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An innovative computational model is presented for the large eddy simulation (LES) of
multidimensional unsteady turbulent flow problems in complex geometries. The main objectives
of this research are to know more about the structure of turbulent flows, to identify their three-
dimensional characteristic, and to study physical effects due to complex fluid flow. The filtered
Navier-Stokes equations are used to simulate large scales; however, they are supplemented
by dynamic subgrid-scale (DSGS) models to simulate the energy transfer from large scales
toward subgrid-scales, where this energy will be dissipated by molecular viscosity. Based on
the Taylor-Galerkin schemes for the convection-diffusion problems, this model is implemented
in a three-dimensional finite element code using a three-step finite element method (FEM).
Turbulent channel flow and flow over a backward-facing step are considered as a benchmark for
validating the methodology by comparing with the direct numerical simulation (DNS) results
or experimental data. Also, qualitative and quantitative aspects of three-dimensional complex
turbulent flow in a strong 3D blade passage of a Francis turbine are analyzed.

1. Introduction

An accurate prediction of turbulent flow inside/over a complex geometry has been one of
the most important issues in fluid mechanics. Although formulation of mathematical models
to simulate numerically such complex flows is a challenging task, many researches have been
developed and some reliable results have been obtained; for example, Klaij [1] developed
a space-time discontinuous Galerkin Finite Element Method (DG-FEM) for complex flows,
Moin [2] and Conway et al. [3] simulated incompressible flows in complex geometries using
large eddy simulation (LES), Zhang et al. [4] investigated the flow through the blades of



2 Mathematical Problems in Engineering

a swirl generator using LES, and Sagaut [5] simulated the turbulent flow in a true 3D Francis
hydroturbine passage considered fluid-structure interaction.

Flows with high Reynolds numbers, where the influence of the different turbulence
scales must be taken into account, cannot be solved by direct numerical simulation (DNS)
due to the large amount of data and unknowns involved in the computational solution. It
is only suitable to be used in low Reynolds number flow and for a relative simple flow
passage until now. In present, turbulent flowswere often governed by the Reynolds Averaged
Navier-Stokes (RANS) equations in many industrial fields and solved for the mean flow field
together with a chosen turbulence closure model. This approach is based on the separation
of the instantaneous value of a specific flow variable in its mean value and fluctuations
with respect to this mean value. The well-known Reynolds stress components are originated
substituting mean values and fluctuations of the variables in the conservation equations. But
the RANS equations have more unknowns than equations, and, for this reason, it is necessary
to use closure models to define the Reynolds stress components, in which there are many
artificial parameters so that the applied fields are limited.

Alternatively, large eddy simulation (LES) may be used to analyze complex turbulent
flows [6–8]. Using a grid filter, eddies of different scales are separated of the large eddies
and subgrid-scales. Large eddies are associated to the low flow frequencies, and they are
originated by the domain geometry and the boundaries. Subgrid-scales (SGSs) are associated
to high frequencies and they have an isotropic and homogeneous behavior, maintaining their
independence with respect to the main stream. Then, in LES the large eddies are simulated
directly, whereas SGSs are simulated using closure models. It cannot only improve the
computational accurate comparing with the traditional RANS model, but also reduce the
demanding of the computational resource relative to DNS.

At present, numerous researchers have explored the different applications of LES with
finite element method (FEM) [9] for example, Popiolek et al. [10] adopts the finite element
analysis of laminar and turbulent flows using LES and subgrid-scale models simulating the
two- and three-dimensional flows in a lid-driven cavity and over a backward-facing step and
Young et al. [11] numerically simulated the turbulent flows in external field based on the LES
with the Smagorinsky’s SGS eddy viscosity model using three-step FEM-BEM model. Also,
various forms of FEM formulations are widely available in some of the literature [12–15].
Commonly used Galerkin schemes have limitations to effectively deal with the convective
terms, and hence other forms of FEM like Petrov-Galerkin formulations [16] and Taylor-
Galerkin schemes [17] were developed. Jiang and Kawahara [18] developed a three-step
finite element formulation for the solution of an unsteady incompressible viscous flow based
on the Taylor-Galerkin scheme. Of these works, it seems that the three-step finite element
formulation for LES ismore practical and provide possible routes to the solution of turbulence
transient modelling problem in complex geometries.

