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We introduce a magnetohydrodynamic model of boundary-layer equations for conducting viscous
fluids. This model is applied to study the effects of free convection currents with thermal relaxation
time on the flow of a viscous conducting fluid. The method of the matrix exponential formulation
for these equations is introduced. The resulting formulation together with the Laplace transform
technique is applied to a variety problems. The effects of a plane distribution of heat sources on
the whole and semispace are studied. Numerical results are given and illustrated graphically for
the problem.

1. Introduction

The modification of the heat-conduction equation from diffusive to a wave type may be
affected either by a microscopic consideration of the phenomenon of heat transport or in
a phenomenological way by modifying the classical Fourier law of heat conduction.

Many authors have considered various aspects of this problem and obtained similarity
solutions. Samaan [1] investigated steady oscillating magnetohydrodynamic flow in a
circular pipe. Analytical and numerical methods for the momentum and energy equations
of a viscous incompressible fluid along a vertical plate have been considered by Samaan
[2]. Chamkha [3] studied the magnetohydrodynamic flow of a uniformly stretched vertical
permeable surface in the presence of heat generation/absorption and chemical reaction. Ishak
et al. [4] investigated theoretically the unsteady mixed convection boundary layer flow and
heat transfer due to a stretching vertical surface in a quiescent viscous and incompressible
fluid.

Many authors presented some mathematical results, and a good amount of references
can be found in the papers by Liao and Pop [5] and Nazar et al. [6]. Further, the stagnation
region encounters the highest pressure, the highest heat transfer, and the highest rate of mass
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deposition studied by Wang [7]. Singh et al. [8] investigated the problem of heat transfer in
the flow of an incompressible fluid.

Samaan [9] investigated the heat and mass transfer over an accelerating surface with
heat source in presence of suction and magnetic field. The flow of an unsteady, incompressible
magnetohydrodynamics (MHDs) viscous fluid with suction is investigated by Muhammad
et al. [10]. Heat and mass transfer over an accelerating surface with heat source in presence
of magnetic field is derived by Samaan [11].

Recently, Samaan [12] studied the effects of variable viscosity and thermal diffusivity
on the steady flow in the presence of the magnetic field. variable viscosity effects on
hydrodynamic boundary layer flow along a continuously moving vertical plate were done
by Mostafa [13]. Concerning the studies of state space formulation for MHDs and free
convection flow with two relaxation times and the free convection effective perfectly
conducting couple stress fluid, we may refer to Samaan [14], Ezzat et al. [15], and Hayat et al.
[16]. Using differential transform method and Pade approximate for solving MHDs flow in a
laminar liquid film from a horizontal stretching surfaces investigated by Rashidi et al. [17].

In the present work, we use a more general model of magnetohydrodynamic free
convection flow, which also includes the relaxation time of heat conduction and the electric
displacement current [18, 19]. An attempt to account for the time dependence of heat
transfer, Cattaneo [20] and Vernotte [21] independently modified Fourier’s law to include
the relaxation time of the system. Generalized thermoelasticity stands for a hyperbolic
thermoelasticity in which a thermomechanical load applied to a body is transmitted in a
wave-like manner throughout the body, only transient thermoelastic waves are included
in the survey by Hertnarski and Ignaczak [22]. The inclusion of the relaxation time
and the electric displacement current modifies the governing thermal and electromagnetic
field equations, changing them from the parabolic to a hyperbolic type, and thereby
eliminating the unrealistic result that thermal and electromagnetic disturbances are realized
instantaneously within a fluid.

The solution is obtained using a state-space approach. The importance of state-space
analysis is recognized in fields where the time behavior of physical process is of interest. The
first writer to introduce the state space approach in magnetohydrodynamic free convection
flow was Ezzat [23, 24]. His works dealt with free convection flow in the absence of the
applied magnetic field or when there are no heat sources. The present work is an attempt to
generalize these results to include the effects of heat sources. The results obtained are used to
solve a problem for the whole space with a plane distribution of heat sources. The solutions
obtained are utilized in combination with the method of images to obtain the solution for a
problem with heat sources distributed situated inside a semispace whose surface bounded
by an infinite vertical plate.

