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By using the fixed point theorem, positive solutions of nonlinear eigenvalue problems for a
nonlocal fractional differential equation Dα

0+u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1, u(0) = 0, u(1) =
Σ∞
i=1αiu(ξi) are considered, where 1 < α ≤ 2 is a real number, λ is a positive parameter, Dα

0+ is the
standard Riemann-Liouville differentiation, and ξi ∈ (0, 1), αi ∈ [0,∞) with Σ∞

i=1αiξ
α−1
i < 1,

a(t) ∈ C([0, 1], [0,∞)), f(t, u) ∈ C([0,∞), [0,∞)).

1. Introduction

Fractional differential equations have been of great interest recently. This is caused both by the
intensive development of the theory of fractional calculus itself and by the applications of
such constructions in various sciences such as physics, mechanics, chemistry, and engineer-
ing. For details, see [1–6] and references therein.

Recently, many results were obtained dealing with the existence and multiplicity of
solutions of nonlinear fractional differential equations by the use of techniques of nonlinear
analysis, see [7–21] and the reference therein. Bai and Lü [7] studied the existence of positive
solutions of nonlinear fractional differential equation

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u(1) = 0,
(1.1)

where 1 < α ≤ 2 is a real number, Dα
0+ is the standard Riemann-Liouville differentiation, and

f : [0, 1]×[0,∞) → [0,∞) is continuous. They derived the corresponding Green function and
obtained some properties as follows.
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Proposition 1.1. Green’s function G(t, s) satisfies the following conditions:

(R1) G(t, s) ∈ C([0, 1] × [0, 1]), and G(t, s) > 0 for t, s ∈ (0, 1);

(R2) there exists a positive function γ ∈ C(0, 1) such that

min
1/4≤t≤3/4

G(t, s) ≥ γ(s)max
0≤t≤1

G(t, s) ≥ γ(s)G(s, s), s ∈ (0, 1), (1.2)

where

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[t(1 − s)]α−1 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

[t(1 − s)]α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

(1.3)

It is well known that the cone plays a very important role in applying Green’s function
in research area. In [7], the authors cannot acquire a positive constant taken instead of the role
of positive function γ(s)with 1 < α < 2 in (1.2). In [9], Jiang and Yuan obtained some new pro-
perties of the Green function and established a new cone. The results can be stated as follows.

Proposition 1.2. Green’s function G(t, s) defined by (1.3) has the following properties: G(t, s) =
G(1 − s, 1 − t) and

α − 1
Γ(α)

tα−1(1 − t)(1 − s)α−1s ≤ G(t, s) ≤ 1
Γ(α)

tα−1(1 − t)(1 − s)α−2, ∀t, s ∈ (0, 1). (1.4)

Proposition 1.3. The function G∗(t, s) := t2−αG(t, s) has the following properties:

q(t)Φ(s) ≤ G∗(t, s) ≤ Φ(s), ∀t, s ∈ [0, 1], (1.5)

where q(t) = (α − 1)t(1 − t), Φ(s) = (1/Γ(α))s(1 − s)α−1.

In this paper, we study the existence of positive solutions of nonlinear eigenvalue pro-
blems for a nonlocal fractional differential equation

Dα
0+u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =
∞∑

i=1

αiu(ξi),
(1.6)

where 1 < α ≤ 2 is a real number, λ is a positive parameter, Dα
0+ is the standard Riemann-Lio-

uville differentiation, and ξi ∈ (0, 1), αi ∈ [0,∞) with Σ∞
i=1αiξ

α−1
i < 1,a(t) ∈ C([0, 1], [0,∞)),

f(t, u) ∈ C([0,∞), [0,∞)).
We assume the following conditions hold throughout the paper:

(H1) ξi ∈ (0, 1), αi ∈ [0,∞) are both constants with Σ∞
i=1αiξ

α−1
i < 1;

(H2) a(t) ∈ C([0, 1], [0,∞)), a(t)/≡ 0;
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(H3) f(t, u) ∈ C([0, 1] × [0,∞), [0,∞)), and there exist g ∈ C([0,+∞), [0,+∞)), q1, q2 ∈
C((0, 1), (0,+∞)) such that

q1(t)g
(
y
) ≤ f

(
t, tα−2y

)
≤ q2(t)g

(
y
)
, t ∈ (0, 1), y ∈ [0,+∞), (1.7)

where
∫1
0 qi(s)ds < +∞, i = 1, 2.

2. The Preliminary Lemmas

For the convenience of the reader, we present here the necessary definitions from fractional
calculus theory. These definitions can be found in the recent literature.

Definition 2.1. The fractional integral of order α > 0 of a function y : (0,∞) → R is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds (2.1)

provided the right side is pointwise defined on (0,∞).