In many engineering fields, accurate predictions of complex transient turbulent flows,
which may be defined as a three-dimensional flow with highly disordered, intermittent,
and rotational fluid motion, become more and more important. Thus, the applicability of
DSGS model to complex transient turbulent flow combined with three-step finite element
method should be examined. A very well-known benchmark for validating the methodology
is turbulent channel flow and flow over a backward-facing step [19, 20]. Therefore, in this
work, using three-step finite element method, we apply the DSGS model to LES of turbulent
channel flow and turbulent flow over a backward-facing step to examine their performances
in transient flow. Furthermore, a three-dimensional complex transient flow in a blade passage
of a Francis turbine is simulated.
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2. Description of DSGS Model

Applying a grid filter to the continuity and momentum equations, respectively, the following
filtered expressions for a Newtonian incompressible fluid are obtained:
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where ui and p are the filtered velocity components and pressure, respectively, υ is the
molecular kinematic viscosity, and τij is the components of the SGS stress tensor, which is
given by

τij = uiuj − uiuj + uiu
′
j + uju

′
i + u′

iu
′
j . (2.3)

In (2.1)–(2.3), the overbar indicates filtered quantities and represent components of the large
turbulence scales, while (·)′ in (2.3) represents components of the small turbulence scales or
subgrid-scales.

The eddy viscosity model is frequently used to represent the effects of SGS in LES. τij
is assumed as a nonlinear function of the strain rate, and it may be written as follows:

τij = −2υtSij , (2.4)

where the filtered strain rate component Sij and the eddy viscosity νt are given by
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In (2.5), Cs is the Smagorinsky’s constant, which has values varying between 0.1 and 0.2 and
Δ is the grid filter width (representing a length scale). Usually, in three-dimensional flows
Δ = (ΔxΔyΔz)1/3, but in the finite element context Δ may be taken as the cubic root of the
element volume.

In the dynamic subgrid-scale model, formulated first by Germano et al. [21] and
modified after by Lilly [22], values of Cs have variations in space and time. These values
may be calculated in a systematic way, without any interference of the user. The dynamic
subgrid-scale model is characterized by two filtering processes: in the first one, using the
grid filter, the filtered expressions are given by (2.1)-(2.2), where the SGS Reynolds stress
was included. In the second filtering process, a test filter is applied, and the corresponding
equation are given by
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where 〈·〉 indicates the application of the second filtering process using a test filter, and Tij is
component of a stress tensor, with its component given by
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Taking into account (2.4) and (2.5), Tij may be expressed as
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and the SGS eddy viscosity υsgs in the dynamic subgrid-scale model are defined by
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where 〈Δ〉 = 2Δ.
Using (2.3) and (2.8), it is obtained that:
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From (2.4), (2.5), (2.9), and (2.11), the following system of equations is obtained:
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where

Mij =
〈
Δ
〉2∣∣∣

〈
S
〉∣∣∣

〈
Sij

〉
−
〈
Δ

2∣∣∣S
∣∣∣Sij

〉
. (2.13)

Lilly [22] solved the system of equations given by (2.12) using the least squares minimization,
obtaining the following expression for C:

C = −1
2

LijMij

MijMij
. (2.14)

This model has some important characteristics. (a) The eddy viscosity is equal to zero in
laminar flows. (b) The eddy viscosity may take negative values, simulating the energy
transfer from small to large scales (the backscatter phenomenon). (c) The model has an
appropriated asymptotic behaviour near the solid boundaries.
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The computation reveals that the local coefficient C(x, y, z, t) often yields a highly
oscillating eddy viscosity field including a significant partition with negative values, which
destabilizes the numerical calculation. To this end, a homogeneous coefficient Chom(t) is often
used in the practical simulations. Chom(t) is computed with the requirement that the SGS
dissipation of the resolved kinetic energy in the whole computational domain remains the
same as with the local coefficient C(x, y, z, t), that is,
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where 〈·〉xyz denotes space averaging over the entire domain. Chom(t) is used to define the
SGS turbulent viscosity, υsgs, in (2.10) and in the momentum equations.