The Laplace transform techniques is applied to one-dimensional problem. The inver-
sion of the Laplace transforms is carried out using a numerical technique [25].

2. Formulation of the Problem

Let a constant magnetic field of strength H0
→

act in the direction of the y-axis. Due to the effect

of this magnetic field, there arises in the medium an induced magnetic field h
→

and an induced

electric field E
→

. All the considered functions will depend on y and the time t only.
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The electromagnetic quantities satisfy Maxwell’s equations [26]

curl h
→

= J
→
+ εoĖ, (2.1)

curl E
→

= − μoḣ, (2.2)

div h
→

= 0, div E
→

= 0, (2.3)

B
→

= μo
(
H0
→

+ h
→

)
, D

→
= εoE→ , (2.4)

where J
→

is the electric current density, μo and εo are the magnetic and electric permeabilities,

respectively, and B
→

, D
→

are the magnetic and electric induction vectors, respectively, and dotte

is the time variable.
These equations are supplemented by Ohm’s law

J
→

= σo

[
E
→

+ μo

(
v
→
×H0
→

)]
, (2.5)

where v
→

= (u, 0, 0) is velocity vector of the fluid and σo is the electric conductivity.

As mentioned above, the applied field Ho and the induced magnetic field has the
components

H0
→

= (0,Ho, 0), h
→

= (h, 0, 0). (2.6)

The vector E
→

and J
→

will have nonvanishing components only in the z-direction. That is,

E
→

= (0, 0, E), J
→

= (0, 0, J), (2.7)

where from (2.5)

J = σo
[
E + μoHou

]
. (2.8)

The vector (2.1) and (2.2) reduce to the following scalar equations

h,y = −
(
J + εoĖ

)
, (2.9)

E,y = −μoḣ. (2.10)

Eliminating J between (2.8) and (2.9), we obtain

h,y = −
(
σoE + εoĖ

)
− σoμoHou. (2.11)
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The pondermotive force F
→

= J
→
× B
→

has one nonvanishing component in the x-direction

Fx = μoHo

(
h,y + εoĖ

)
, (2.12)

where σo is the electric conductivity.
We investigate the free convective heat transfer in an incompressible hydromagnetic

flow past an infinite vertical plate. The x-axis is taken along the plate in the direction of
the flow and the y-axis normal to it. Let u be the component of the velocity in the x
direction. All the fluid properties are assumed constant, except that the influence of the
density variation with temperature is considered only in the body force term. In the energy
equations, terms representing viscous and Joule’s dissipation are neglected, as they are
assumed to be very small in free convection flow [27]. Also, in the energy equation, the term
representing the volumetric heat source is taken as a function of the space variables. In view
of the assumptions, the equations that govern unsteady one-dimensional free convection flow
in an incompressible conducting fluid through a porous medium bounded by an infinite
nonmagnetic vertical plate in the presence of a constant magnetic field are (2.10)–(2.12), and
the equations describing the flow in the boundary layer reduce to [28–30]

ρu̇ = ρνu,yy − ρ
ν

K
u + ρ

α2

Ho

(
h,y + εoĖ

)
+ ρgβ(T − T∞),

h,y = −
(
σoE + εoĖ

)
− σoμoHou,

E,y = −μoḣ,

ρcpṪ = λT,yy − ρcpυoT̈ +QυoQ̇.

(2.13)

And the constitutive equation

(
ρ∞ − ρ

)
= ρβ(T − T∞). (2.14)

In these equations, K is the permeability of the porous medium, α is the Alfven velocity, g is
the acceleration due to gravity, β is the coefficient of volume expansion, T is the temperature
distribution, T∞ is the temperature of the fluid away from the plate, cp is specific heat at
constant pressure, λ is the thermal diffusivity, υo is the relaxation time, ρ∞ is the density of
the fluid far from the surface, and ρ is the density of the fluid.

