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We study higher-order boundary value problems (HOBVP) for higher-order nonlinear differential
equation. We make comparison among differential transformation method (DTM), Adomian
decomposition method (ADM), and exact solutions. We provide several examples in order to
compare our results. We extend and prove a theorem for nonlinear differential equations by
using the DTM. The numerical examples show that the DTM is a good method compared to the
ADM since it is effective, uses less time in computation, easy to implement and achieve high
accuracy. In addition, DTM has many advantages compared to ADM since the calculation of
Adomian polynomial is tedious. From the numerical results, DTM is suitable to apply for nonlinear
problems.

1. Introduction

Recently, many researchers use ADM to approximate numerical solutions. In [1], Wazwaz
proposed a modification of ADM method in series solution to accelerate its rapid conver-
gence, and, in [2], Wazwaz also presented several numerical examples of higher-order bound-
ary value problems for first-order linear equation and second-order nonlinear equation by
applying modified decomposition method.

In addition, Wazwaz [3, 4] provided first-order linear and second-order nonlinear
problems to solve fifth-order and sixth-order boundary value problems by the modified
decomposition method. Later, Meštrović [5] solved eight-order boundary value problems
for first-order linear and second-order nonlinear boundary value problems. Similarly, in [6],
Hosseini and Jafari used Adomian decomposition method to solve high-order and system of
nonlinear differential equations.
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The Adomian decomposition method is widely used in applied science to compute the
series solution accurately because it provides rapid convergent series to solve the problem.
The big application of ADM in research area is stochastic and deterministic problems
involving differential, integrodifferential, integral, differential delay, and systems of such
equations; for example, see [3, 7]. For example, we use the same method for solving several
different problems, such as, in calculus of variations, see [8], for eikonal partial differential
equation, see [9], for the Fitzhugh-Nagumo equation which models the transmission of nerve
impulses, see [10], for linear and nonlinear systems of Volterra functional equations using
Adomian-Pade technique, see [11], for coupled Burgers equations by using Adomian-Pade
technique see [12], for solution of a nonlinear time-delay model in biology by using semi-
analytical approaches, see [13], for solving the pantograph equation of orderm, see [14], and
for nonclassic problem for one-dimensional hyperbolic equation by using the decomposition
procedure, see [15].

Further, Ray and Bera in [16] used ADM to solve analytical solution of a fractional
diffusion equation. They performed the explicit solution of the equation in the closed form
by using initial value problem.

In [17], Ayaz investigated initial value problem of partial differential equation (PDE)
to solve two-dimensional differential transformation method, and we compare the results
with Adomian decomposition method. The results show that the solutions of the present
method are exactly the same as the decomposition method, but the calculation of DTM is
simple and reduces the difficulty of calculations.

Ayaz in [18] performed two- and three-dimensional differential transformation
methods to find exact solutions of linear and nonlinear partial differential equations. Results
are compared to decomposition method, and DTM has less computational effort. After that,
Ertürk and Momani in [19] presented numerical solution by comparing the differential
transformation method (DTM) and Adomian decomposition method (ADM) for solving
linear and nonlinear fourth-order boundary value problems and proved that DTM is very
accurate and efficient in numerical solution.

Recently, Arikoglu and Ozkol solved fractional differential equations by using
differential transformmethod. They applied fractional differential equations to various types
of problems such as the Bagley-Torvik, Ricatti, and composite fractional oscillation equations;
see [20].

In this study, we make comparison among differential transformation method,
Adomian decomposition method and exact solutions. We prove that DTM is more powerful
technique than ADM and can be applied to nonlinear problems easily.

2. Differential Transformation Method

Suppose that the function y(x) is continuously differentiable in the interval (x0 − r, x0 + r) for
r > 0, then we have the following definition.

Definition 2.1. The differential transform of the function y(x) for the kth derivative is defined
as follows:

Y(k) =
1
k!

[
dky(x)
dxk

]
x=x0

, (2.1)
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where y(x) is the original function and Y(k) is the transformed function. The inverse
differential transform of Y(k) is defined as

y(x) =
∞∑
k=0

(x − x0)kY(k). (2.2)

Note that, the substitution of (2.1) into (2.2) yields the following equation:

y(x) =
∞∑
k=0

(x − x0)k
1
k!

