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The main purpose of this paper is to study the metriplectic system associated to 3-dimensional
Volterra model. For this system we investigate the stability problem and numerical integration
via Kahan’s integrator. Finally, the synchronization problem for two coupled metriplectic Volterra
systems is discussed.

1. Introduction

To give a unification of the conservative and dissipative dynamics, Kaufman [1] has intro-
duced the concept of metriplectic system.

Let (x1, x2, . . . , xn) be a local coordinate system on Rn. We consider

ẋ(t) = P(x(t)) · ∇H(x(t)) (1.1)

be a Hamilton-Poisson system on Rn with Hamiltonian H ∈ C∞(Rn), where x(t) = (x1(t),
. . . , xn(t))

T and ∇H(x) = (∂H/∂x1, . . . , ∂H/∂xn)
T .

We add to the Hamilton-Poisson system (1.1) a dissipation term of the form G(x(t)) ·
∇ ˜C(x(t)), where G(x) is a symmetric matrix which satisfies certain compatibility conditions,
and ˜C(x(t)) = a · C(x(t)), where a ∈ R and C ∈ C∞(Rn) are a Casimir function (i.e., P(x) ·
∇C(x) = 0). One obtains a family of metriplectic systems of the form

ẋ(t) = P(x(t)) · ∇H(x(t)) +G(x(t)) · ∇ ˜C(x(t)). (1.2)
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This family of metriplectic systems have the same Hamiltonian H and the same Casimir
function C. For each a ∈ R, the metriplectic systems (1.2) can be viewed as a perturbation of
Hamilton-Poisson system (1.1).

The differential systems of the form (1.2) and their applications have been studied
in connection with several dynamical systems derived from mathematical physics; see for
instance, [1–4].

Another way for giving rise to a dynamical system of the form of (1.2) is based on
the definition of a metriplectic structure on Rn. These systems can be expressed in terms of
Leibniz bracket, see [5–8].

The paper is structured as follows. In Section 2, the metriplectic system associated to
3-dimensional Volterra model (2.8) is constructed. For this dynamical system, the stability of
equilibrium states is investigated. In Section 3, we discuss the numerical integration for the
system (2.8).

Synchronization problem for dynamical systems has received a great deal of interest
due to their application in different fields of science; see [9–12]. For this reason, Section 4 is
dedicated to synchronization problem for two coupled metriplectic Volterra systems of the
form of (2.8).

2. The Metriplectic System Associated to 3-Dimensional
Volterra Model

Let (Rn, P,H) be a Hamilton-Poisson system given by (1.1). For this system we determine the
symmetric matrix G = (Gij), where

Gii(x) = −
n
∑

k=1, k /= i

(

∂H

∂xk

)2

, Gij(x) =
∂H

∂xi
· ∂H
∂xj

, for i /= j. (2.1)

If C ∈ C∞(Rn) is a Casimir function for the configuration (Rn, P,H), then we take
˜C = a · C, where a ∈ R is a parameter.

For P,H, ˜C, and the matrix G determined by relations (2.1), we write the differential
system (1.2) in the following tensorial form:

ẋi = Pij
∂H

∂xj
+Gij ∂ ˜C

∂xj
, i, j = 1, n. (2.2)

System (2.2) is a metriplectic system in Rn (see [2, 7]), that is the following conditions
are satisfied:

(i) G(x) · ∇H(x) = 0; (ii)
(

∇ ˜C(x)
)T
·G(x) · ∇ ˜C(x) ≤ 0. (2.3)

System (2.2) is called the metriplectic system associated to Hamilton-Poisson system (1.1)
and is denoted by (Rn, P,H,G, ˜C).

Let us construct a metriplectic system of the form of (2.2), starting a Hamilton-Poisson
realization of the 3-dimensional Volterra model.
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The phase space of the 3-dimensional Volterra model consists of variables xi, 1 ≤ i ≤ 3;
see [13, 14]. This is described by the equations

ẋ1 = x1x2, ẋ2 = −x1x2 + x2x3, ẋ3 = −x2x3. (2.4)

It is well known that system (2.4) has a Hamilton-Poisson realization (R3, PV ,HV ) with
the Casimir CV ∈ C∞(R3,R) (see [14]), where

PV =

⎛

⎜

⎜

⎝

0 x1x2 0

−x1x2 0 x2x3

0 −x2x3 0

⎞

⎟

⎟

⎠

, (2.5)

HV (x1, x2, x3) = x1 + x2 + x3, CV (x1, x2, x3) = x1x3.
(2.6)

We apply now relations (2.1) to the function H = HV ∈ C∞(R3,R) given by (2.6). Then
the symmetric matrix G := GV = (Gij

V ) is

GV =

⎛

⎝

−2 1 1
1 −2 1
1 1 −2

⎞

⎠. (2.7)

We take H = HV and C = CV given by (2.6), the skew-symmetric matrix P = PV given
by (2.5) and the symmetric matrix GV given by (2.7). For the function ˜CV = aCV with a ∈ R,
system (2.2) becomes

ẋ1 = x1x2 + a(x1 − 2x3),

ẋ2 = −x1x2 + x2x3 + a(x1 + x3),

ẋ3 = −x2x3 + a(−2x1 + x3).