Definition 2.2. The fractional derivative of order α > 0 of a function y : (0,∞) → R is given
by

Dα
0+y(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

0

y(s)

(t − s)α−n+1
ds, (2.2)

where n = [α] + 1, provided the right side is pointwise defined on (0,∞).

Lemma 2.3. Let α > 0. If one assumes u ∈ C(0, 1) ∩ L(0, 1), then the fractional differential equation

Dα
0+u(t) = 0 (2.3)

has u(t) = C1t
α−1 + C2t

α−2 + · · · + CNtα−N, Ci ∈ R, i = 1, 2, . . . ,N, whereN is the smallest integer
greater than or equal to α, as unique solutions.

Lemma 2.4. Assume that u ∈ C(0, 1)∩L(0, 1)with a fractional derivative of order α > 0 that belongs
to u ∈ C(0, 1) ∩ L(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · · + CNtα−N (2.4)

for some Ci ∈ R, i = 1, 2, . . . ,N.

Lemma 2.5 (see [7]). Given y ∈ C[0, 1] and 1 < α ≤ 2, the unique solution of

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u(1) = 0
(2.5)
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is

u(t) =
∫1

0
G(t, s)y(s)ds, (2.6)

where

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[t(1 − s)]α−1 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

[t(1 − s)]α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

(2.7)

Lemma 2.6. Suppose (H1) holds. Given y ∈ C[0, 1] and 1 < α ≤ 2, the unique solution of

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = 0, u(1) =
∞∑

i=1

αiu(ξi)
(2.8)

is

u(t) =
∫1

0
G(t, s)y(s)ds +A

(
y
)
tα−1, (2.9)

where

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[t(1 − s)]α−1 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

[t(1 − s)]α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1,

A
(
y
)
=

Σ∞
i=1αi

∫1
0 G(ξi, s)y(s)ds

1 − Σ∞
i=1αiξ

α−1
i

.

(2.10)

Proof. By applying Lemmas 2.4 and 2.5, we have

u(t) =
∫1

0
G(t, s)y(s)ds + C1t

α−1 + C2t
α−2. (2.11)

Because

∞∑

i=1

αi

∫1

0
G(ξi, s)ds =

Σ∞
i=1αiξ

α−1
i (1 − ξi)

αΓ(α)
, αiξ

α−1
i (1 − ξi) < αiξ

α−1
i , (2.12)
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by (H1), Σ∞
i=1αiξ

α−1
i (1− ξi) is convergent; therefore, Σ∞

i=1αi

∫1
0 G(ξi, s)ds is convergent. Note that

y(t) is continuous function on [0, 1], so Σ∞
i=1αi

∫1
0 G(ξi, s)y(s)ds is convergent.

From u(0) = 0, u(1) = Σ∞
i=1αiu(ξi), we have C2 = 0, C1 = Σ∞

i=1αi

∫1
0 G(ξi, s)y(s)ds/(1 −

Σ∞
i=1αiξ

α−1
i ). Therefore,

u(t) =
∫1

0
G(t, s)y(s)ds +A

(
y
)
tα−1,

A
(
y
)
=

Σ∞
i=1αi

∫1
0 G(ξi, s)y(s)ds

1 − Σ∞
i=1αiξ

α−1
i

.

(2.13)

Lemma 2.7 (see [7]). Let E be a Banach space, P ⊆ E a cone, andΩ1,Ω2 two bounded open sets of E
with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Suppose that T : P∩(Ω2\Ω1) → P is a completely continuous operator such
that either

(i) ‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1, and ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2, or

(ii) ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1, and ‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2,

holds. Then T has a fixed point in P ∩ (Ω2 \Ω1).

3. The Main Results

Let

G0(t, s) = G(t, s) +
tα−1Σ∞

i=1αiG(ξi, s)

1 − Σ∞
i=1αiξ

α−1
i

. (3.1)

Then u(t) is the solution of BVP (1.6) if and only if Tu(t) = u(t), where T is the operator de-
fined by

Tu(t) := λ

∫1

0
G0(t, s)a(s)f(s, u(s))ds. (3.2)

By similar arguments to Proposition 1.3, we obtain the following result.

Lemma 3.1. Suppose (H1) holds. The function G(t, s) := t2−αG0(t, s) has the following properties:

q(t)Ψ(s) ≤ G(t, s) ≤ Ψ(s), ∀t, s ∈ [0, 1], (3.3)

where q(t) = (α − 1)t(1 − t),Ψ(s) = Φ(s) + Σ∞
i=1αiG(ξi, s)/(1 − Σ∞

i=1αiξ
α−1
i ).