[
dky(x)
dxk

]
x=x0

(2.3)

which is the Taylor’s series for y(x) at x = x0.

The following theorems are operations of differential transforms.

Theorem 2.2. If t(x) = r(x) ± p(x), then T(k) = R(k) ± P(k).

Theorem 2.3. If t(x) = αr(x), then T(k) = αR(k).

Theorem 2.4. If t(x) = dr(x)/dx, then T(k) = (k + 1)R(k + 1).

Theorem 2.5. If t(x) = d2r(x)/dx2, then T(k) = (k + 1)(k + 2)R(k + 2).

Theorem 2.6. If t(x) = (dbr(x))/dxb , then T(k) = (k + 1)(k + 2) · · · (k + b)R(k + b).

Theorem 2.7. If t(x) = r(x)p(x), then T(k) =
∑k

l=0 P(l)R(k − l).

Theorem 2.8. If t(x) = xb, then T(k) = δ(k − b), where

δ(k − b) =

⎧⎨
⎩
1, if k = b,

0, if k /= b.
(2.4)

Theorem 2.9. If t(x) = exp(λx), then T(k) = λk/k!.

Theorem 2.10. If t(x) = (1 + x)b, then T(k) = b(b − 1) · · · (b − k + 1)/k!.

Theorem 2.11. If t(x) = sin(jx + α), then T(k) = (jk/k!) sin((πk/2) + α).

Theorem 2.12. If t(x) = cos(jx + α), then T(k) = (jk/k!) cos((πk/2) + α).

See the details in [21].
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3. General Differential Transformation

Now we prove the following generalized theorem.

Theorem 3.1. The general differential transformation for nonlinear nth-order BVPs, y(n)(x) =
e−xym(x), is given by

Y(n + k) =
k!

(n + k)!

[
k∑

km=0

km∑
km−1=0

· · ·
k2∑

k1=0

(
(−1)k1
k1!

)([
m∏
i=2

Y(ki − ki−1)

]
Y(k − km)

)]
. (3.1)

Proof. We prove this theorem by induction method. First of all, we prove the generalization
of the differential equation e−xym(x). Letm = 2, then

y(n)(x) = e−xym(x). (3.2)

For k ≥ 1, we have

y(n+k)(x) =
k∑

k2=0

k2∑
k1=0

k!(−1)k1e−x
k1!(k2 − k1)!(k − k2)!

y(k2−k1)(x)y(k−k2)(x),

y(n+k)(x)|x=0 =
k∑

k2=0

k2∑
k1=0

k!(−1)k1
k1!(k2 − k1)!(k − k2)!

y(k2−k1)(x)y(k−k2)(x).

(3.3)

By definition, we have

(n + k)!Y(n + k) =
k∑

k2=0

k2∑
k1=0

k!(−1)k1
k1!(k2 − k1)!(k − k2)!

(k2 − k1)!Y(k2 − k1)(k − k2)!Y(k − k2),

(n + k)!Y(n + k) =
k∑

k2=0

k2∑
k1=0

k!(−1)k1
k1!

Y(k2 − k1)Y(k − k2),

Y(n + k) =
k!

(n + k)!

k∑
k2=0

k2∑
k1=0

(−1)k1
k1!

Y(k2 − k1)Y(k − k2).

(3.4)

From (3.1), for m = 2, we have

Y(n + k) =
k!

(n + k)!

k∑
k2=0

k2∑
k1=0

(−1)k1
k1!

Y(k2 − k1)Y(k − k2). (3.5)
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This implies that the theorem holds for m = 2. Now assume that for m = p, the DT is as
follows:

Y(n + k) =
k!

(n + k)!

⎡
⎣ k∑

kp=0

kp∑
kp−1=0

· · ·
k2∑

k1=0

(
(−1)k1
k1!

)([
p∏
i=2

Y(ki − ki−1)

]
Y
(
k − kp

))⎤⎦,

Y(n + k) =
k!

(n + k)!

×
⎡
⎣ k∑

kp=0

kp∑
kp−1=0

· · ·
k2∑

k1=0

(
(−1)k1
k1!

