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Many problems with control theory have led to investigations into switched systems. One of the
most urgent problems related to the analysis of the dynamics of switched systems is the stability
problem. The stability of a switched system can be ensured by a common Lyapunov function for
all switching modes under an arbitrary switching law. Finding a common Lyapunov function is
still an interesting and challenging problem. The purpose of the present paper is to prove the
stability of equilibrium in a certain class of nonlinear switched systems by introducing a common
Lyapunov function; the Lyapunov function is based on generalized Kullback–Leibler divergence or
Csiszár’s I-divergence between the state and equilibrium. The switched system is useful for finding
positive solutions to linear algebraic equations, which minimize the I-divergence measure under
arbitrary switching. One application of the stability of a given switched system is in developing
a new approach to reconstructing tomographic images, but nonetheless, the presented results can
be used in numerous other areas.

1. Introduction

A switched system is a dynamical system that consists of a finite number of subsystems
and a logical rule that orchestrates switching between these subsystems. Mathematically,
these subsystems are usually described by a collection of indexed differential or difference
equations; one convenient way to classify switched systems is based on the dynamics of their
subsystems, for example, continuous-time or discrete-time and linear or nonlinear. Switching
events in switched systems can be classified into state-dependent versus time-dependent and
autonomous versus controlled. For the moment, we will concern ourselves with controlled
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time-dependent switching. Given a family fp, p ∈ P of functions from R
n to R

n, where P is
some index set. This gives rise to a family of systems:

dx

dt
= fp(x), p ∈ P, (1.1)

evolving on R
n. The functions fp are assumed to be sufficiently regular. The easiest case to

think about is when all these systems are linear and the index set P is finite: P = {1, 2, . . . , m}.
The switched system with time-dependent switching, generated by the above family, can be
described by

dx

dt
= fσ(x), (1.2)

where the switching signal σ : [0,∞) → P is a piecewise constant function that has a finite
number of discontinuities, which we call the switching times, on every bounded time interval
and takes a constant value on every interval between two consecutive switching times. The
role of σ is to specify, at each time instant t, the index σ(t) ∈ P of the active subsystem, that
is, the system from the family in (1.1) that is currently being followed.

Stability analysis is a fundamental problem in the analysis and design of switched
systems, and, during the past several years, several methods have been proposed to solve
it. It is well known that a necessary condition for asymptotic stability under arbitrary
(unconstrained) switching is that all of the individual subsystems are asymptotically stable.
However, the above stability condition is not generally sufficient to guarantee asymptotic
stability for the switched system under arbitrary switching. Standard Lyapunov theory
for the stability of smooth systems, which requires the existence of a Lyapunov function
satisfying, with its derivative, some inequalities [1, 2], has a direct extension for the stability
of switched systems under arbitrary switching; this extension was obtained by requiring the
existence of a common Lyapunov function for all individual subsystems corresponding to
the system being considered, that is, the existence of a common Lyapunov function for all
subsystems was shown to be a necessary and sufficient condition for a switched system to
be asymptotically stable under arbitrary switching law (see [3, 4] and references therein).
However, most results have been obtained for cases when switching occurs between linear
subsystems, while the common Lyapunov function is set up in the quadratic form [3, 4]. For
the nonlinear switched systems, some stability conditions were obtained in [3, 5–7]; however,
it should be noted that so far there do not exist common methods of effectively developing
the Lyapunov functions for nonlinear systems.