Let E = C[0, 1] be endowed with the ordering u ≤ v if u(t) ≤ v(t) for all t ∈ [0, 1], and
the maximum norm ‖u‖ = max0≤t≤1|u(t)|. Define the cone P ⊂ E by P = {u ∈ E | u(t) ≥ 0},
and

K =
{
u ∈ P | u(t) ≥ q(t)‖u‖}, (3.4)

where q(t) is defined by (3.3).
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It is easy to see that P and K are cones in E. For any 0 < r < R < +∞, let Kr = {u ∈
K‖u‖ < r}, ∂Kr = {u ∈ K‖u‖ = r}, Kr = {u ∈ K‖u‖ ≤ r}, andKR \Kr = {u ∈ K | r ≤ ‖u‖ ≤ R}.

For convenience, we introduce the following notations:

g0 = lim
u→ 0+

g(u)
u

, g∞ = lim
u→+∞

g(u)
u

. (3.5)

By similar arguments to Lemma 4.1 of [9], we obtain the following result.

Lemma 3.2. Assume that (H1)–(H3) hold. Let T : K → E be the operator defined by

Tu(t) := λ

∫1

0
G(t, s)a(s)f

(
s, sα−2u(s)

)
ds. (3.6)

Then T : K → K is completely continuous.

Theorem 3.3. Assuming (H1)–(H3) hold, g0, g∞ exist. Then, for each λ satisfying

1
[
((α − 1)/16)2

∫3/4
1/4 Ψ(s)a(s)q1(s)ds

]
g0

< λ <
1

(∫1
0 Ψ(s)a(s)q2(s)ds

)
g∞

, (3.7)

there exists at least one positive solution of BVP (1.6) in P .

Theorem 3.4. Assuming (H1)–(H3) hold, g0, g∞ exist. Then, for each λ satisfying

1
[
((α − 1)/16)2

∫3/4
1/4 Ψ(s)a(s)q1(s)ds

]
g∞

< λ <
1

(∫1
0 Ψ(s)a(s)q2(s)ds

)
g0

, (3.8)

there exists at least one positive solution of BVP (1.6) in P .

Proof of Theorem 3.3. Let λ be given as in (3.7), and choose ε > 0 such that

1
[
((α − 1)/16)2

∫3/4
1/4 Ψ(s)a(s)q1(s)ds

](
g0 − ε

) ≤ λ ≤ 1
(∫1

0 Ψ(s)a(s)q2(s)ds
)(

g∞ + ε
) . (3.9)

Beginning with g0, there exists an H1 > 0 such that g(u) ≥ (g0 − ε)u, for 0 < u ≤ H1. So u ∈ K
and ‖u‖ = H1. For t ∈ [1/4, 3/4], we have

Tu(t) = λ

∫1

0
G(t, s)a(s)f

(
s, sα−2u(s)

)
ds

≥ λ

∫1

0
q(t)Ψ(s)a(s)q1(s)g(u(s))ds
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≥ λ

∫1

0
q(t)Ψ(s)a(s)q1(s)

(
g0 − ε

)
u(s)ds

≥ λ

(
α − 1
16

)2 ∫3/4

1/4
Ψ(s)a(s)q1(s)

(
g0 − ε

)
ds‖u‖

≥ ‖u‖ = H1.

(3.10)

Thus, ‖Tu‖ ≥ ‖u‖. So, if we let

Ω1 = {u ∈ K | ‖u‖ < H1}, (3.11)

then

∥
∥
∥Tu

∥
∥
∥ ≥ ‖u‖, u ∈ ∂Ω1. (3.12)

It remains to consider g∞. There exists anH2 such that g(u) ≤ (g∞+ε)u, for all u ≥ H2.
There are the two cases, (a), where g is bounded, and (b), where g is unbounded.

Case a. Suppose N > 0 is such that g(u) ≤ N, for all 0 < u < ∞.
Let H2 = max{2H1,Nλ

∫1
0 Ψ(s)a(s)q2(s)ds}. Then, for u ∈ K with ‖u‖ = H2, we have

Tu(t) ≤ λ

∫1

0
Ψ(s)a(s)q2(s)g(u(s))ds ≤ λN

∫1

0
Ψ(s)a(s)q2(s)ds ≤ H2 = ‖u‖. (3.13)

So, if we let

Ω2 = {u ∈ K | ‖u‖ < H2}, (3.14)

then

∥
∥
∥Tu

∥
∥
∥ ≤ ‖u‖, u ∈ ∂Ω2. (3.15)

Case b. LetH2 > max{2H1,H2} be such that g(u) ≤ g(H2), 0 < u < H2. Choosing u ∈ K with
‖u‖ = H2,