)(
Y(k2 − k1)Y(k3 − k2) · · ·

(
kp − kp−1

)
Y
(
k − kp

))⎤⎦.
(3.6)

Note that m = p we have

y(n)(x) = e−xyp(x). (3.7)

For k ≥ 1, we have

y(n+k)(x)|x=0 =
k∑

kp=0

kp∑
kp−1=0

· · ·
k2∑

k1=0

k!(−1)k1y(k2−k1)(x)y(k3−k2)(x) · · ·y(kp−kp−1)(x)y(k−kp)(x)
k1!(k2 − k1)!(k3 − k2)! · · ·

(
kp − kp−1

)
!
(
k − kp

)
!

.

(3.8)

Thus, for m = p + 1, we have

y(n)(x) = e−xyp(x)y(x). (3.9)

For k ≥ 1, we have

y(n+k)(x)|x=0 =
k∑

kp+1=0

kp+1∑
kp=0

· · ·
k2∑

k1=0

k!(−1)k1y(k2−k1)(x)y(k3−k2)(x) · · ·y(kp+1−kp)(x)y(k−kp+1)(x)
k1!(k2 − k1)!(k3 − k2)! · · ·

(
kp+1 − k

)
!
(
k − kp+1

)
!

.

(3.10)

By definition, we have

(n + k)!Y(n + k) =
k∑

kp+1=0

· · ·
k2∑

k1=0

k!(−1)k1(k2 − k1)!Y(k2 − k1) · · ·
(
k − kp+1

)
!Y
(
k − kp+1

)
k1!(k2 − k1)! · · ·

(
k − kp+1

)
!

,

Y(n + k) =
k!

(n + k)!

k∑
kp+1=0

kp+1∑
kp=0

· · ·
k2∑

k1=0

(−1)k1
k1

Y(k2 − k1)Y(k3 − k2) · · ·
(
kp+1 − kp

)
Y
(
k − kp+1

)
.

(3.11)
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From (3.1), for m = p + 1, we have

Y(n + k) =
k!

(n + k)!

⎡
⎣ k∑

kp+1=0

kp+1∑
kp=0

· · ·
k2∑

k1=0

(
(−1)k1
k1!

)([
p+1∏
i=2

Y(ki − ki−1)

]
Y
(
k − kp+1

))⎤⎦,

Y(n + k) =
k!

(n + k)!

k∑
kp+1=0

kp+1∑
kp=0

· · ·
k2∑

k1=0

(−1)k1
k1

Y(k2 − k1)Y(k3 − k2) · · ·
(
kp+1 − kp

)
Y
(
k − kp+1

)
.

(3.12)

This implies that the theorem holds for m = p + 1. Now, we prove the generalization of the
BVPs,

y(n)(x) = e−xym(x). (3.13)

For that purpose, we fixed m = 2.
For n = 1 and k ≥ 1, we have

y(1+k)(x)|x=0 =
k∑

k2=0

k2∑
k1=0

k!(−1)k1
k1!(k2 − k1)!(k − k2)!

y(k2−k1)(x)y(k−k2)(x). (3.14)

By definition, we have

(n + k)!Y(n + k) =
k∑

k2=0

k2∑
k1=0

k!(−1)k1
k1!(k2 − k1)!(k − k2)!

(k2 − k1)!Y(k2 − k1)(k − k2)!Y(k − k2),

Y(1 + k) =
k!

(1 + k)!

k∑
k2=0

k2∑
k1=0

(−1)k1
k1!

Y(k2 − k1)Y(k − k2).

(3.15)

From (3.1), for n = 1, we have

Y(1 + k) =
k!

(1 + k)!

[
k∑

k2=0

k2∑
k1=0

(
(−1)k1
k1!

)([
2∏
i=2

Y(ki−1 − ki−2)

]
Y(k − k2)

)]
,

Y(1 + k) =
k!

(1 + k)!

k∑
k2=0

k2∑
k1=0

(−1)k1
k1!

Y(k2 − k1)Y(k − k2).

(3.16)

Now that is the required result; thus, the theorem holds for n = 1.
Now assume that for n = q, the DT is as follows:

Y
(
q + k

)
=

k!(
q + k

)
!

k∑
k2=0

k2∑
k1=0

(−1)k1
k1!

