] put forward general equations of advection-
dispersion type to describe solute transport behaviors, and Van Genuchten and Wagenet [2]
constructed solute transport models of two sites/two regions in the soils. With development
of computational tool and technique, numerical methods and software packages based on
convection-dispersion equations are widely utilized on researches of soil-column infiltrating
experiments (see, e.g., [3–10]). Recently, the authors have even considered undisturbed
soil-column experiments from two different aspects respectively. One aspect is to consider
single-solute transport and identify source/sink parameters based on linear or nonlinear
adsorption [11, 12]; the other is to deal with multicomponent solute transport and determine
multiparameters based on hydrochemical analysis with advection dispersion mechanism
[13].

It is obvious that research difficulties for soil-column infiltrating experiments lie in the
construction of a suitable solute transport model and determination of model parameters. For
an undisturbed soil-column experiment, the situation is more complicated due to difficulty
of describing physical/chemical reactions for real problems. However, quite a few models
employed linear adsorption isotherm leading to ordinary advection-dispersion equation
with linear source/sink terms. As for other adsorption principles, such as Freundlich’s
and Langmuir’s isotherms, there seem to be few applications on researches of real solutes
transportation problems in mathematics. The reason maybe comes from that there are some
parameters unknown in the adsorbing process, and these parameters can not be measured
directly by ordinary experiments or they cannot be obtained except for spending much more
cost.

On the other hand, there is a possible approach to get nonlinear adsorption parameters
and source coefficients with less cost that is to apply inverse problem methods and effective
inversion algorithms (see, e.g., [14–20]). Actually, employing Freundlich’s adsorption
principle, a nonlinear transport model can be obtained which is a nonlinear parabolic
type equation in mathematics. However, Freundlich’s adsorption coefficient and exponent
source/sink terms cannot be measured directly by the experiment; then an inverse problem
of determining these model parameters is encountered based on measured breakthrough
data. This paper will deal with a solute transport problem in an undisturbed soil-column
infiltrating experiment based on nonlinear Fredunlich’s adsorption isotherm. A similar work
has been presented in [12], but there is a problem left that is to determine all unknown
transport parameters by using suitable inversion algorithms. For example, linear adsorption
coefficient was regarded as the nonlinear adsorption coefficient in paper [12] which seems
to be unscientific to some extent, and Fredunlich’s exponent was utilized empirically by
testification.

In this paper, we will not only determine source/sink parameters but also determine
the nonlinear adsorption coefficient and Fredunlich’s exponent simultaneously by the
optimal perturbation regularization algorithm. Numerical inversions are carried out with
which reasonable explanations to the experiment are obtained, and the measured data are
reconstructed successfully. The inversion algorithm itself seems to be standard, but the paper
will present detailed analysis on its concrete realization, for example, numerical convergence
is testified, and several factors having important impacts on the algorithm are discussed.
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The paper is arranged as follows. In Section 2, a nonlinear transport equation based on
Fredunlich’s adsorption isotherm is introduced by which a mathematical model describing
solute transport behaviors in an undisturbed soil-column experiment is put forward. In
Section 3, an inverse problem of determining Freundlich’s adsorption coefficients and
source/sink terms simultaneously is considered with the measured breakthrough data, and
numerical simulations are carried out by applying an optimal perturbation regularization
algorithm. In Section 4, the optimal inversion algorithm is implemented to determine the
model parameters for the real soil-column experiment and then the measured data are recon-
structed. Finally several concluding remarks are given.

2. A Mathematical Model and an Undisturbed
Soil-Column Experiment

This paper is limited to utilize deterministic models to describe solute transport behaviors
in soil-column infiltrating experiments. In general, solute transport in porous media
often satisfies an advection-dispersion-reaction equation, but it is really complicated for
undisturbed soil-column experiments due to unknown adsorbing process and uncontrollable
physical/chemical reactions occurring in the column. However, in mathematics, nonlinear
adsorption can be expressed by Fredunlich’s or Langmuir’s principles, and nonlinear reaction
processes could be described with some nonlinear source/sink terms.