(2.8)

Proposition 2.1. The dynamical system (R3, PV ,HV ,GV , ˜CV ) given by (2.8) is a metriplectic system
on R3.

Proof. We have ∂CV/∂x1 = x3, and ∂CV/∂x2 = 0, ∂CV/∂x3 = x1. Then

PV · ∇CV =

⎛

⎝

0 x1x2 0
−x1x2 0 x2x3

0 −x2x3 0

⎞

⎠

⎛

⎝

x3

0
x1

⎞

⎠ =

⎛

⎝

0
0
0

⎞

⎠, (2.9)

that is, CV is a Casimir of Hamilton-Poisson system (R3, PV ,HV ).
We prove that conditions (i) and (ii) from (2.3) are verified.
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We have ˜CV (x) = ax1x3, ∂HV/∂x1 = ∂HV/∂x2 = ∂HV/∂x3 = 1 and ∂ ˜CV/∂x1 = ax3,
∂ ˜CV/∂x2 = 0, ∂ ˜CV/∂x3 = ax1. Then

GV · ∇HV =

⎛

⎜

⎜

⎝

−2 1 1

1 −2 1

1 1 −2

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1

1

1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0

0

0

⎞

⎟

⎟

⎠

,

(

∇ ˜C(x)
)T
·G(x) · ∇ ˜C(x) = (ax3, 0, ax1)

⎛

⎜

⎜

⎝

−2 1 1

1 −2 1

1 1 −2

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

ax3

0

ax1

⎞

⎟

⎟

⎠

= −2a2
(

x2
1 − x1x3 + x2

3

)

≤ 0.

(2.10)

Hence (2.8) is a metriplectic system.

System (2.8) is called the 3-dimensional metriplectic Volterra system. For a = 0, it is
reduced to Volterra model (2.4).

System (2.8) can be written in the form ẋi = fi(x), i = 1, 3, where

f1(x) = x1x2 + a(x1 − 2x3), f2(x) = −x1x2 + x2x3 + a(x1 + x3),

f3(x) = −x2x3 + a(−2x1 + x3).

(2.11)

Proposition 2.2. (i) The functionHV given by (2.6) is a constant of the motion for the metriplectic
Volterra system, that is, it is conserved along the solutions of the dynamics (2.8).

(ii) The function ˜CV decreases along the solutions of system (2.8).

Proof. (i) We have dHV/dt = ẋ1 + ẋ2 + ẋ3 = f1(x) + f2(x) + f3(x) = 0.
(ii) The derivative of ˜CV along the solutions of system (2.8) verifies the condition

d ˜CV/dt ≤ 0. Indeed, d ˜CV/dt = aẋ1x3 + ax1ẋ3 = a(x3f1(x) + x1f3(x)) = −2a2(x2
1 − x1x3+

x2
3) ≤ 0.

Remark 2.3. If a/= 0, then ˜CV = aCV is not a constant of motion for the metriplectic system
(2.8).

Proposition 2.4. (i) If a ∈ R∗, then the equilibrium states of the dynamics of (2.8) are eM2 =
(0,M, 0) for allM ∈ R.

(ii) For a = 0, the equilibrium states of the dynamics of (2.8) are eMN
1 = (M, 0,N), and eM2 =

(0,M, 0), eM3 = (0, 0,M) for allM,N ∈ R.

Proof. The equilibria are the solutions of system fi(x) = 0, i = 1, 3.
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Proposition 2.5. The equilibrium states eM2 ,M ∈ R are unstable.

Proof. Let A be the matrix of the linear part of the system (2.8), that is,

A =

⎛

⎝

x2 + a x1 −2a
−x2 + a −x1 + x3 x2 + a
−2a −x3 −x2 + a

⎞

⎠. (2.12)

The characteristic polynomial of the matrix A(eM2 ) is p(λ) = λ(λ2 − 2aλ − 3a2 −M2) with
the roots λ1 = 0, λ2,3 = a ±

√
4a2 +M2. Then the assertion follows via Lyapunov’s theorem

[15].

Remark 2.6. (i) The dynamics of (2.4) and (2.8) have not the same equilibria.
(ii) For a = 0, eMN

1 , eM2 , eM3 have the following behaviors (see [14]): eMN
1 is unstable

if M −N < 0 and spectrally stable if M −N > 0; eM2 is unstable, and eM3 is unstable if M ≥ 0
and spectrally stable if M < 0.