Y(k2 − k1)Y(k − k2). (3.17)
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For k ≥ 1, we have

y(q+k)(x)|x=0 =
k∑

k2=0

k2∑
k1=0

k!(−1)k1
k1!(k2 − k1)!(k − k2)!

y(k2−k1)(x)y(k−k2)(x). (3.18)

Thus, for n = q + 1, we have

y(q+1)(x) =
(
y(x)

)2
e(−x). (3.19)

For k ≥ 1, we have

y(q+1+k)(x)|x=0 =
k∑

k2=0

k2∑
k1=0

k!(−1)k1
k1!(k2 − k1)!(k − k2)!

y(k2−k1)(x)y(k−k2)(x),

(
q + 1 + k

)
!Y
(
q + 1 + k

)
=

k∑
k2=0

k2∑
k1=0

k!(−1)k1
k1!(k2 − k1)!(k − k2)!

y(k2−k1)(x)y(k−k2)(x),

Y
(
q + 1 + k

)
=

k!(
q + 1 + k

)
!

k∑
k2=0

k2∑
k1=0

(−1)k1
k1!

Y(k2 − k1)Y(k − k2).

(3.20)

From (3.1), for n = q + 1, we have

Y
(
q + 1 + k

)
=

k!(
q + 1 + k

)
!

[
k∑

k2=0

k2∑
k1=0

(
(−1)k1
k1!

)([
2∏
i=2

Y(ki−1 − ki−2)

]
Y(k − k2)

)]
,

Y
(
q + 1 + k

)
=

k!(
q + 1 + k

)
!

k∑
k2=0

k2∑
k1=0

(−1)k1
k1!

Y(k2 − k1)Y(k − k2).

(3.21)

Note that the theorem holds for n = q + 1.

Example 3.2. By using DTM, we solve the following nonlinear equation of order three for
fifth-order BVP:

y(5)(x) = e−x
(
y(x)

)3
, 0 < x < 1 (3.22)

subject to the boundary conditions

y(0) = 1, y′(0) =
1
2
, y′′(0) =

1
4
, y(1) = e 1/2, y′(1) =

(
1
2

)
e1/2. (3.23)
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By using Theorem 3.1, (3.22) is transformed to the following equation:

Y(r + 5) =
r!

(r + 5)!

r∑
l

l∑
s

s∑
p

(−1)p
p!

Y
(
s − p

)
Y(l − s)Y(r − l). (3.24)

By using (2.1) at x = 0, we obtain the following transformed boundary conditions:

Y(0) = 0, Y(1) =
1
2
, Y(2) =

1
8
, (3.25)

where t = y′′′(0)/3! = Y(3) andw = y(4)(0)/4! = Y(4).
By using the transformed equation (3.24) together with the transformed boundary

conditions (3.25), we can easily solve Y(r), for r ≥ 5. The constants t and w can be evaluated
by using boundary conditions (3.23) at x = 1:

21∑
r=0

Y(r) = e1/2,

21∑
r=0

rY(r) =
(
1
2

)
e1/2.

(3.26)

These equations give t = 0.03041272159 andw = −0.01577358145.
Finally, the following series solution can be formed by applying the inverse

transformation in (2.2) up to N = 14:

y(x) = 1.0 + 0.5x + 0.125x2 + 0.304127215× 10−1x3

− 0.1577358145× 10−1x4 + 0.833333333× 10−2x5

+ 0.694444444× 10−3x6 + 0.4960317460× 10−4x7

+ 0.737671102× 10−5x8 − 0.3474145349× 10−5x9

+ 8.094962522× 10−7x10 + 4.176090542× 10−8x11

− 1.102928451× 10−8x12 + 1.334963335× 10−8x13

− 7.232116854× 10−9x14.

(3.27)

Example 3.3. Next, we solve the following fourth-order nonlinear for fifth-order BVP by using
DTM:

y(5)(x) = ex
(
y(x)

)4
, 0 < x < 1 (3.28)



Mathematical Problems in Engineering 9

subject to the boundary conditions

y(0) = 1, y′(0) = −1
3
, y′′(0) =

1
9
, y(1) = e−1/3, y′(1) =

(
−1
3

)
e−1/3. (3.29)

By using Theorem 3.1, (3.28) is transformed to the following equation:

Y(r + 5) =
r!