Let us introduce the following nondimensional variables

y∗ =
yα

ν
, t∗ =

tα2

ν
, u∗ =

u

α
, E∗ =

E

μoHoα
, h∗ =

h

Ho
, υ∗o =

α2υo
ν

,

K∗ =
Kα2

ν2 , θ =
T − T∞
To − T∞

, Gr =
νβg(To − T∞)

α3 , Q∗ = v2Q
λα2(To − T∞)

.

(2.15)
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In view of these transformations, (2.13)–(2.14) become

u̇ = u,yy −
1
K
u + h,y + aĖ +Grθ,

h,y = −η(E + u) − aĖ,

Ey = −ḣ,

θ,yy − pr
(
θ̇ + υoθ̈

)
= −Q − υoQ̇,

(2.16)

where Gr is the Grashof number, c is the speed of light given by c2 = 1/εoμo, a = α2/c2,
η = vμoσo is a measure of the magnetic viscosity, and pr = ρcpυ/λ is the Prandtl number.
From now on, we will consider a heat source of the form

Q = Qoδ
(
y
)
H(t), (2.17)

where δ(y) and H(t) are the Dirac delta function and the Heaviside unit step function,
respectively, Q is the strength of the applied heat source, and Qo is a constant.

We will assume that the initial state of the medium is quiescent. Taking the Laplace
transform, defined by the relation

f(s) =
∫∞

0
e−stf(t)dt, (2.18)

of both sides of (2.16), we obtain

∂2u

∂y2
−
(

1
K

+ s
)
u = −Grθ −

∂h

∂y
− asE, (2.19)

∂h

∂y
= −
(
η + as

)
E − ηu, (2.20)

∂ E

∂ y
= −sh, (2.21)

[
∂2

∂y2
− prs(1 + τos)

]
θ = −Qo

(1 + τos)
s

δ
(
y
)
. (2.22)

Eliminating E between (2.19)-(2.20), we get

(
∂2

∂y2 − F
)
u = −Grθ − n

∂h

∂y
,

(
∂2

∂y2 − ξ
)
h = −η∂u

∂y
,

(2.23)
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where

F = s +
1
K

+
asη

η + as
, n =

η

η + as
, ξ = s

(
η + as

)
. (2.24)

We will choose as state variables the temperature θ, the velocity component u, and
induced magnetic field h and their gradients. Equations (2.22)–(2.23) can be written as

∂θ

∂y
= θ

′
,

∂ u

∂y
= u′,

∂h

∂y
= h

′
,

∂θ
′

∂y
= psθ − Qoδ

(
y
)(1 + υos

s

)
,

∂u′

∂y
= −Grθ + Fu − nh

′
,

∂h
′

∂y
= −ηu′ + ξh,

(2.25)

where p = pr(1 + υos). The above equations can be written in matrix form as

dv
(
y, s
)

dy
= A(s)v

(
y, s
)
+ B
(
y, s
)
, (2.26)

where

A(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

ps 0 0 0 0 0

−Gr F 0 0 0 −n

0 0 ξ 0 −η 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, v
(
y, s
)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ
(
y, s
)

u
(
y, s
)

h
(
y, s
)

θ
′(
y, s
)

u′
(
y, s
)

h
′(
y, s
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B
(
y, s
)
= −Qoδ

(
y
)(1 + υos

s

)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.27)

In order to solve the system (2.26), we need first to find the form of the matrix exp(A(s)y).
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The characteristic equation of the matrix A has the form

k6 −Z1k
4 + Z2k

2 − Z3 = 0, (2.28)

where

Z1 = F + ξ + ps + ηn,

Z2 = Fξ + ps(F + ξ) + ηnps,

Z3 = psFξ.

(2.29)

The roots ±k1, ±k2, and ±k3 of (2.28) satisfy the relations

Z1 = k2
1 + k

2
2 + k

2
3,

Z2 = k2
1k

2
2 + k

2
2k

2
3 + k

2
1k

2
3,

Z3 = k2
1k

2
2k

2
3.

(2.30)

One of the roots, say k2
1, has a simple expression given by

k2
1 = ps. (2.31)

The other two roots k2
2 and k2

3 satisfy the relation

k2
2 + k

2
3 = F + ξ + ηn,

k2
2k

2
3 = Fξ.