Most switched systems in practice, however, do not possess a common Lyapunov
function, yet they may still be asymptotically stable under some properly chosen switching
law. The multiple Lyapunov function technique is a powerful and effective tool for finding
such a switching law or identifying a class of useful switching laws [3, 8–10]. The key
point in these conditions of multiple Lyapunov function methods is the nonincreasing
requirement on any Lyapunov function over the “switched on” time sequence of the
corresponding subsystem; the Lyapunov functions in this case are called Lyapunov-like
functions. However, this is usually difficult to check in its full generality. Thus, connecting
adjacent Lyapunov functions at switching points is a commonly accepted strategy in applying
the multiple Lyapunov function methods. To relax this nonincreasing requirement, the
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concept of generalized Lyapunov-like functions has been addressed [11], where a necessary
and sufficient condition for the stability of switched systems in terms of generalized
Lyapunov-like functions has been established; this condition tells us how much the
corresponding general Lyapunov-like function is allowed to grow on the “switched on”
time sequence without violating stability. We also do not need to worry about when
and how each subsystem is activated for the first time with this condition. Given the
importance of dissipativity concepts for smooth systems where the storage functions induced
by dissipativity usually provide natural candidates for Lyapunov functions, a framework
of dissipativity theory for switched systems using multiple storage functions and multiple
supply rates was set up [12]. Indeed, each subsystem in a switched system is associated
with a storage function to describe the energy stored in the subsystem, and it is associated
with a supply rate that represents the energy coming from outside the subsystem when the
subsystem is active; the exchange of energy between the active subsystem and an inactive
subsystem is characterized by cross-supply rates. The stability of the switched system was
assured by dissipativity when all supply rates can be made negative, as long as the total
exchanged energy between the active subsystem and any inactive subsystems is finite in
some sense. Moreover, unlike multiple Lyapunov functions, where a nonincreasing condition
on a “switched on” time sequence is a basic assumption even though the Lyapunov function
is allowed to increase when the corresponding subsystem is inactive, storage functions are
allowed to increase not only on time intervals when the corresponding subsystems are
inactive but also on the “switched on” time sequence.

Tomography deals with the problem of determining the shape and dimensional
information of an object from a set of projections and is concerned with the reconstruction
of cross-sectional images, which permits the interiors of objects to be visualized. Computed
tomography (CT) [13–16] is a method of medical imaging employing tomography created
by computer processing; it is well known for delivering high-quality images from inside the
human body and thus supports physicians in diagnosis. Problems with images reconstructed
by a projection operator and from a projection data set generally become ill-posed [17]. Many
different reconstruction algorithms are used in medical practice to solve the inverse problem
with image reconstruction.

We deal with analyzing the stability of a switched nonlinear system of the form in
(1.2) in this study, where all individual subsystems, of the form in (1.1), will be stable,
that is, a continuous system with switching signals under arbitrary switching. A common
Lyapunov function, based on the generalized Kullback–Leibler divergence [18] or Csiszár’s
I-divergence [19, 20]measure between the state and the equilibrium, is set up. That Kullback–
Leibler divergence can play the role of a common Lyapunov function for a class of switched
nonlinear systems is demonstrated for the first time. A particular application of the stability
of this switched system, which is to develop a novel approach to reconstructing tomographic
images based on the idea of continuous dynamical methods, and an illustrative example are
presented.

2. Statement of the Problem

Systems of linear equations and matrix inversion play an important and motivating role in
linear algebra. Such linear equations appear frequently in applied mathematics to model
certain phenomena, for example, in computed tomography (CT) [13–16]. Fundamentally, the
problem is to obtain unknown variable x ∈ R

J
+, with R+ denoting the set of nonnegative real
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Figure 1: Illustration of the partitioning of y and A form = 1, 2.

numbers, satisfying

y = Ax, (2.1)

where y ∈ R
I
+ \ {0} and A ∈ R

I×J
+ \ {0}. We say that the system y = Ax is consistent if it

has a locally unique solution e ∈ R
J
+. Equation (2.1) is an ill-posed problem for inconsistent

cases, which means that its solution is not unique or does not exist [17]. To find solution x,
we formulated a switched nonlinear system consisting of the family of subsystems [21, 22]

dx

dt
= −diag(x)A�

m

(
Amx − ym

)
(2.2)

or, equivalently,

dxj

dt
= −xj

(
A�

m

)

j

(
Amx − ym

)
, j = 1, 2, . . . , J, (2.3)

where diag(x) indicates the diagonal matrix of order J × J in which the diagonal entries
starting in the upper left corner are the elements of x, while Am ∈ R

Im×J
+ and ym ∈ R

Im
+ are,

respectively, a submatrix consisting of Im partial rows of A and a subvector of y with the
same corresponding rows of Am, for m = 1, 2, . . . ,M, with M denoting the total number of
divisions. Figures 1 and 2 present this formulation for case m = 1, 2.