(r + 5)!

r∑
l

l∑
s

s∑
p

p∑
j

(1)j

j!
Y
(
p − j

)
Y
(
s − p

)
Y(l − s)Y(r − l). (3.30)

By using (2.1) at x = 0, we obtain the following transformed boundary conditions:

Y(0) = 1, Y(1) =
−1
3
, Y(2) =

1
18

, (3.31)

where t = y′′′(0)/3! = Y(3) andw = y(4)(0)/4! = Y(4).
By using the transformed equation (3.30) together with the transformed boundary

conditions (3.31), we can easily solve Y(r), for r ≥ 5. The constants t and w can be evaluated
by using boundary conditions (3.29) at x = 1:

20∑
k=0

Y(r) = e−1/3,

20∑
k=0

rY(r) =
(
−1
3

)
e−1/3.

(3.32)

These equations give t = 0.001331809417 andw = −0.01491571112.
Finally, the following series solution can be formed by applying the inverse transfor-

mation in (2.2) up toN = 20:

y(x) = 1.0 − 0.3333333333x+ 0.05555555556x2 + 0.001331809417x3

− 0.1491571112× 10−1x4 + 0.008333333333x5 − 0.462962963× 10−3x6

+ 0.220458553× 10−4x7 + 0.354847562× 10−5x8

− 0.404801946× 10−5x9 + 0.110569490× 10−5x10

− 2.741069465× 10−8x11 − 1.250500836× 10−8x12

− 1.134323528× 10−8x13 − 3.968854379× 10−9x14

+ 2.378413332× 10−10x15 + 1.215436605× 10−10x16

− 2.331970237× 10−11x17 + 1.269686222× 10−11x18.

(3.33)
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Example 3.4. We perform the following third order of nonlinear equation for sixth-order BVP
by using DTM:

y(6)(x) = ex
(
y(x)

)3
, 0 < x < 1 (3.34)

subject to the boundary conditions

y(0) = 1, y′(0) = −1
2
, y′′(0) =

1
4
, y(1) = e−1/2,

y′(1) =
(
−1
2

)
e−1/2, y′′(1) =

(
1
4

)
e−1/2.

(3.35)

By using Theorem 3.1, (3.34) is transformed to the following equation:

Y(r + 6) =
r!

(r + 6)!

r∑
l

l∑
s

s∑
p

(−1)p
p!

Y
(
s − p

)
Y(l − s)Y(r − l). (3.36)

By using (2.1) at x = 0, we obtain the following transformed boundary conditions:

Y(0) = 1, Y(1) = −1
2
, Y(2) =

1
8
, (3.37)

where t = y′′′(0)/3! = Y(3), w = y(4)(0)/4! = Y(4), and z = y(5)(0)/5! = Y(5).
By using the transformed equation (3.36) together with the transformed boundary

conditions (3.37), we can easily solve Y(r), for r ≥ 6. The constants t and w can be evaluated
by using boundary conditions (3.35) at x = 1:

20∑
r=0

Y(r) = e−1/2,

20∑
r=0

rY(r) =
(
−1
2

)
e−1/2,

20∑
k=0

r(r − 1)Y(r) =
(
1
4

)
e−1/2.

(3.38)

These equations give t = −0.02083333265,w = 0.2604165679E−2, and z = −0.2604149398E−3.
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Consequently, the following series solution can be formed by applying the inverse
transformation equation in (2.2) up toN = 20:

y(x) = 1.0 − 0.5x + 0.125x2 − 0.2194097232× 10−1x3

+ 0.600832059× 10−2x4 − 0.003832229731x5 + 0.001388888889x6

− 0.00009920634921x7 + 0.6200396825× 10−5x8

− 3.994089004× 10−7x9 + 8.476606127× 10−8x10

− 3.299619968× 10−8x11 + 6.203319625× 10−9x12

− 2.551978071× 10−10x13 + 3.05519710× 10−11x14

− 1.574229877× 10−11x15 + 5.71359200× 10−12x16

− 8.01789691× 10−13x17 − 7.09484742× 10−14x18.