The following dimensionless forms of the variables are used, namely:
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where L is the characteristic length and u0 is the maximum flow velocity. Substituting (2.9)
into (2.7) and using (2.10) and (2.16), now (2.6) and (2.7) can be written as (after dropping
the asterisk from the dimensionless variables for brevity from now on)
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where Re = Lu0/ν and Resgs = Lu0/νsgs.

3. The Finite Element Algorithm

In the present model as mentioned earlier, a coupled three-step FEM approach is used in
the solution of the governing differential equations in the LES formulation. The numerical
formulation is briefly described in this section.

In the present model, the mass momentum (2.2) is approximated using an explicit
three-step FEM based on a Taylor series expansion in time and standard Galerkin FEM in
space, or the so-called Taylor-Galerkin method as proposed by Jiang and Kawahara [18].
Applying the three-step FEM scheme to (2.18), the three-step scheme can be obtained as far
as time discretization is concerned.
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〈ui〉∗ are the apparent velocities from which the velocities in the present time step can be
derived as,
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The superscripts n, n+1/3, n+1/2 and n+1 on the variables ui and p represent these values
of ui and p at time n, n + 1/3, n + 1/2 and n + 1, respectively.

Applying the classical Galerkin method for space discretization, the following matrix
expressions are obtained for (3.1)–(3.4), respectively
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Table 1: Simulation parameters for the three channel numerical simulations.

Case Reτ Lx Lz Nx ×Ny ×Nz Δx+ Δz+ Δy1
+

1 590 2πδ πδ 64 × 96 × 64 58.2 28.8 1.5
2 590 2πδ πδ 128 × 193 × 128 29.1 14.4 1.0
3 590 2πδ πδ 192 × 257 × 192 19.4 9.6 0.5

Equation (3.4) can be discretized as

Mij

〈
uj

〉n+1 = Mij

〈
u∗
j

〉
−ΔtBij

〈
pj

〉n+1
, (3.8)

where

Mij =
∫

Ω
NiNjdΩ, An

ij =
∫

Ω
Ni

(

Nk〈uk〉n
∂Nj

∂xk

)

dΩ, Bij =
∫

Ω
Ni

∂Nj

∂xk
dΩ,

Sij =
∫

Ω

∂Ni

∂xk

∂Nj

∂xk
dΩ,

〈
Ri

〉n
=
∫

∂Ω
Ni

(
∂〈u〉n
∂n

)
dS,

〈
Ri

〉n+1/3
=
∫

∂Ω
Ni

(
∂〈u〉n+1/3

∂n

)

dS,
〈
Ri

〉n+1/2
=
∫

∂Ω
Ni

(
∂〈u〉n+1/2

∂n

)

dS,

(3.9)

in which Ni, Nj , and Nk are the shape functions.
Then the flow is analyzed by the following algorithm: (1) Determine un+1/3

i with (3.5).
(2) Determine un+1/2

i with (3.6). (3) Calculate pn+1 with (3.8). (4) Determine un+1
i with (3.7).

We can gain the solution of un+1
i only if the pn+1 is got. We implement the divergence

to (3.4) and using the incompressible conditions ∂〈ui〉n+1/∂xi = 0 at time n + 1, the pressure
Poisson equation is derived to correct the velocity equation as

∇2〈p
〉n+1 =

1
Δt

(
∂〈ui〉∗
∂xi

)
. (3.10)

In the present model, the pressure poisson equation is solved using Bi-stable Conjugate
Gradient method [23].