Denote by c (ML−3) a solute concentration in liquid phase and by se (MM−1) as the
solute concentration in the adsorbed phase; then by mass conservation, there is (see, e.g.,
[3])

∂

∂t

(
ρbse + θc

)
= D

∂

∂x

∂(θc)
∂x

− v
∂(θc)
∂x

− μlθc − ρbμs,ese + γlθc + ρbγs,ese, (2.1)

where ρb (ML−3) is the bulk density, θ (L3L−3) is the volumetric water content, D (L2T−1)
is the dispersion coefficient, v (LT−1) is the average pore-water velocity, μl (T−1) is the first-
order decay coefficient for the liquid phase, μs,e (T−1) is the first-order decay coefficient for
the adsorbed phase, γl (T−1) is the first-order production coefficient for the liquid phase, and
γs,e (T−1) is the first-order production coefficient for the adsorbed phase.

Suppose that nonlinear Fredunlich’s adsorption occurs between the solid and liquid
phases in the column, that is, there is (see, e.g., [21])

se = KF cn, (2.2)

whereKF is Fredunlich’s adsorption coefficient and n > 0 is called Freundlich’s exponent. By
substituting expression (2.2) into (2.1), we can get

R(c)
∂c

∂t
= D

∂2c

∂x2
− v

∂c

∂x
+ μ1c + μ2

ρbKF

θ
cn, (2.3)

where

R(c) = 1 +
ρbKF

θ
ncn−1 (2.4)
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is called nonlinear retardation factor, and

μ1 = γl − μl, (2.5)

μ2 = γs,e − μs,e, (2.6)

denote source/sink coefficients, respectively.
Equation (2.3) is a newmathematical model for describing 1D solute transport process

with nonlinear adsorption behaviors in porous medium. If n = 1, (2.3) is reduced to a linear
advection-dispersion-reaction equation, in which case the linear adsorbing coefficient can be
testified by lab experiment. However, if employing Fredunlich’s adsorption law, there are no
effective ways to get the nonlinear adsorption coefficient KF and adsorption exponent n by
the experiment. In what follows, (2.3)will be applied to describe a solute transport process in
an undisturbed soil-column experiment with help of an optimal perturbation regularization
algorithm to determine the unknowns.

Let us first investigate an undisturbed soil-column experiment. (The experiment
was supplied by The Inspecting Station of Geology and Environment in Zibo, Shandong.)
The experiment was carried out in a laboratory in Zibo, Shandong, China, by taking an
undisturbed soil-column nearby a coal mine region and infiltrating with the coal mine water.
As we know, acid mine pollutants, for example, SO2−

4 , Cl−, and Ca2+, Mg2+, are rich in coal-
mine water. The aim of doing this experiment was mainly to reveal transport behaviors of the
sulfate ions through the soil column.

This paper will take Ca2+ as an example to study its transport behaviors when it pen-
etrates through the column. As for the experimental parameters, what we can obtain directly
by experience and other experiments are listed as follows: length of the column, l (cm),
average pore-water velocity in the column, v (cm/s), dispersion coefficient, D (cm2/s), bulk
density, ρb (g/cm3), volumetric water content, θ (no dimension), and total experimental time
infiltrating with the coal mine water, T1 (h). The values of the above-mentioned parameters
are given in Table 1.

Before doing the experiment, the initial concentration of Ca2+ in the inflow was
measured and denoted by c0 = 338.28 [mg/L]. On the other hand, throughout the experi-
ment, the fluid that reaches the bottom of the column was collected and analyzed by which
the so-called breakthrough data were obtained. In what follows, the measured breakthrough
data for Ca2+ at the outflow are listed in Table 2.

By Table 2, we find that the solute concentration in the first outflow at t = 0.5 (h) is
c(l, 0.5) = 794.79 (mg/L), which is double that of c0 = 338.28 (mg/L) in the inflow, and the
breakthrough data go down rapidly at the initial stage from t = 0.5 (h) to t = 4.1 (h) and then
decrease gradually with the time going on. Maybe there was a rapid dissolution of ion species
in the solid phase into the liquid phase at the initial stage. After the transient dissolution
stage, that is, after t = 0.5 (h), nonlinear adsorption reactions may play an important role
in the solute transportation, and the solute concentration in the out-flow has a decreasing
trend. So, we will utilize (2.3) based on nonlinear Fredunlich’s adsorption isotherm as the
dominating model, and suppose that the primary source/sink coefficient μ2 given by (2.6) is
a time-dependent function, that is, μ2 = μ2(t).