(3.39)

4. Adomian Decomposition Method

Consider the differential equation

Lu + Ru +Nu = g, (4.1)

where L is invertible and is the highest-order derivative, R is a linear differential operator,
where the order of L must be greater than R, N is a nonlinear operator, and g is the source
term. By using the given conditions and applying the inverse operator L−1 to both sides of
(4.1), we get the following equation:

u = f − L−1(Ru) − L−1(Nu), (4.2)

where the function f is arising from integrating the source term g and from applying the
given conditions which are prescribed.

The series solution of u(x) by the standard Adomian method is given as follows:

u(x) =
∞∑
n=0

un(x). (4.3)

On the other hand, the nonlinear function u(x) by an infinite series of polynomial is given as
follows:

u(x) =
∞∑
n=0

An. (4.4)
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The components un are determined by using the following relation:

u0 = f, (4.5)

uk+1 = −L−1(Ruk) − L−1(Nuk) (4.6)

for k ≥ 0.
From the above equations, we observe that the component u0 is identified by the

function f . We can apply modification by assuming that the function f is divisible into two
parts, f0 and f1. Let the function be as follows:

f = f0 + f1. (4.7)

Under this assumption, we have a slight variation for components u0 and u1, where f0
assigned to u0 and f1 is combined with the other terms in (4.5) to assign u1. The modified
recursive algorithm is as follows:

u0 = f0,

u1 = f1 − L−1(Ru0) − L−1(Nu0),

uk+2 = −L−1(Ruk+1) − L−1(Nuk+1),

(4.8)

for k ≥ 0. There are several rules that are needed to follow for Adomian polynomials of
nonlinear operator F(u):

A0 = F(u0),

A1 = u1(x)F ′(u0),

A2 = u2F
′(u0) +

u2
1

2!
F ′′′(u0),

A3 = u3F
′(u0) + u1u2F

′′′(u0) +
u3
1

3!
F ′′′(u0),

(4.9)

and so on; see [3].
For comparison purpose, we solve the boundary value problems in Examples 3.2, 3.3,

and 3.4 by using the Adomian decomposition method.

Example 4.1. By using ADM, we solve the following nonlinear equation of order three for
fifth-order BVP:

u(5)(x) = e−x(u(x))3, 0 < x < 1 (4.10)
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subject to the boundary conditions

u(0) = 1, u′(0) =
1
2
, u′′(0) =

1
4
, u(1) = e1/2, u′(1) =

(
1
2

)
e1/2. (4.11)

Equation (4.10) can be rewritten in operator form as follows:

Lu = e−x(u(x))3, 0 < x < 1. (4.12)

Operating with fivefold integral operator L−1 on (4.12) and using the boundary conditions at
x = 0, we obtain the following equation:

u(x) = 1 +
1
2
x +

1
8
x2 +

1
6
Ax3 +

1
24

Bx4 + L−1
(
e−xu3(x)

)
. (4.13)

Then, determine the constants u′′′(0) = A, u(4)(0) = B. Substituting the decomposition series
(4.3) for u(x) and the series of polynomials (4.4) into (4.13) yields

∞∑
n=0

un(x) = 1 +
1
2
x +

1
8
x2 +

1
6
Ax3 +

1
24

Bx4 + L−1
(
e−x

∞∑
n=0

An

)
. (4.14)

Then, we split the terms into two parts which are assigned to u0(x) and u1(x) that are not
included under L−1 in (4.14). We can obtain the following recursive relation:

u0(x) = 1,

u1(x) =
1
2
x +

1
8
x2 +

1
6
Ax3 +

1
24

Bx4 + L−1(A0),

uk+1(x) = L−1(Ak), k ≥ 1.

(4.15)

To determine the constantsA and B, we use the boundary conditions in (4.11) at x = 1 on the
four-term approximant φ4, where

φ4 =
k=3∑
k=0

yk. (4.16)

Then, solving the above equation yields

A = 0.376764, B = −2.154638929. (4.17)
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Then we get the series solution as follows:

y(x) = 1.0 + 0.5x + 0.125x2 + 0.6279 × 10−1x3 − 0.8977662204× 10−1x4

+ 0.583333333× 10−1x5 − 0.6944444444× 10−2x6

− 0.0005456349206x7 − 0.0001800740079x8 + 0.673748941× 10−4x9

− 0.3295218362× 10−4x10 + 0.741814372× 10−5x11

− 0.00000119022282x12 − 7.604880242× 10−8x13

− 1.306718703× 10−10x14.