(2.32)

The Taylor series expansion of the matrix exponential has the form

exp
[
A(s)y

]
=
∞∑
n=0

1
n!
[
A(s)y

]n
. (2.33)

Using the well-known Cayley-Hamilton theorem, the infinite series can be truncated
to the following form:

exp
[
A(s)y

]
= L
(
s, y
)
= boI + b1A + b2A

2 + b3A
3 + b4A

4 + b5A
5, (2.34)
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where I is the unit matrix of order 6 and bo–b5 are some parameters depending on s and y.
The characteristic roots ±ki, i = 1, 2, 3 of the matrix A must satisfy the equations

exp
(
±k1y

)
= bo ± b1k1 + b2k

2
1 ± b3k

3
1 + b4k

4
1 ± b5k

5
1,

exp
(
±k2y

)
= bo ± b1k2 + b2k

2
2 ± b3k

3
2 + b4k

4
2 ± b5k

5
2,

exp
(
±k3y

)
= bo ± b1k3 + ba2k

2
3 ± b3k

3
3 + b4k

4
3 ± b5k

5
3.

(2.35)

The solution of this system of linear equations is given by

bo = −R
(
k2

2k
2
3C1 + k2

1k
2
3C2 + k2

2k
2
1C3

)
,

b1 = −R
(
k2

2k
2
3S1 + k2

3k
2
1S2 + k2

1k
2
2

)
,

b2 = R
[(
k2

2 + k
2
3

)
C1 +

(
k2

3 + k
2
1

)
C2 +

(
k2

1 + k
2
2

)
C3

]
,

b3 = R
[(
k2

2 + k
2
3

)
S1 +

(
k2

3 + k
2
1

)
S2 +

(
k2

1 + k
2
2

)
S3

]
,

b4 = −R(C1 +C2 + C3),

b5 = −R (S1 + S2 + S3),

(2.36)

where

R =
1(

k2
1 − k

2
2

)(
k2

2 − k
2
3

)(
k2

3 − k
2
1

) ,

C1 =
(
k2

2 − k
2
3

)
cosh

(
k1y
)
, S1 =

(
k2

2 − k
2
3

)
k1

sinh
(
k1y
)
,

C2 =
(
k2

3 − k
2
1

)
cosh

(
k2y
)
, S2 =

(
k2

3 − k
2
1

)
k2

sinh
(
k2y
)
,

C3 =
(
k2

1 − k
2
2

)
cosh

(
k3y
)
, S3 =

(
k2

1 − k
2
2

)
k3

sinh
(
k3y
)
.

(2.37)

Substituting for the parameters bo–b5 from (2.36) into (2.34) and computing A2, A3, A4, and
A5, we get the elements (Lij = 1, 2, 3, 4, 5, 6) of the matrix L (s, y) to be