Now, let us give initial boundary value conditions for (2.3). Since the breakthrough
data are available from the time of t = 0.5 (h), we will take t = 0.5 (h) as the initial
moment. However, at the moment of t = 0.5 (h), the solute concentration distribution in the
liquid phase can not be measured directly throughout the column. What we know about
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Table 1: Basic parameters in the soil-column experiment.

l v D ρb θ T1

45 3.76e − 3 3.76e − 3 1.48 0.20 120

Table 2: The measured breakthrough data (t: time (h); c: concentration (mg/L)).

t 0.5 1.1 2.1 4.1 7.1 10 17 25
c 794.79 628.65 544.49 510.42 498.60 490.60 480.56 464.53
t 36 47 58 69 82 95 108 120
c 442.48 430.46 410.42 396.39 388.38 382.36 378.36 376.35

the initial condition is that it may be monotonously increasing through the column, and
c(0, 0.5) = c0 (mg/L), and c(l, 0.5) = 794.79 (mg/L). According to the above information and
by interpolation, we can get

c(x, 0.5) = c0 +
794.79 − c0

lm
xm, 0 ≤ x ≤ l, (2.7)

where m > 0 is called initial distribution index referring to characteristics of the solute distri-
bution at initial moment of the first outflow.

As for boundary conditions, we will utilize ordinary conditions usually used for 1D
soil-column experiment given as

c(0, t) = c0, cx(l, t) = 0, 0.5 ≤ t ≤ T1. (2.8)

Obviously, if the retardation factor R(c), Freundlich’s exponent n, the adsorption
coefficient KF , the source/sink coefficients μ1 and μ2(t) in equation (2.3), and the hydraulic
parameters D, v and the initial index m are all known, the problem (2.3) with (2.7) and (2.8)
is just an ordinary initial boundary value problem of partial differential equation of parabolic
type which is called a forward problem. The forward problem can be solved numerically by
using Matlab software. However, as stated in the above, the adsorption coefficient KF and
exponent n and the source/sink coefficients μ1 and μ2(t) including the initial indexm cannot
be obtained directly by the experiment. One thing we can do in mathematics is to determine
them by some inversion algorithmswith help of themeasured breakthrough data which often
leads to an inverse problem of parameter determination.

3. The Inverse Problem and the Inversion Algorithm

3.1. The Inverse Problem

For convenience of solving numerically, wewill transform themodel to a dimensionless form.
Denote C = c/c0, Z = x/l, and T = vt/l; substituting them into (2.3), we have

R(C)
∂C

∂T
=

1
P

∂2C

∂Z2
− ∂C

∂Z
+

l

v
μ1C +

lρbKFc
n−1
0

v θ
μ2(T)C

n, 0 < Z < 1, T0 < T < T, (3.1)
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where R(C) = 1+ (ρbcn−10 /θ)KFC
n−1, μ2(T) = μ2(l/vT), and P = lv/D, T0 = 0.5v/l, T = T1v/l.

Meantime, the initial condition (2.7) is transformed to

C(Z, T0) = 1 +
(
794.79
c0

− 1
)
Zm, 0 ≤ Z ≤ 1, (3.2)

and the boundary conditions are transformed to

C(0, T) = 1;
∂C

∂Z
(1, T) = 0, T0 ≤ T ≤ T. (3.3)

The additional condition we will utilize is the measured breakthrough data listed in
Table 2. Also by dimensionlessness to the real data, we have

C(1, Tk) = Ĉk, k = 1, 2, . . . , K, (3.4)

here K = 16 according to Table 2.
As a result, an inverse problem of simultaneously determining the nonlinear exponent

n, the adsorption coefficient KF , the initial index m, and the source/sink coefficients μ1 and
μ2(T) is formulated by (3.1) with initial boundary conditions (3.2)-(3.3), and the overposed
condition (3.4). In what follows, an optimal perturbation regularization algorithm (see, e.g.,
[11, 15]) will be introduced to solve the above inverse problem numerically, and several
numerical simulations will be presented to verify the inversion algorithm validity.