(4.18)

Example 4.2. Now, we solve the following fourth-order nonlinear for fifth-order boundary
value problems by using ADM:

u(5)(x) = ex(u(x))4, 0 < x < 1 (4.19)

subject to the boundary conditions

u(0) = 1, u′(0) = −1
3
, u′′(0) =

1
9
, u(1) = e−1/3, u′(1) =

(
−1
3

)
e−1/3.

(4.20)

Equation (4.19) can be rewritten in operator form as follows:

Lu = ex(u(x))4, 0 < x < 1. (4.21)

Operating with fivefold integral operator L−1 on (4.21) and using the boundary conditions at
x = 0, we obtain the following equation:

u(x) = 1 − 1
3
x +

1
18

x2 +
1
6
Ax3 +

1
24

Bx4 + L−1
(
e−xu4(x)

)
. (4.22)

Then, determine the constants u′′′(0) = A, u(4)(0) = B. Substituting the decomposition series
(4.3) for u(x) and the series of polynomials (4.4) into (4.22) yields

∞∑
n=0

un(x) = 1 − 1
3
x +

1
18

x2 +
1
6
Ax3 +

1
24

Bx4 + L−1
(
e−x

∞∑
n=0

An

)
. (4.23)



Mathematical Problems in Engineering 15

Then, we split the terms into two parts which are assigned to u0(x) and u1(x) that are not
included under L−1 in (4.23). We can obtain the following recursive relation:

u0(x) = 1,

u1(x) = −1
3
x +

1
18

x2 +
1
6
Ax3 +

1
24

Bx4 + L−1(A0),

uk+1(x) = L−1(Ak), k ≥ 1.

(4.24)

To determine the constantsA and B, we use the boundary conditions in (4.20) at x = 1 on the
four-term approximant φ4, where

φ5 =
k=4∑
k=0

yk. (4.25)

Then, solving the above equation yields

A = −1.178489258, B = −0.1205488584. (4.26)

Finally, we get the series solution as follows:

y(x) = 1 − 0.3333333333x+ 0.05555555556x2 − 0.4453076220x3

− 0.4040993754× 10−1x4 + 0.84845560x5 − 0.298115585x6

− 0.680956807× 10−1x7 − 0.2456515229× 10−2x8

+ 0.6206348264× 10−3x9 − 0.1181956121× 10−3x10

− 0.0001615659149x11 − 0.7466165099× 10−4x12

− 0.2012942457× 10−4x13 − 0.6094555007× 10−5x14

− 0.1080643342× 10−5x15 − 8.736244687× 10−8x16

− 1.417232124× 10−9x17 + 2.178184252× 10−11x18.

(4.27)

Example 4.3. Finally, we perform third order of nonlinear function for sixth-order BVP for
ADM as follows:

u(6)(x) = ex(u(x))3, 0 < x < 1 (4.28)
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subject to the boundary conditions

u(0) = 1, u′(0) = −1
2
, u′′(0) =

1
4
, u(1) = e−1/2,

u′(1) =
(
−1
2

)
e−1/2, u′′(1) =

(
1
4

)
e−1/2.

(4.29)

Equation (4.28) can be rewritten in operator form as follows:

Lu = e−x(u(x))3, 0 < x < 1. (4.30)

Operating with sixfold integral operator L−1 on (4.30) and using the boundary conditions at
x = 0, we obtain the following equation:

u(x) = 1 − 1
2
x +

1
8
x2 +

1
6
Ax3 +

1
24

Bx4 +
1

120
Cx5 + L−1

(
e−xu4(x)

)
. (4.31)

Then, determine the constants u′′′(0) = A, u(4)(0) = B, and u(5)(0) = C. Substituting the
decomposition series (4.3) for u(x) and the series of polynomials (4.4) into (4.31) yields

∞∑
n=0

un(x) = 1 − 1
2
x +

1
8
x2 +

1
6
Ax3 +

1
24

Bx4 +
1

120
Cx5 + L−1

(
e−x

∞∑
n=0

An

)
. (4.32)

Then similarly, we split the terms into two parts which are assigned to u0(x) and u1(x) that
are not included under L−1 in (4.32). We can obtain the following recursive relation:

u0(x) = 1,

u1(x) = −1
2
x +

1
8
x2 +

1
6
Ax3 +

1
24

Bx4 +
1
120

Cx5 + L−1(A0),

uk+1(x) = L−1(Ak), k ≥ 1.