3. Numerical Integration of the Metriplectic Volterra System (2.8)

For (2.8), Kahan’s integrator (see for details [16]) can be written in the following form:

xn+1
1 − xn1 =

h

2

(

xn+1
1 xn2 + xn+1

2 xn1

)

+ ah
(

xn1 + xn+1
1 − 2xn3 − 2xn+1

3

)

,

xn+1
2 − xn2 =

h

2

(

−xn+1
1 xn2 − x

n+1
2 xn1 + xn+1

3 xn2 + xn+1
2 xn3

)

+ ah
(

xn1 + xn+1
1 + xn3 + xn+1

3

)

,

xn+1
3 − xn3 = −h

2

(

xn+1
2 xn3 + xn+1

3 xn2

)

+ ah
(

xn3 + xn+1
3 − 2xn1 − 2xn+1

1

)

.

(3.1)

Remark 3.1. Taking a = 0 in relations (3.1) we obtain the numerical integration for Volterra
model (2.4) via Kahan’s integrator.

Proposition 3.2. Kahan’s integrator (3.1) preserves the constant of motion HV of the dynamics of
(2.8).

Proof. Indeed, adding all equations (3.1) we obtain

xn+1
1 + xn+1

2 + xn+1
3 = xn1 + xn2 + xn3 . (3.2)

Hence HV (xn+1
1 , xn+1

2 , xn+1
3 ) = HV (xn1 , x

n
2 , x

n
3 ).

For the initial conditions x1(0) = 1, x2(0) = 2, and x3(0) = 1, the solutions of Volterra
model (2.4) (using Kahan’s integrator (3.1) with a = 0), are represented in the system of
coordinates Ox1x2x3 in Figure 1.

For the same initial conditions, the solutions of the metriplectic Volterra system (2.8)
for a = 1 (using Kahan’s integrator (3.1) with a = 1), are represented in the system of
coordinates Ox1x2x3 in Figure 2.
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Figure 1: Kahan’s integrator for Volterra model (2.4).
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Figure 2: Kahan’s integrator for the metriplectic Volterra system (2.8) with a = 1.

Remark 3.3. Using Runge-Kutta 4 steps integrator, we obtain almost the same result; see
Figure 3.

4. The Synchronization of Two Metriplectic Volterra Systems

In this section we apply Pecora and Carroll method for constructing the drive-response
configuration (see [12]).

Let us build the configuration with the drive system given by the metriplectic Volterra
system (2.8), and a response system (this is obtained from (2.8) by replacing xi with yi and
adding ui for i = 1, 3). Suppose that these systems are coupled. More precisely, the second
system is driven by the first one, but the behavior of the first system is not affected by the
second one.
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Figure 3: Runge-Kutta’s integrator for Volterra model (2.4).
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Figure 4: Runge-Kutta’s integrator for the metriplectic Volterra system (2.8) with a = 1.

Therefore, the drive and response systems are given by

ẋ1 = x1x2 + a(x1 − 2x3),

ẋ2 = −x1x2 + x2x3 + a(x1 + x3),

ẋ3 = −x2x3 + a(−2x1 + x3),

(4.1)
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Figure 5: Synchronization of systems (4.1) and (4.2) for a = 1. The solutions x1(t), y1(t) and the evolution
of error e1(t).
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Figure 6: Synchronization of systems (4.1) and (4.2) for a = 1. The solutions x2(t), y2(t) and the evolution
of error e2(t).

respectively

ẏ1 = y1y2 + a
(

y1 − 2y3
)

+ u1,

ẏ2 = −y1y2 + y2y3 + a
(

y1 + y3
)

+ u2,

ẏ3 = −y2y3 + a
(

−2y1 + y3
)

+ u3,

(4.2)

where u1(t), u2(t), and u3(t) are three control functions.
We define the synchronization error system as the subtraction of the metriplectic

Volterra model (4.1) from the controlled metriplectic Volterra model (4.2):

e1(t) = y1(t) − x1(t),

e2(t) = y2(t) − x2(t),

e3(t) = y3(t) − x3(t).

(4.3)
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Figure 7: Synchronization of systems (4.1) and (4.2) for a = 1. The solutions x3(t), y3(t) and the evolution
of error e3(t).

By subtracting (4.2) from (4.1) and using notation (4.3) we can get

ė1 = e1e2 + (x2 + a)e1 + x1e2 − 2ae3 + u1,

ė2 = −e1e2 + e2e3 + (a − x2)e1 + (x3 − x1)e2 + (a + x2)e3 + u2,

ė3 = −e2e3 − 2ae1 − x3e2 + (a − x2)e3 + u3.