3.2. The Optimal Perturbation Regularization Algorithm

For determining the above five kinds of parameters, KF and n, μ1 and μ2(T), and m, we
need a suitable approximate space to simulate μ2(T) due to its dependence on time variable.
With similar method as used in [11], we will take lower-order polynomials as basis functions.
Suppose that μ2(T) can be approximated by a quadratic polynomial given as follows:

μ2(T) = a0 + a1 T + a2 T2. (3.5)

Then the model parameters we want to determine can be denoted by a vector

r =
(
n,KF, μ1, a0, a1, a2, m

)T
, (3.6)

where n is Freundlich’s exponent, KF is the nonlinear adsorption coefficient, μ1 is the
source/sink coefficient given by (2.5), and a0, a1, and a2 are referred to as in (3.5), and m
is the initial index coming out in (3.2). Obviously, the vector r belongs to Euclid space R7, and
in concrete computations we will set a bounded ball SE = {r ∈ R7 : ‖r‖ ≤ E} as an admissible
set for the unknown parameters, where E is a positive constant.

For any prescribed rj (j = 0, 1, . . .), set

rj+1 = rj + εj , j = 0, 1, . . . . (3.7)
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Thus, in order to get rj+1 from the given rj , we only need to compute an optimal perturbation
εj = (ε1j , ε

2
j , . . . , ε

7
j )

T ∈ SE. Denote by C(Z, T ; rj) the unique solution of the forward problem
(3.1)–(3.3) for any given vector rj ∈ SE. Taking Taylor’s expansion for C(Z, T ; rj + εj) at rj and
ignoring higher-order terms, we can get

C
(
Z, T ; rj + εj

) ≈ C
(
Z, T ; rj

)
+∇TC

(
Z, T ; rj

) · εj . (3.8)

So, taking Z = 1 and T = Tk (k = 1, 2, . . . , K) in expression (3.8) and in view of optimality
and stability, to determine a perturbation εj can be reduced to minimize the following multi-
variable error function of εj ∈ SE:

err
(
εj
)
=
∥
∥
∥C(1, Tk; rj) +∇TC(1, Tk; rj) · εj − Ĉ

∥
∥
∥
2

2
+ α

∥
∥εj

∥
∥2
2, (3.9)

where the norm ‖ · ‖2 denotes ordinary Euclid norm, α > 0 is regularization parameter, and
C = (Ĉ1, Ĉ2, · · · , ĈK)

T is the additional data vector given by (3.4). Note that

∇TC
(
1, Tk; rj

) · εj =
7∑

i=1

∂C
(
1, Tk; rj

)

∂rij
εij ≈

7∑

i=1

C
(
1, Tk; rj + τiei

) − C
(
1, Tk; rj

)

τi
εij , (3.10)

where ei = (0, . . . , 1, . . . , 0)T (i = 1, 2, . . . , 7) are basis functions of R7 and τi (i = 1, 2, . . . , 7) is
numerical differential step. Furthermore, for given rj , denote

Uj =
(
C
(
1, T1; rj

)
, C

(
1, T2; rj

)
, . . . , C

(
1, TK; rj

))T
, (3.11)

and for k = 1, 2, . . . , K, i = 1, 2, . . . , 7, denote

g
j

ki
=

C
(
1, Tk; rj + τiei

) − C
(
1, Tk; rj

)

τi
, Gj =

(
g
j

ki

)

K×7
. (3.12)

Then the error function (3.9) can be transformed to the following form:

err
(
εj
)
=
∥∥∥Gjεj − (Ĉ −Uj)

∥∥∥
2

2
+ α

∥∥εj
∥∥2
2. (3.13)

By the general Tikhonov regularization theory (see, e.g., [22]), we know that the above mini-
mization problem has one unique solution which can be expressed as

εαj =
(
αI +GT

j Gj

)−1
GT

j

(
Ĉ −Uj

)
(3.14)

for j = 0, 1, . . ., where the regularization parameter α > 0 should be chosen suitably.
Therefore, an optimal coefficient vector can be obtained approximately by iteration

scheme (3.7) as long as a perturbation satisfyies a given convergent precision. This is



8 Mathematical Problems in Engineering

the principal idea of optimal perturbation regularization algorithms. The detailed steps to
implement the above algorithm are given as follows.