(4.33)

To determine the constants A, B, and C, we use the boundary conditions in (4.29) at x = 1 on
the four-term approximant φ4, where

φ4 =
k=3∑
k=0

yk. (4.34)

Then, solving the above equation yields

A = −14.69918030, B = 102.1542319, C = −219.2146156. (4.35)
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Table 1: Numerical result for Example 3.2 and Example 4.1.

x Exact solution DTM (N = 14) ADM (N = 14)
0.0 1 1 1
0.1 1.051271096 1.051278920 1.051304392
0.2 1.105170918 1.105220776 1.105376925
0.3 1.161834243 1.161964144 1.162354804
0.4 1.221402759 1.221630872 1.222288426
0.5 1.284025416 1.284337420 1.285197759
0.6 1.284025416 1.284337420 1.351122659
0.7 1.284025416 1.284337420 1.420166655
0.8 1.284025416 1.284337420 1.492533672
0.9 1.284025416 1.284337420 1.568557204
1.0 1.284025416 1.284337420 1.648721285

Table 2: Numerical result for Example 3.3 and Example 4.2.

x Exact solution DTM (N = 18) ADM (N = 18)
0.0 1 1 1
0.1 0.9672161006 0.9672221453 0.9667810534
0.2 0.9355069849 0.9672221453 0.9321799874
0.3 0.9048374181 0.9049350590 0.8944787522
0.4 0.8751733191 0.8753424236 0.8533754418
0.5 0.8464817250 0.8467098288 0.8103487343
0.6 0.8187307532 0.8189816371 0.7687007110
0.7 0.7918895662 0.7921124409 0.7332405365
0.8 0.7659283385 0.7660753950 0.7095695543
0.9 0.7408182206 0.7408702826 0.7029247972
1.0 0.7165313107 0.7165313107 0.7165313263

Finally, we get the series solution as follows:

y(x) = 1 − 0.5x + 0.125x2 − 2.449863383x3 + 4.256426329x4

− 1.826788463x5 + 0.138888888× 10−2x6 + 0.1984126984× 10−3x7

+ 0.0000248015873x8 + 0.2292633427× 10−3x9 − 0.343791062× 10−4x10

− 0.680212248× 10−4x11 + 0.406878271× 10−4x12

− 0.00005031070540x13 + 0.00003795993196x14 − 0.128793671× 10−4x15

+ 0.000001752215748x16 − 5.518698119× 10−12x17.

(4.36)

5. Results

We provide the results of the given examples in Tables 1, 2, and 3.
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Table 3: Numerical result for Example 3.4 and Example 4.3.

x Exact solution DTM (N = 18) ADM (N = 18)
0.0 1 1 1
0.1 0.9512294245 0.9492075127 0.9492075127
0.2 0.9048374181 0.8916268943 0.8916268943
0.3 0.8607079765 0.8251427077 0.8251427077
0.4 0.8187307532 0.7534730280 0.7534730280
0.5 0.7788007831 0.6839803183 0.6839803183
0.6 0.7408182206 0.6254839642 0.6254839642
0.7 0.7046880897 0.7046783358 0.5860748693
0.8 0.6703200461 0.6703157625 0.5709325210
0.9 0.6376281517 0.6376273947 0.5801448253
1.0 0.6065306598 0.6065306599 0.6065306590

6. Conclusion

From the results, the proposed method, as well as the Differential Transformation Method, is
more accurate than the Adomian Decomposition Method. The errors between the solutions
of Differential Transformation Method and the exact solutions are smaller compared to the
errors between the solutions of Adomian Decomposition Method and the exact solutions. In
addition, Differential Transformation Method also shows less computational effort because
it needs less time in calculation. Besides that, it is hard to calculate Adomian polynomials.
From the results we obtained, it can reinforce conclusion made by many researchers
that Differential Transformation Method is more efficient and accurate than Adomian
Decomposition Method. Therefore, we can conclude that Differential TransformationMethod
is applicable for such problems in the bounded domains. The computations in all examples
were performed by using Maple 13.
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