4. Numerical Applications

4.1. Turbulent Channel Flow

Turbulent flow through a plane channel has been widely considered as a benchmark for
validating turbulence models and numerical methods. Reynolds numbers of 590 based on the
channel half height δ and friction velocity uτ are considered. The computational parameters
for large-eddy simulations are summarized in Table 1. Coarse-mesh (64 × 96 × 64), medium
(128 × 193 × 128), and fine-mesh (192 × 257 × 192) statistics were collected over 50, 20,
and 15 flow-through times, respectively. One flow-through time is the domain length in the
streamwise direction divided by the bulk velocity.
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Figure 1: Profiles of the mean streamwise velocity in turbulent channel flow at Re = 590.

Figure 1 shows plots of the mean streamwise velocity for different meshes in plus
units, 〈u〉+ as a function of y+, where 〈u〉+ = 〈u1〉/uτ , and, y+ = (1−|y/h|)uτ/ν, 〈·〉 represents
the average of space-time. Themean velocity is in excellent agreement with these DNS results
of Moser et al. [24], and all results are in agreement with the well-known law of the wall. In
the mean velocity profile, the upward shift in the log-layer compared with the DNS data
a little overpredicts the mean streamwise velocity in the core region of the channel. Our
experience has shown that the addition of dissipation, by including a traditional LES subgrid-
scale model such as the dynamic Smagorinsky model, leads to higher values of the mean
velocity in the core region and in some cases leads to an overprediction of the mean velocity,
which is also in agreement with the results of [25, 26].

The root mean squares (RMS) of velocities in our numerical model are plotted in

Figure 2. It is defined as urms =
√
〈u′

1u
′
1〉, vrms =

√
〈u′

2u
′
2〉, and wrms =

√
〈u′

3u
′
3〉. The RMS

velocity profiles are slower to converge to the DNS results of Van Der Vorst [23] than mean
velocity profiles; furthermore, our numerical model leads to an overprediction of the peak
urms value and an little under-prediction of the peak vrms andwrms values. In whole, the RMS
velocity is agreement with these DNS results of [24]well.

4.2. Flow over a Backward-Facing Step

4.2.1. Computational Setup

The simulation was carried out in the same configuration as the experiments of Vogel
and Eaton [27]. Further data on these experiments are presented in [28, 29]. A schematic
layout of the simulation domain is shown in Figure 3. The channel expansion ratio was 1.25,
with a Reynolds number of 28 000 (based on the freestream velocity and step height, h).
The experiment was carried out with an inflow condition consisting of two developing
boundary layers separated by a relatively undisturbed core. These boundary layers had a
measured thickness of δ/h = 1.1. The total domain size used for the computations was
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Figure 2: Profiles of the RMS velocity fluctuations in turbulent channel flow at Re = 590.
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Figure 3: Computational geometry with computational grid.

22h×5h×3h, which included an entry length of 2h. A grid containing 144×96×96 and a finer
grid containing 192× 128× 128 nodes were used, which was stretched in the wall-normal and
streamwise directions using hyperbolic tangent functions to cluster grid points at the step
edge and in the wall boundary layers. The grid stretching can be observed in Figure 3.

Due to the need to supply a time-varying turbulent inflow condition, a time-series
obtained from a separate periodic channel flow simulation was used at the inflow plane.
A forcing method [30] was used to force the periodic channel flow simulation to match
the experimental results for the mean and fluctuations of streamwise velocity. A convective
boundary condition [31] was used at the exit plane. Statistics were averaged in the
homogeneous spanwise direction and over 80 (for the 144 × 96 × 96 grid) or 60 (for the finer
grid) flow-through times.

4.2.2. Results and Discussion

Table 2 summarizes the time-averaged mean reattachment lengths obtained for the two
grid simulations, the simulation of Akselvoll and Moin [32] and the experimental data.
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Table 2: Mean reattachment lengths.

x/h Deviation from experiment [29]
Experiment [29] 6.7 ± 0.1
LES [32] 6.74 0.6%
Present, LES, FEM, Grid (144 × 96 × 96) 7.23 7.9%
Present, LES, FEM, Grid (192 × 128 × 128) 6.78 1.2%

f

0 5 10 15 20
−0.002

−0.001

0

0.001

0.002

Present 192 × 128 × 128
Present 144 × 96 × 96

Akselvoll and Moin [32]
Adams et al [29]

x/h

〈C
〉

Figure 4: Coefficient of friction along the lower wall.