Step 1. Given initial iteration vector rj , numerical differentiation step vector τ = (τ1, τ2, . . . ,
τ7)

7, and convergent precision eps, and the additional measured data vector Ĉ.

Step 2. Solve the forward problem (3.1)–(3.3) with Matlab to get C(1, Tk; rj) and C(1, Tk; rj +
τiei), and then obtain the vector Uj and the matrix Gj = (gj

ki) by formula (3.12),

Step 3. Choose suitable regularization parameter α > 0, and get an optimal perturbation
vector εαj by using formula (3.14).

Step 4. If there is ‖εαj ‖ ≤ eps, then the inversion algorithm can be terminated, and rj+1 = rj +εαj
is taken as the coefficient solution, what we just want to determine; otherwise, go to Step 2
by replacing rj with rj+1.

4. Numerical Simulations

In order to verify numerical convergence of the inversion algorithm, several simulations
will be presented by setting rtrue = (2, 0.1, 0.5, 0.1,−0.5, 0.01, 2)T as a true parameter vector
in this section. We will reconstruct the true solution by applying the above optimal
perturbation regularization algorithm. The additional data here are attained by solving the
forward problem (3.1)–(3.3) with the above true parameters vector. It is noticeable that if
choosing regularization parameter α = 0, that is, without using regularization, the inversion
computations always fail. In other words, regularization strategy must be utilized such that
the inversion algorithm can be performed, and the regularization parameter is selected by
numerical testification in this paper. In addition, all of the computations are performed in a
PC of Dell Dimension 9200.

4.1. Solution Errors with Number of Iteration Times

Let us first investigate numerical convergence of the algorithm when the number of iteration
times goes to infinity for given regularization parameters. Set the initial iteration as r0 = 0 and
the numerical differential step vector as τ = (1e− 2, 1e− 2, 1e− 3, 1e− 5, 1e− 7, 1e− 9, 1e− 11)T .
Table 3 and Figure 1 can show some convergence of the inversion algorithm. In Table 3, j
denotes the number of iteration times, α is regularization parameter, and the solutions error
is an average absolute error expressed by

Errsolu =
∥∥∥rtrue − rinv

∥∥∥
2
=

(
7∑

i=1

1
7

∣∣∣rtruei − r invi

∣∣∣
2
)1/2

, (4.1)

where rinv denotes an inversion reconstruction solution corresponding to the true solution
rtrue.

By Table 3 and Figure 1, we can see that the inversion algorithm is of numerical
convergence for suitable regularization parameters. The solutions errors become smaller
with larger number of iteration times for given regularization parameters. As for similar
iteration times, the solution errors are also smaller with smaller regularization parameters.
For example, in the case of j = 1000, the solution error is Errsolu = 1.04143e − 2 for α = 1e − 3,
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Table 3: Solution errors with iteration numbers and regularization parameters.

j α = 1e − 3 α = 5e − 4 α = 1e − 4 α = 5e − 5
10 0.260377 0.307308 0.172256 0.356620
20 0.146721 0.121166 4.31409e − 2 0.286733
40 8.28802e − 2 4.87719e − 2 2.77992e − 2 0.197873
100 3.71804e − 2 1.04950e − 2 1.50932e − 2 6.41182e − 2
200 2.43731e − 2 5.33821e − 3 5.50282e − 3 8.79467e − 3
400 1.91484e − 2 3.53564e − 3 7.33347e − 4 1.60040e − 4
600 1.56244e − 2 2.35879e − 3 9.78162e − 5 2.90766e − 6
800 1.27555e − 2 1.57379e − 3 1.30485e − 5 5.39138e − 8
1000 1.04143e − 2 1.05009e − 3 1.73988e − 6 3.26469e − 9
1200 8.50343e − 3 7.00688e − 4 2.31128e − 7 3.11220e − 9
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Figure 1: Solution errors with iteration numbers for different regularization parameters.

but it becomes Errsolu = 1.73988e − 6 for α = 1e − 4. In addition, we also find that solutions
errors become very small and have little changes after thousands of iteration times for given
regularization parameters.