Tu(t) ≤ λ

∫1

0
Ψ(s)a(s)q2(s)g(H2)ds ≤ λ

∫1

0
Ψ(s)a(s)q2(s)

(
g∞ + ε

)
dsH2 ≤ H2 = ‖u‖, (3.16)

and so ‖Tu‖ ≤ ‖u‖. For this case, if we let

Ω2 = {u ∈ K | ‖u‖ < H2}, (3.17)
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then

∥
∥
∥Tu

∥
∥
∥ ≤ ‖u‖, u ∈ ∂Ω2. (3.18)

Therefore, by (ii) of Lemma 2.7, T has a fixed point u such that H1 ≤ ‖u‖ ≤ H2 and satisfies

u(t) =
∫1

0
G(t, s)a(s)f

(
s, sα−2u(s)

)
ds. (3.19)

It is obvious that y(t) = tα−2u(t) is solution of (1.6) for t ∈ (0, 1], and

y(t) =
∫1

0
G0(t, s)a(s)f

(
s, y(s)

)
ds, t ∈ (0, 1]. (3.20)

Next, we will prove y(0) = 0. From u ∈ C[0, 1] and (H1)–(H3), we have

lim
t→ 0+

y(t) = lim
t→ 0+

∫1

0
G0(t, s)a(s)f

(
s, y(s)

)
ds

= lim
t→ 0+

∫1

0
G0(t, s)a(s)f

(
s, sα−2u(s)

)
ds

≤ lim
t→ 0+

∫1

0
G0(t, s)a(s)q2(s)g(u(s))ds

≤ lim
t→ 0+

∫1

0
G0(t, s)a(s)q2(s)ds max

‖u‖≤H2

g(u)

≤ 0.

(3.21)

Thus, y(0) = 0. then y(t) = tα−2u(t) is solution of (1.6) for t ∈ [0, 1].

Proof of Theorem 3.4. Let λ be given as in (3.8), and choose ε > 0 such that

1
[
((α − 1)/16)2

∫3/4
1/4 Ψ(s)a(s)q1(s)ds

](
g∞ − ε

) ≤ λ ≤ 1
(∫1

0 Ψ(s)a(s)q2(s)ds
)(

g0 + ε
) . (3.22)
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Beginning with g0, there exists an H1 > 0 such that g(u) ≤ (g0 + ε)u, for 0 < u ≤ H1. So, for
u ∈ K and ‖u‖ = H1, we have

Tu(t) = λ

∫1

0
G(t, s)a(s)f

(
s, sα−2u(s)

)
ds

≤ λ

∫1

0
Ψ(s)a(s)q2(s)ds

(
g0 + ε

)‖u‖

≤ ‖u‖.

(3.23)

Thus, ‖Tu‖ ≤ ‖u‖. So, if we let

Ω1 = {u ∈ K | ‖u‖ < H1}, (3.24)

then

∥
∥
∥Tu

∥
∥
∥ ≤ ‖u‖, u ∈ ∂Ω1. (3.25)

Next, considering g∞, there exists anH2 such that g(u) ≥ (g∞ − ε)u, for all u ≥ H2. Let
H2 = max{2H1, (16/(α − 1))H2}. Then, u ∈ K‖u‖ = H2. For t ∈ [1/4, 3/4], we have

Tu(t) = λ

∫1

0
G(t, s)a(s)f

(
s, sα−2u(s)

)
ds

≥ λ

∫1

0
q(t)Ψ(s)a(s)q1(s)g(u(s))ds

≥ λ

∫1

0
q(t)Ψ(s)a(s)q1(s)

(
g∞ − ε

)
u(s)ds

≥ λ

(
α − 1
16

)2 ∫3/4

1/4
Ψ(s)a(s)q1(s)

(
g∞ − ε

)
ds‖u‖

≥ ‖u‖ = H2,

(3.26)

and so ‖Tu‖ ≥ ‖u‖. For this case, if we let

Ω2 = {u ∈ K | ‖u‖ < H2}, (3.27)

then

∥
∥
∥Tu

∥
∥
∥ ≥ ‖u‖, u ∈ ∂Ω2. (3.28)



10 Mathematical Problems in Engineering

Therefore, by (i) of Lemma 2.7, T has a fixed point u such that H1 ≤ ‖u‖ ≤ H2 and
satisfy

u(t) =
∫1

0
G(t, s)a(s)f

(
s, sα−2u(s)

)
ds. (3.29)

By similar method to Theorem 3.3, we can get y(0) = 0, then y(t) = tα−2u(t) is solution of (1.6)
for t ∈ [0, 1]. We complete the proof.
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