(4.4)

We define the active control inputs u1(t), u2(t), and u3(t) as follows:

⎛

⎝

u1(t)
u2(t)
u3(t)

⎞

⎠ = K ·

⎛

⎝

e1(t)
e2(t)
e3(t)

⎞

⎠ +

⎛

⎝

−e1(t)e2(t)
e1(t)e2(t) − e2(t)e3(t)

e2(t)e3(t)

⎞

⎠, (4.5)

where

K =

⎛

⎝

k11 k12 k13

k21 k22 k23

k31 k32 k33

⎞

⎠ (4.6)

and kij , i, j = 1, 3 are real functions which depend on x1(t), x2(t), and x3(t). Then the
differential system of errors (4.7) is given by

ė1 = e1e2 + (x2 + a + k11)e1 + (x1 + k12)e2 + (k13 − 2a)e3,

ė2 = −e1e2 + e2e3 + (a − x2 + k21)e1 + (x3 − x1 + k22)e2 + (a + x2 + k23)e3,

ė3 = −e2e3 + (k31 − 2a)e1 + (k23 − x3)e2 + (a − x2 + k33)e3.

(4.7)

If we choose

K =

⎛

⎝

−a − x2 − x2
2 0 0

x2 − a x1 − x3 − x2
1 0

2a x3 x2 − a − x2
3

⎞

⎠, (4.8)
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then the active controls defined by (4.5) become

u1 = −e1e2 −
(

a + x2 + x2
2

)

e1,

u2 = e1e2 − e2e3 + (x2 − a)e1 +
(

x1 − x3 − x2
1

)

e2,

u3 = e2e3 + 2ae1 + x3e2 +
(

−a + x2 − x2
3

)

e3.

(4.9)

Using (4.8), the system of errors (4.7) becomes

ė1 = −x2
2e1 + x1e2 − 2ae3,

ė2 = −x2
1e2 + (a + x2)e3,

ė3 = −x2
3e3.

(4.10)

Proposition 4.1. The equilibrium state (0, 0, 0) of the differential system (4.10) is asymptotically
stable.

Proof. An easy computation shows that the all conditions of Lyapunov-Malkin theorem [17]
are satisfied, and so we have that the equilibrium state (0, 0, 0) is asymptotically stable.

Numerical simulations are carried out using the software MATHEMA-TICA 6. We
consider the case a = 1. The fourth-order Runge-Kutta integrator is used to solve systems
(4.1), (4.2), and (4.10) with the control functions u1(t), u2(t), u3(t) given by (4.9).

The initial values of the drive system (4.1) and response system (4.2) are x1(0) = 1,
x2(0) = 2, x3(0) = 1 and y1(0) = 1, y2(0) = 2, y3(0) = 3. These choices result in initial errors of
e1(0) = 0.001, e2(0) = 0.01, and e3(0) = 0.002.

The dynamics of the metriplectic Volterra system (4.1) to be synchronized with the
dynamic of (4.2) accompanied with the control functions given by (4.9) and the dynamics of
synchronization errors given by (4.10) are shown in Figures 5, 6, and 7.

According to numerical simulations, by a good choice of parameters the synchroniza-
tion error states e1(t), e2(t), e3(t) converge to zero, and hence the synchronization between
two coupled metriplectic Volterra systems is achieved.

Remark 4.2. Taking a = 0 in (4.1), (4.2), (4.8), and (4.9), we obtain the synchronization
between two coupled Volterra models of the form of (2.4).

5. Conclusion

It is well known that many nonlinear differential systems like the Euler equations of fluid
dynamics, the soliton equations can be written in the Hamiltonian form. An interesting
example of nonlinear lattice equations is Volterra lattice (see [18]) which is a model for
vibrations of the particles on lattices. Also the behavior of viscoelastic materials is an example
where the dynamics is governed by Volterra equations. The metriplectic systems will be
successfully used in mathematical physics, fluid mechanics, and information security; see
for instance [4, 5, 10, 12].
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In this paper we have build a metriplectic system on R3 associated to Volterra model.
For the metriplectic Volterra system (2.8), we have presented some relevant geometrical and
dynamics properties and the numerical integration. Finally, using the Pecora and Carroll
method, the synchronization problem for two coupled metriplectic Volterra systems of the
form of (2.8) is discussed. This technique is realized since a suitable control has been chosen
to achieve synchronization.
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[7] G. Ivan and D. Opriş, “Dynamical systems on Leibniz algebroids,” Differential Geometry—Dynamical
Systems, vol. 8, pp. 127–137, 2006.

[8] J.-P. Ortega and V. Planas-Bielsa, “Dynamics on Leibniz manifolds,” Journal of Geometry and Physics,
vol. 52, no. 1, pp. 1–27, 2004.

[9] H. N. Agiza and M. T. Yassen, “Synchronization of Rössler and Chen chaotic dynamical systems using
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