L11 = R
(
k2

1 − k
2
2

)(
k2

3 − k
2
1

)
C1,

L12 = L13 = 0,
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L14 = R
(
k2

1 − k
2
2

)(
k2

3 − k
2
1

)
S1,

L15 = L16 = 0,

L21 = GrR
[(
k2

1 − ξ
)
C1 +

(
k2

2 − ξ
)
C2 +

(
k2

3 − ξ
)
C3

]
,

L22 = R
[(
k2

1 − k
2
2

)(
F − k2

3

)
C2 +

(
k2

1 − k
2
3

)(
F − k2

2

)
C3

]
,

L23 = nξR
[(
k2

2 − k
2
1

)
S2 +

(
k2

3 − k
2
1

)
S3

]
,

L24 = GrR
[(
k2

1 − ξ
)
S1 +

(
k2

2 − ξ
)
S2 +

(
k2

3 − ξ
)
S3

]
,

L25 = R
[(
k2

2 − ξ
)(
k2

1 − k
2
2

)
S2 +

(
k2

3 − ξ
)(
k2

1 − k
2
3

)
S3

]
,

L26 = nR
[(
k2

2 − k
2
1

)
C2 +

(
k2

3 − k
2
1

)
C3

]
,

L31 = −GrηR
[
k2

1S1 + k2
2S2 + k2

3S3

]
,

L32 = ηFR
[(
k2

2 − k
2
1

)
S2 +

(
k2

3 − k
2
1

)
S3

]
,

L33 = R
[(
n − k2

3

)(
k2

1 − k
2
2

)
C2 +

(
n − k2

2

)(
k2

1 − k
2
3

)
C3

]
,

L34 = −GrηR[ C1 +C2 + C3],

L35 = ηR
[(
k2

2 − k
2
1

)
C2 +

(
k2

3 − k
2
1

)
C3

]
,

L36 = R
[(
k2

2 − F
)(
k2

1 − k
2
2

)
S2 +

(
k2

3 − F
)(
k2

1 − k
2
3

)
S3

]
,

L41 = −Rk2
1

(
k2

1 − k
2
2

)(
k2

1 − k
2
3

)
S1,

L42 = L43 = 0,

L44 = −R
(
k2

1 − k
2
2

)(
k2

1 − k
2
3

)
C1,

L45 = L46 = 0,

L51 = GR
[
k2

1

(
k2

1 − ξ
)
S1 + k2

2

(
k2

2 − ξ
)
S2 + k2

3

(
k2

3 − ξ
)
S3

]
,

L52 = FR
[(
k2

1 − k
2
2

)(
k2

1 − ξ
)
S1 +

(
k2

1 − k
2
3

)(
k2

3 − ξ
)
S3

]
,

L53 =
nξR

η
L35,

L54 = L21,

L55 = R
[(
k2

1 − k
2
2

)(
k2

2 − n
)
C2 +

(
k2

1 − k
2
3

)(
k2

3 − n
)
C3

]
,

L56 = −nR
[
k2

2

(
k2

1 − k
2
2

)
S2 + k2

3

(
k2

1 − k
2
3

)
S3

]
,
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L61 = −ηGrR
(
k2

1C1 + k2
2C2 + k2

3C3

)
,

L62 =
ηF

n
L26,

L63 = ξL36,

L64 = L31,

L65 =
η

n
L56,

L66 = R
[(
k2

2 − F
)(
k2

1 − k
2
2

)
C2 +

(
k2

3 − F
)(
k2

1 − k
2
3

)
C3

]
.

(2.38)

It is worth mentioning here that (2.32) have been used repeatedly in order to write the
above entries in the simplest possible form. We will stress here that the above expression
for the matrix exponential is a formal one. In the actual physical problem, the space is
divided into two regions accordingly as y ≥ 0 or y ≺ 0. Inside the region 0 ≤ y ≤ ∞, the
positive exponential terms, not bounded at infinity, must be suppressed. Thus, for y ≥ 0, we
should replace each sinh(ky) by −(1/2) exp(−ky) and each cosh(ky) by (1/2) exp(−ky). In
the region y ≤ 0, the negative exponentials are suppressed instead.

We will now proceed to obtain the solution of the problem for the region y ≥ 0. The
solution for the other region is obtained by replacing each y by −y.

The formal solution of system (2.26) can be written in the form

v
(
y, s
)
= exp

(
A(s)y

)[
v(0, s) +

∫y
0

exp(−A (s)z)B(z, s)dz
]
. (2.39)

Evaluating the integral in (2.39) using the integral properties of the Dirac delta function, we
obtain

v
(
y, s
)
= L
(
y, s
)
[v(0, s) +H(s)], (2.40)

where

H(s) =
−Q0(1 + υos)

2s

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2k1

Gr[k1k2k3 + ξ(k1 + k2 + k3)]
2k1k2k3(k1 + k2)(k1 + k3)(k2 + k3)

0

1
2

0

−ηGr

2(k1 + k2)(k1 + k3)(k2 + k3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.41)
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Equation (2.40) expresses the solution of the problem in the Laplace transform domain for
y ≥ 0 in terms of the vector H(s) representing the applied heat source and the vector v (0, s)
representing the conditions at the plate y = 0. To evaluate the components of this vector,
we note first, due to the symmetry of the problem, that the velocity component and induced
magnetic field component vanish at the plane source of heat, thus

h(0, t) = 0, or h(0, s) = 0,

u(0, t) = 0, or u(0, s) = 0.
(2.42)