The present results using the dynamic model containing 192×128×128 nodes and the results
obtained by Akselvoll and Moin [32] are within the estimated experimental error bounds,
while the present results using 144 × 96 × 96 nodes are just outside these bounds.

The computed coefficient of friction along the lower wall is compared to the
experimental results in Figure 4. The coefficient of friction is defined as Cf = 2τw/ρU2

c ,
where τw is the shear stress at the wall andUc is the freestream velocity. There are no known
differences between the two grid simulations. The results show a similar agreement with
the experimental results as the simulations by Akselvoll and Moin [32]: good agreement
upstream of x/h = 2 and from reattachment to x/h = 16, but poor agreement in both
the recirculation zone and downstream of x/h = 16. The reason for the poor agreement
downstream of x/h = 16 is probably the effect of the outflow boundary condition. In the
recirculation zone, it is unclear why all the LES simulations predict a larger negative value of
Cf . Akselvoll and Moin [32] noted that this could be caused by either the inflow generation
method used or by inadequate grid resolution in this region. Results obtained using the finer
grid are also shown in Figure 4 and indicate that the agreement with the experimental results
is not improved with grid refinement. Another cause could be the limited spanwise extent
of the domain, however, some preliminary simulations in wider domains did not result in
improved results.
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Figure 5: Mean streamwise velocity profiles.

Figure 5 shows the mean streamwise velocity at a number of locations downstream of
the step. Both grid simulations show generally good agreement with the experimental results
with the major differences occurring downstream of reattachment and in the recirculation
region. The coarse grid results show a slightly stronger reversed flow in the recirculation
zone comparing with the finer grid, but both grid simulations show generally a little
lower of the experimental results. Near reattachment region both grids results show smaller
velocities than the experiments, which it is attributed to the flow gaining momentum as it
passes downstream (due to side-wall boundary-layer growth) in the experiments, however,
downstream of reattachment region, the LES results of finer grid is showed that velocities are
good agreement with the experimental results in this region. The primary discrepancy with
the experimental results is in the recirculation region (at x/h = 3.2 and 5.9), where subgrid-
scale model predicts a stronger backflow in the boundary layer, linked to the prediction of a
larger coefficient of friction in this region, which is caused by the no slip wall condition and
the boundary layer thickness decreasing on the backward step wall attacked by the upstream
flow, also, the physical dissipation of SGS model and numerical dissipation may be affected
by the results for the complex turbulent flow in the recirculation region.

Profiles of the RMS of the resolved streamwise velocity fluctuations are shown in
Figure 6. Overall, the agreement of the simulation results with the measurements is good
except for underprediction of the velocity fluctuation in recirculation region. Downstream
of reattachment, there is some over-prediction of the streamwise velocity fluctuations with
finer grid, however, the results obtained on the coarse grid show, in general, a lower value
of streamwise velocity fluctuations, especially near the walls, which is probably caused by
insufficient grid resolution and the physical dissipation of SGS model.

The resolved Reynolds stress 〈u′v′〉 at different streamwise sections are shown in
Figure 7. Though the coarse-mesh result tends to over-predict the peak Reynolds stress,
overall not much difference is seen in this quantity for different meshes. The position of the
peak Reynolds stress in the normalwise is between y/h = 0.8 and y/h = 1.0, which is similar
to fully developed incompressible channel flow.
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Figure 7: Resolved Reynolds stress at different streamwise sections.