Proposition 2.1. If one chooses positive initial value x0 ∈ R
J
++ in the switched system in (2.2), then

the solution φ(t, x0) is in R
J
++ for all t ∈ R+, where R++ represents the set of positive real numbers.

Proof. We proved in [22] that if we choose positive initial value x0 ∈ R
J
++ in our continuous-

time image reconstruction (CIR) system, then the corresponding solution will be in R
J
++ for all

t ∈ R+. Similarly, if we start from a positive initial value for each individual subsystem in (2.2),
the corresponding trajectory will stay in R

J
++. Consequently, if we choose a positive initial

value for the first subsystem under arbitrary switching in the switched system described by
(2.2), an end point of the corresponding trajectory, at a given time of switching, which is the
initial point for the second subsystem, will be positive, and so on.
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Figure 2: Switched system consisting of two subsystems.
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Figure 3: Trajectory of a switched system for m = 1, 2.

This behavior is illustrated in Figure 3, where we are switching between two
subsystems on the line.

Proposition 2.2. Point e satisfying (2.1) is a common equilibrium for all subsystems in (2.2).

Proof. Point e satisfies (2.1) if and only if

⎛

⎜⎜⎜⎜⎜⎜
⎝

y1

y2

...

yI

⎞

⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

A1

A2

...

AI

⎞

⎟⎟⎟⎟⎟⎟
⎠

e, (2.4)

where Ai ∈ R
1×J
+ and yi ∈ R+. Since the scalar multiplication defined for matrices having

scalar elements also applies to partitioned matrices, then y = Ae if and only if y1 = A1e,
y2 = A2e, . . ., yI = AIe, which means that e is a common equilibrium for all subsystems in
(2.2) that satisfies ym = Ame for allm. This similarly occurs for any submatricesAm consisting
of Im partial rows of A and the corresponding subvectors ym of y.
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According to Proposition 2.2, the common equilibria for all subsystems in the switched
nonlinear system in (2.2) that satisfy ym = Amx for all m are the solutions to the equation
y = Ax; these equilibria are stable with respect to each subsystem by virtue of existing the
Lyapunov functions:

Vm(x) =
1
2
∥
∥Amx − ym

∥
∥2
2. (2.5)

Proposition 2.3. Consider the mth subsystem in the switched system in (2.2) with initial value
x0
m ∈ R

J
++. If there exists locally unique equilibrium em /∈ {0}, then Vm(φm(t, x0

m)) described by (2.5)
decreases in t ∈ R+.

Proof. We have Vm(x) ≥ 0 with equality if x = em /∈ {0}. Its derivative along corresponding
solution φm(t, x0

m) is given by

dVm

dt

(
φm

(
t, x0

m

))
= −Λm

(
t, x0

m

)�
Φm

(
t, x0

m

)
Λm

(
t, x0

m

)
, (2.6)

whereΛm := A�
m(Amφm−ym) andΦm(t, x0

m) := diag(φm(t, x0
m)). According to Proposition 2.1,

the derivative of Vm(φm(t, x0
m)) is negative semidefinite for t ∈ R+ and any x0

m ∈ R
J
++. The

Vm(x) can be a Lyapunov function on R
J
++. Thus, x0

m ∈ R
J
++ exists such that φm(t, x0

m) → em
as t → ∞.

Proposition 2.4. The zero equilibrium of the switched system in (2.2) is locally unstable.

Proof. We rewrite the switched system in (2.2) as

dx

dt
= fm(x). (2.7)

The derivative of fm with respect to x is

∂fm
∂x

(x) = −diag(x)A�
mAm − diag

(
A�

m

(
Amx − ym

))
. (2.8)

We can see that all eigenvalues of the derivative at the zero equilibrium

∂fm
∂x

(0) = diag
(
A�

mym

)
(2.9)

are nonnegative for all m = 1, 2, . . . ,M.
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3. Stability via Common Lyapunov Function

This section addresses the main results where we construct a common Lyapunov function for
all subsystems of the switched nonlinear system in (2.2), based on the generalized Kullback–
Leibler divergence between the state and the equilibrium. This function will be positive
definite and its derivatives, with respect to each subsystem, negative definite.