Gauss’s divergence theorem will now be used to obtain the thermal condition at the plane
source. We consider a short cylinder of unit base, whose axis is perpendicular to the plane
source of heat and whose bases lie on opposite sides of it. Taking the limit as the height of the
cylinder tends to zero and noting that there is no heat flux through the lateral surface, we get

q(0, t) =
Qo

2
H(t), or q(0, s) =

Qo

2s
. (2.43)

We will use the generalized Fourier’s law of heat conduction in the nondimensional form
[31], namely,

q + υo
∂q

∂t
= −∂θ

∂y
. (2.44)

Taking the Laplace transform of both sides of this equation and using (2.43), we obtain

θ
′
(0, s) =

−Qo(1 + υos)
2s

. (2.45)

Equation (2.42) and (2.45) give three components of the v(0, s). To obtain the remaining three
components, we substitute y = 0 on both sides of (2.40) getting a system of linear equations
whose solution gives

θ(0, s) =
−Qo(1 + υos)

2sk1
,

u′(0, s) =
wGrQ0(1 + υos)

2sk1(k1 + k2)(k1 + k3)(k2k3 + ξ)
,

h
′
(0, s) =

ηGrQo(1 + υos)
2sk1(k1 + k2)(k1 + k3)(k2k3 + ξ)

.

(2.46)
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Inserting the values from (2.42) and (2.46) into the right-hand side of (2.40) and performing
the necessary matrix operations, we obtain

θ
(
y, s
)
=
Qo(1 + υos)

2sk1
e−k1y, (2.47)

u
(
y, s
)
=
−GrQo(1 + υos)

2sβξ

[
(k2 − k3)A1e

−k1y + (k3 − k1)A2e
−k2y + (k1 − k2)A3e

−k3y
]
, (2.48)

h
(
y, s
)
=
−GrηQo(1 + υos)

2sβ

[
(k2 − k3)(k2 + k3 −w)e−k1y + (k3 − k1)(k1 + k3 −w)e−k2y

+ (k1 − k2)(k1 + k2 −w)e−k3y
]
,

(2.49)

where

w = k1k2k3 + ξ(k1 + k2 + k3),

β = k1

(
k2

1 − k
2
2

)(
k2

3 − k
2
1

)
(k2a3 − k3a2),

A1 = wξ(k1 − k2) − a2[a3 − ξk3(k1 + k3)],

A2 = −a2[a3 − ξk3(k1 + k3)],

A3 = −wξ(k2 − k3) − a2[a3 − ξk3(k1 + k3)],

a2 = k2
2 − ξ, a3 = k2

3 − ξ.

(2.50)

Also, substituting from (2.49) into (2.21) the induced electric field is given by

E
(
y, s
)
=

GrηQo(1 + τos)
2β

[
(k2 − k3)(k2 + k3 −w)

e−k1y

k1
+ (k3 − k1)(k1 + k3 −w)

e−k 2 y

k2

+ (k1 − k2)(k1 + k2 −w)
e−k3y

k3

]
.

(2.51)

Equations (2.47)–(2.51) determine completely the state of the fluid for y ≥ 0. We mention in
passing that these equations give also the solution to a semispace problem with a plane source
of heat on its boundary that constitutes a rigid base. As mentioned before, the solution for
the whole space when y ≺ 0 is obtained from (2.47)–(2.51), by taking the symmetries under
considerations.