4.2. Solution Errors with Regularization Parameters

In this subsection, we will investigate changes of solution errors with regularization param-
eters for given convergent precision. Also, set initial iteration and differential step vector as
used in the last subsection and take convergent precision as eps = 1e − 8. Figure 2 plots the
solution errors with regularization parameters, where the straight line represents a linear
fitting of all of the solution errors, whose equation is expressed by

Errsolu(α) = 15.4158α + 0.0056, α ∈ [2e − 5, 3e − 3]. (4.2)

By the computations, we find that numerical inversions should be performed for
regularization parameters taking values in the interval of α ∈ [2e − 5, 3e − 3]. Even though



10 Mathematical Problems in Engineering

0 0.5 1 1.5 2 2.5 3
×10−3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Regularization parameter

E
rr

so
lu

Solution errors
Fitting line

Figure 2: Solution errors with regularization parameters and fitting line.

the solution errors become small as regularization parameters become small, regularization
parameters cannot be chosen too small. On the other hand, since data noises are ignored
in performing the inversion algorithm, the solution errors should be in a linear relation with
regularization parameters by general regularization theory. Actually, by the general Tikhonov
regularization theory, there should be

∥∥∥r inv − rtrue
∥∥∥
2
≤ Eα, (4.3)

where r inv represents the inversion solution, rtrue represents the true solution, and E is a
positive constant. Fortunately, by the above computations, we can find that the inversion
results basically coincide with the theoretical analysis of the Tikhonov regularization.

4.3. Solution Errors with Convergent Precision

As stated in Section 3.2, the inversion algorithm can be terminated if there is ‖εαj ‖2 ≤ eps,
where eps denotes convergent precision. We will show that solution errors should become
small and go to zero as convergent precision goes to zero. By choosing regularization
parameter as α = 2e−5 and initial iteration and differential steps as before, the solution errors
are listed in Table 4 and plotted in Figure 3, respectively, where eps also denotes convergent
precision, Errsolu denotes solutions error defined by (4.1), abscissa represents logarithmic of
eps, and longitudinal coordinates denote solutions errors in Figure 3.

Finally, by choosing regularization parameter as α = 2e − 5, convergent precision as
eps = 1e − 16, and other parameters as before, the true parameter vector can be reconstructed
by the inversion algorithm given as

rinv = (2.00000, 0.100000, 0.500000, 0.999998e − 1,−0.500000, 0.100000e − 1, 2.00000), (4.4)

which is very close to the true solution and the solutions error is Errsolu = 7.145e − 8.
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Table 4: Solution errors with convergent precision.

eps 1e − 4 1e − 6 1e − 8 1e − 10 1e − 12 1e − 14 1e − 16
Errsolu 7.383e − 2 7.206e − 3 7.427e − 4 7.294e − 5 7.164e − 6 7.382e − 7 7.145e − 8

5. Inversion Results for the Inverse Problem

Now we will apply the inversion algorithm to solve the real inverse problem (3.1)–
(3.3). By the above numerical simulations, we know that regularization parameter and
convergent precision both play important roles in the algorithm realization. However, for
real problems, regularization parameter and convergent precision often have to be chosen
suitably larger than artificial simulations due to noises of real data. Based on the above
numerical simulations, we will perform the inversion algorithm on the real inverse problem
(3.1)–(3.3) utilizing larger parameters.

Also, setting initial iteration and numerical differentiation step vector as before and
choosing regularization parameter as α = 0.08 and convergent precision as eps = 5e − 6,
an optimal solution of the inverse problem (3.1)–(3.3) was worked out by the inversion
algorithm by 1351-time iterations which cost 1422.9 seconds of CPU time. The inversion
coefficient solution is given as follows:

rinv = (0.8649, 1.753e − 2,−7.103, 19.77, 4.863e − 2, 6.736e − 4, 1.475)T . (5.1)

That is, the five coefficients in the dimensionless model (3.1)–(3.3) are given as

n = r inv1 = 0.8649, KF = r inv2 = 0.01753, (5.2)

μ1 = r inv3 = −7.103, m = r inv7 = 1.475, (5.3)

μ2(T) = 19.77 + 0.04863 T + 0.0006736 T2, (5.4)
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respectively. Furthermore, in order to see the inversion results visibly, we substitute the above
inversion parameters into the forward problem (3.1)–(3.3) and get the reconstruction data of
the solute concentration at Z = 1, which is plotted in Figure 4 compared with the actually
measured breakthrough data.