The generalized Kullback–Leibler divergence of two nonnegative vectors α and β is
defined as

KL
(
α, β
)
=
∑

j

βj log
βj

αj
+ αj − βj . (3.1)

The standard Kullback–Leibler divergence only consists of the first term and is only defined
for probability distributions, that is, the sum of each vector is 1. The last two terms are
necessary so that the generalized divergence has, for arbitrary nonnegative vectors α and β,
the property of being nonnegative and zero exactly when α and β are equal. This divergence
is called Csiszár’s I-divergence measure, which leads to effective methods of selection to
solve optimization problems with nonnegativity constraints [19, 20]. The divergence KL(α, β)
for the α and β vectors of nonnegative real numbers is nonnegative with KL(α, β) = 0 if
and only if α = β. Note that it suffices to prove this when α and β are scalars, because
KL(α, β) =

∑
j KL(αj , βj). Thus, we let r = α/β and

KL
(
α, β
)
= β log

β

α
+ α − β

= β
(− log r + r − 1

)

= β

∫ r

1

s − 1
s

ds.

(3.2)

It is clear that
∫ r
1 (s − 1)/sds is nonnegative and equal to zero if and only if r = 1.

Now, all the individual subsystems in (2.2) are asymptotically stable (Proposition 2.3).
The existence of a common Lyapunov function for the family of subsystems in (2.2)
guarantees stability in the corresponding switched system for arbitrary switching signals;
for example, see [3].

Theorem 3.1. If the system y = Ax is consistent, the switched nonlinear system corresponding to
the family of systems in (2.2) is uniformly asymptotically stable.

Proof. Consider the following function, which is based on the generalized Kullback–Leibler
divergence between the state x and the equilibrium e:

V = KL(x, e)

=
J∑

j=1

ej log
ej

xj
+ xj − ej

=
J∑

j=1

∫xj

ej

v − ej

v
dv,

(3.3)
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which is positive definite. Using (2.3) to get its derivative, after some manipulations, in the
form

V̇
∣
∣
(2.2) =

J∑

j=1

xj − ej

xj
ẋj

= −∥∥Amx − ym

∥
∥2
2

≤ 0

(3.4)

with equality if x = e, for m = 1, 2, . . . ,M. Thus, all subsystem in the family in (2.2) share
a common Lyapunov function given by (3.3), and, therefore, the corresponding switched
system is uniformly asymptotically stable; the terminology uniform is employed here to
indicate the uniformity with respect to the switching signals.

4. Applications in Computed Tomography

This section presents a concise review from the field of computed tomography (CT), on
the reason for which we have investigated the switched nonlinear system in (2.2) and its
stability, as well as an illustrative example of a switched nonlinear system. Needless to say,
the generality in (2.1)makes it possible to use the presented results on the switched nonlinear
system in (2.2) in numerous other areas.

4.1. Reason of Proposing Switching

The basic problem in CT is to calculate pixel values x ∈ R
J
+ satisfying (2.1), where y ∈ R

I
+ \

{0} is the projection value, and A ∈ R
I×J
+ \ {0} is a normalized projection operator. To find

solution x, we proposed a novel approach to reconstructing tomographic images based on
the idea of continuous dynamical methods; the method consists of a continuous-time image
reconstruction (CIR) system described by the nonlinear continuous system:

dx

dt
= −diag(x)A�(Ax − y

)
, (4.1)

where the notations are as above. The main benefit of using the CIR system is that it easily
allows theoretical analysis of the convergence and the stability of a solution [22].

We have extended our CIR method by introducing subsets of projections as in block
iterative methods [23] to what is called a block CIR system [21, 22, 24]. The switched system
with a piecewise smooth vector field, which describes our block CIR system, is given by
(2.2). A convenient way of thinking about this formulation is facilitated from Figures 1–
3, in the case of m = 1, 2. According to the many simulations and numerical discussions
we took part in, we noticed that our block CIR system could yield very good-quality image
reconstructions; for example, see [21, 22, 24]. The goodness of our results from the block CIR
approach tempts us to show that this approach works well theoretically, based on dynamical
systems theory. We introduced an illustrative idea to search for a common Lyapunov function
for all subsystems in our block CIR system (2.2) as a trial of showing its stability as a switched
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system; the idea was efficient in solving many practical problems [21]. Because of this, the
present paper introduces a common Lyapunov function, given by (3.3) that can be applied to
all problems in our block CIR system that is described by (2.2).