4.3. The Turbulent Flow in a Francis Turbine Passage

4.3.1. Computational Setup

The numerical example is a runner blade of a test Type-HLA551-LJ-43 Francis hydroturbine
model. The computational domain including the distributor (stay vanes and guide vanes)
domain and the runner domain is shown in Figure 8, and consists of one stay vane, one guide
vane, and a runner blade. The distributor computational domain corresponds to an interblade
channel that is bounded upstream by a cylindrical patch A-A and downstream by a conical
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Figure 8: The geometric configuration, computational domain, and boundary conditions.

patch B-B. The distributor inlet section corresponds to the spiral casing outlet section, while
the outlet section is conventionally considered to be the distributor-runner interface. The
runner computational domain also corresponds to an inter-blade channel that is bounded
upstream by a conical patch (wrapped on the same conical surface as the distributor outlet),
then across the runner middle axis C-C, and is extended downstream up to the draft tube
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Figure 9: Averaged pressure (a) and skin friction coefficient distribution (b) on blade surface.

inlet of radius D-D. For separation of the made-up turbulence that is caused by the strong
3D skewing passage, the geometry is normalized with half of the external diameter of the
runner blade, Rref = 0.225m. The mean chord dimension L of the runner blade passage
(streamwise dimension) is prescribed as L/Rref = 0.724 and the mean blade-pitch dimension
as y/Rref = 0.46, and the mean spanwise dimension of the blade passage is prescribed as
z/Rref = 2.06. The mean coming flow velocity at the inlet of the runner domain (B-B) passage
is defined as reference velocity Uref = 0.68m/s. The flow Reynolds number is defined as
Re = UrefL/ν

f = 1.1 × 105, and the attack angle of guide vane relative the blade is 0◦.
The meshes around the runner blade surfaces are first generated, and then the other

domains are calculated in turn. The tetrahedral fluid element number of the whole model is
1,957,828 and 11,160 nodes are distributed over one side of the blade surfaces (averaging 90
points in the streamwise direction and 124 points in the spanwise direction).

The computational boundary conditions are shown in Figure 8, and are presented
as follows. A uniform velocity field that is normal at the inflow section is imposed on
the distributor inlet section, the turbulence quantities (the turbulence intensity is 6% and
turbulence length scale is l = 0.07R = 0.003m, where R is the hydroradius of the distributor
inlet section) are prescribed on the inflow section of the distributor, the free outflow condition
is specified on the runner outlet (draft tube inlet), the periodic conditions are imposed on the
pitchwise periodic boundary, and no-slip wall conditions are imposed on the stay vane, guide
vane, runner blade, and distributor upper and lower rings as well as on the crown and band
surfaces of the runner blade, respectively.

A strategy of changeable time interval is adopted in simulating progress for the sake of
convergence and accuracy. Themaximum time step is limited less than 2.0×10−3T (T = L/Uref

as the passing period of the blade passage). The grid turbulence simulation has progressed
to 20 T and collection of the sampling data for time statistics starts from 4 T .

4.3.2. Numerical Results

The time-averaged static pressure coefficients, Cp = 2(p − pout)/(ρU
2
ref), along the suctionand

pressure sides of the blade are shown in Figure 9(a), where p is the mean static pressure in
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flowing fileds, pout is the mean static pressure in the draft tube inlet section (D-D section in
Figure 8). The time-averaged skin friction coefficients, Cf = 2τw/ρU2

ref, along the suction and
pressure sides of the blade are shown in Figure 9(b), where τw is the wall shear stress. On
the suction side of the blade, a short region of acceleration is seen at the leading zone of the
passage, and after a short decelerated from x′/L = 0.1 to x′/L = 0.25, a high pressure gradient
is kept until the trailing edge of the blade. The flow direction may be changed due to reverse
pressure gradient, which leads an intense negative pressure zones and a high wall-shear
stress on the suction surface. At the same time, it can be seen that the pressure distributions
are more regular on the pressure side, although largely different along the Sc, Sm, and Sb

lines on the suction side, which is demonstrated that the flows become more complex near
the suction surface affected by the high 3D curved blade.