By Figure 4, we can see that the computational reconstruction data coincide with the
measured breakthrough data very well. On the other hand, to quantify the goodness-of-fit,
the absolute error in Euclid norm and the corresponding relative error are worked out and
expressed as

Errinv =
∥
∥
∥C(1, T ; rinv) − Ĉ

∥
∥
∥
2
=

(
K∑

k=1

1
K

∣
∣
∣C

(
1, Tk; rinv

)
− Ĉk

∣
∣
∣
2
)1/2

= 0.008696,

Errrel =
Errinv∥
∥∥Ĉ

∥
∥∥
2

= 0.001507,

(5.5)

respectively, where C(1, Tk; rinv) (k = 1, 2, . . . , K) denote reconstruction data by solving
the forward problem with the inversion solution rinv, Ĉk (k = 1, 2, . . . , K) also denote the
measured breakthrough data, and Ĉ = (Ĉ1, Ĉ2, . . . , ĈK)

T .

6. Concluding Remarks

Remark 6.1. This paper deals with numerical inversion and simulation to a real inverse prob-
lem arising from a soil-column infiltrating experiment. By employing Freundlich’s adsorption
principle, a nonlinear transport model is put forward, and the measured breakthrough data
are reconstructed successfully by applying an optimal perturbation regularization algorithm
to determine the unknown parameters. The inversion results show that the solute transport
process in the column can be described by the proposed nonlinear equation (2.3)with suitable
initial boundary value conditions.

Remark 6.2. The optimal perturbation regularization algorithm is efficient to the inverse
problem of determining model parameters numerically. By performing the algorithm, we
find that there are several factors having important impacts on the algorithm realization,
which are regularization parameter, convergent precision or number of iteration times,
numerical differential steps, initial iterations, computational errors of the forward problem,
and so forth. However, for the inverse problem studied here, numerical differential steps
and initial iterations both have little impact on the algorithm, but regularization parameter
and convergent precision both have important impact on the algorithm realization. An
approximate solution could be obtained by the inversion algorithm when taking suitable
regularization parameters and making number of iteration times go to infinity. Furthermore,
for given convergent precision or iteration number, the solutions errors become small with
approximate linearity as regularization parameter tends to zero due to free noises of data,
which just coincides with general theory of the Tikhonov regularization.

Remark 6.3. Consider hydrogeological meanings of the inversion parameters. By the mea-
sured breakthrough data, we know that the solute concentration reaches its peak at the time
of t = 0.5 (h), and after that the soil adsorbing capability plays a dominating role in the solute
transport process. The adsorption principle basically agrees with the nonlinear Fredunlich’s
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Figure 4: Reconstruction data and the measured breakthrough data.

isotherm of se = 0.01753c0.8649. As for the source/sink coefficients, by the inversion results
(5.4) and (5.3) and noting that μ2(T) = μ2(t) and T = vt/l, we can get the source coefficient in
real-time dimension given as

μ2(t) = 19.77 + 0.01460t + 0.00006095t2, (6.1)

and the sink parameter is

μ1 = −7.102. (6.2)

Since μ2(t) = γs,e − μs,e � 0 for t > 0.5 (h) and μ1 = γl − μl < 0, we can deduce that there
are strong reactions in the adsorbed phase where the ion production rate is much higher than
its decay rate, and it is on the contrary for the liquid phase where the ion production rate is
lower than the decay rate.

Finally, we will briefly discuss for the uniqueness of the source function μ2(t). By
expression (6.1) in dimension form, we find that the coefficient of the third term of μ2(t) is
0.00006095, which is very small as compared with coefficients of the first two terms. Actually,
by numerical computations we find that if μ2(t) takes higher-order polynomials, its expansion
coefficients of higher-order terms also go to zero showing a numerical uniqueness of it.
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