4.2. Example

Let us take a switched system having an explicit solution to illustrate the theoretical results.
Consider matrix A and vector y as

A =

(
1 0

1 1

)

, y =

(
y1

y2

)

. (4.2)

So, we study the switched nonlinear system in (2.2) with I = J = M = 2, which is defined by

dx1

dt
= x1

(
y1 − x1

)
, (4.3)

dx2

dt
= 0, (4.4)

dx1

dt
= x1

(
y2 − (x1 + x2)

)
, (4.5)

dx2

dt
= x2

(
y2 − (x1 + x2)

)
. (4.6)

The solution to the first subsystem, consisting of (4.3) and (4.4), takes the form

x1 =
y1

1 +
(
y1/x

0
1 − 1

)
e−y1t

,

x2 = x0
2,

(4.7)

which is positive when we start from positive initial values x1(0) = x0
1 > 0 and x2(0) = x0

2 > 0.
The solution to the second subsystem, consisting of (4.5) and (4.6), takes the form

x1 =
y2x

0
1
∗

(
x0
1
∗ + x0

2
∗) +

(
y2 −

(
x0
1
∗ + x0

2
∗))

e−y2t
,

x2 =
y2x

0
2
∗

(
x0
1
∗ + x0

2
∗) +

(
y2 −

(
x0
1
∗ + x0

2
∗))

e−y2t
,

(4.8)

which is positive when we start from positive initial values x1(0) = x0
1
∗
> 0 and x2(0) = x0

2
∗
>

0. Thus in either subsystem if we start from a positive initial state, then the corresponding
solution including a switching point to the other subsystem, will be positive. Hence, under
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Figure 4: Common Lyapunov function given by (3.3) for Section 4.2 (Example).
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Figure 5: Trajectory in phase plane approaches the common equilibrium point (5, 2)� for Section 4.2
(Example).

arbitrary switching, if we choose a positive initial value for the first subsystem, an end point
of the corresponding trajectory, at a given time of switching, which is the initial point for
the second subsystem, will be positive and so the trajectory of the second subsystem will
stay positive. We will switch to the first subsystem with a positive switching point at a
given time. Repeating this procedure will generate a trajectory in R

2
++ of the corresponding

switched system, which coincides with what we have already proved in the general case in
Proposition 2.1.

The two subsystems have the point (y1, y2 − y1)
� as a common equilibrium point (see

Proposition 2.2). This point is stable for each of the two subsystems by virtue of existing
two Lyapunov functions given by (2.5), with m = 1, 2, which coincides with Proposition 2.3.
The existence of the common Lyapunov function, for these two subsystems, given by (3.3),
guarantees the stability of the corresponding switched system for arbitrary switching signals
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asmentioned in Theorem 3.1. Now, in case of y = (5, 7)� in (4.2), we introduce two figures, the
first one, Figure 4, shows the value of the common Lyapunov function given by (3.3), while
the second one, Figure 5, shows a trajectory in the phase plane, with initial state (5.5, 2.5)�,
which approaches the common equilibrium point of the two subsystems (5, 2)�.

5. Conclusion

In this work, to solve the linear system y = Ax, we investigated a certain class of nonlinear
switched systems, which we were interested in. Several basic properties of this nonlinear
switched system were established. Since the construction of Lyapunov functions has always
been a challenging task and an important problem in dynamical systems and control theory,
we suggested a common Lyapunov function for the stability of an equilibrium in this
switched nonlinear system, based on the generalized Kullback–Leibler divergence between
the state and the equilibrium. To ensure practical relevance, the stability of the given
switched systemwas used to develop a new approach to reconstructing tomographic images.
However, the presented results can be used in numerous other areas, because of the frequent
appearance of linear systems in applied mathematics used in modeling various phenomena.
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