Figure 10 shows the static pressure distribution based on the time-averaged Root-
Mean-Square (RMS) on the sections along the pitch-wise direction. S1 is the pressure surface
and S4 is the suction surface, and S2 and S3 are formed by 5◦ rotation of S1 and S4 around the
hydroturbine shaft, respectively. Near the pressure side (S1 and S2), the pressure fluctuation
is up to maximum near the leading of the blade passage, which is gradual decreasing along
the streamline and up to minimum at the trailing edge of the blade passage. The contours of
the RMS static pressure on the suction surfaces (S3 and S4) show that local pressure gradient
is larger than that on the pressure surface; moreover, the local low pressure region mainly lies
in the suction side, which suggested that the cavitations more easily come into being on the
suction surface.

Figure 11 shows the velocity magnitude distributions based on time-averaged RMS
at the sections. The velocity fluctuation gradually increase along the streamline in the blade



16 Mathematical Problems in Engineering

0.8 1.2 1.62
0

0.01

0.02

0.03

t (s)

Point 1
Point 2

Point 3
Point 4

2

k
(m

2 s
−2
)
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passage on the pressure side; however, it is not all true on the suction side. Some contour lines
self-closed are exhibited on these blade sections, which is the reason why there is a strongly
swirling flow structure in this zone. The remarkable difference of the velocity and pressure
distributions based on the RSM between the suction and pressure sides also implies that the
flow patterns are greatly affected by the distorted wakes from the upstream due to the attack
angle of guide vane and the curvature of the blade wall itself.

Figure 12 shows the evolution of computational SGS kinetic energy of some classic
points along the streamline on blade passage. It can be seen that the subgrid kinetic energy
is large difference at different space points; moreover, the subgrid kinetic energy is also
large fluctuation as time even though at the same space point, which is suggested that the
difference of energy transport for different eddy scales at different time. Simultaneously,
Figure 12 also shows the difference of SGS kinetic energy at different space points, which
is verifies that the difference of eddy scales induced by skew blade.

Figure 13 shows the evolution of computational SGS stress of some classic points
along the streamline in blade passage (Numbered A, B, and C in Figure 8(a), where x′

A/L =
0.2, x′

B/L = 0.5, x′
C/L = 0.8). It is shown that the peak of both the normal ones and the shear

stress in point B is higher than pointA andC. It is also shown that the SGS stress distributions
in space and time are large difference, which shows strong turbulent characters in complex
blade passage.

Figure 14 shows the instantaneous isosurface of spanwise vorticity in the blade
passage at different time. These figures clearly show the swirling flow structures. A strong
clockwise spanwise vortex are viewed in the leading zone, then they are gradually elongated
as time and the vortexes are then broken, a few vortex pairs rotating at clockwise and
counterclockwise directions come into being along the band zone. Firstly, the big swirling
vortex controls the main flow structure in the leading zone. With the collective spanwise
vortex evolving continuously towards the downstream, the distances between vortex pairs
became longer its intensity is gradually decreasing, and the flow becomes finally instability.
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Figure 13: Evolution of computational SGS stress.

5. Conclusion

A computational method is presented to apply DSGS model for the LES of unsteady
turbulent flow problems in complex geometries. Based on the Taylor-Galerkin schemes
for the convection-diffusion problems, this model is implemented in a three-dimensional
finite element code using a three-step FEM. Qualitative and quantitative aspects of three-
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Figure 14: Contours of isosurface of spanwise vorticity in blade passage Blue: ≤ −120 s−1, Red: ≥60 s−1.

dimensional turbulent flow in a channel, turbulent flow over a backward-facing step
and turbulent flow in a blade passage of a Francis turbine are simulated. The statistic
characteristics of pressure, velocity, Reynolds stress and skin friction velocity, and so forth,
are present. The spatiotemporally vortex structures are also shown in detail. The present
numerical results are well in agreement with the DNS results or experimental data, which is
verified that the three-step FEM for LES with DSGS model is validity for transient turbulent
flow in complex geometries.
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