We will show that the solution obtained above can be used as a set of building
blocks from which the solutions to many interesting problems can be constructed. For future
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reference, we will write down the solution to the problem in the case when the source of heat
is located in the plane y = c, instead of the plane y = 0. In this case, we have

θ
(
y, s
)
=
Qo(1 + υos)

2sk1
e±k1(y−c), (2.52)

u
(
y, s
)
=
−GrQo(1 + υos)

2sβξ

[
(k2 − k3)A1e

±k1(y−c) + (k3 − k1)A2e
±k2(y−c) + (k1 − k2)A3e

±k3(y−c)
]
,

(2.53)

h
(
y, s
)
=
GrηQo(1 + υos)

2sβ

[
(k2 − k3)(k2 + k3 −w)e±k1(y−c) + (k3 − k1)(k1 + k3 −w)e±k2(y−c)

+ (k1 − k2)(k1 + k2 −w)e±k3(y−c)
]
,

(2.54)

E
(
y, s
)
=
GrηQo(1 + υos)

2β

[
(k2 − k3)(k2 + k3 −w)

e±k1(y−c)

k1
+ (k3 − k1)(k1 + k3 −w)

e±k2(y−c)

k2

+ (k1 − k2)(k1 + k2 −w)
e±k3(y−c)

k3

]
,

(2.55)

where the upper (plus) sign denotes the solution in the region y ≤ c, while the lower (minus)
sign denotes the solution in the region y 	 c.

3. Applications

We will now consider the problems of a semispace with a plane source of heat located inside
the medium at the position y = c and subject to the following boundary conditions.

(i) The shearing stress and the induced magnetic field are vanishing at the wall (y = 0),

∂u(0, t)
∂y

= 0, or
∂u(0, s)
∂y

= 0,

h(0, t) = 0, or h(0, s) = 0.

(3.1)

(ii) The temperature is kept at a constant value T∞, which means that the temperature
increment θ satisfies

θ(0, t) = 0 or θ (0, s) = 0. (3.2)

This problem can be solved in a manner analogous to the outlined above though the
calculations become quite messy. We will instead use the reflection method together with
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the solution obtained above for the whole space. This approach was proposed by Nowacki in
the context of coupled thermoelasticity [31].

The boundary conditions of the problem can be satisfied by locating two heat sources
in an infinite space, one positive at y = c and the other negative of the same intensity at
y = −c. The temperature increment θ is obtained as a superposition of the temperature for
both plane distribution. Thus, θ = θ1 + θ2, where θ1 is the temperature due to the positive
heat source, given by (2.52) and θ2 is the temperature due to the negative heat source and is
obtained from (2.52) by replacing c with −c, and noting that for all points of the semispace,
we have y + c 	 0. Thus, θ2 is given by

θ2
(
y, s
)
=
Qo(1 + υos)

2sk1
e−k1(y+c). (3.3)

Combining (2.52) and (3.2), we obtain

θ
(
y, s
)
=
Qo(1 + υos)

2sk1
e−k1y sinh k1c for y ≥ c,

θ
(
y, s
)
=
Qo(1 + υos)

2sk1
e−k1c sinh k1y for y ≺ c.

(3.4)

Clearly, this distribution satisfies the boundary condition (3.2). We turn now to the problem
of finding the distributions velocity, the induced magnetic field, and the induced electric field.
Unfortunately, the above procedure of superposition cannot be applied to these fields as in
the temperature fields. We define the scalar stream function ψ by the relation

u =
∂ψ

∂y
. (3.5)

By integration (2.53) and using (3.5), we obtain the stream function due to the positive heat
source at the position y = c as

ψ =
GrQo(1 + υos)

2sβξ

[
(k2 − k3)A1

e±k1(y−c)

k1
+ (k3 − k1)A2

e±k2(y−c)

k2
+ (k1 − k2)A3

e±k3(y−c)

k3

]
,

(3.6)

where the upper sign is valid for the region 0 ≤ y ≺ c and the lower sign is valid for the region
y ≥ 0. Similarly, the stream function for the negative heat source at y = −c is given by

ψ =
GrQo(1 + υos)

2sβξ

[
(k2 − k3)A1

e−k1(y+c)

k1
+ (k3 − k1)A2

e−k2(y+c)

k2
+ (k1 − k2)A3

e−k3(y+c)

k3

]
.

(3.7)
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Since ψ is a scalar field, we can use superposition to obtain the stream function for the
semispace problem as

ψ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GrQo(1 + υos)
sβξ

[
(k2 − k3)A1

e−k1y sinh k1c

k1
+ (k3 − k1)A2

e−k2y sinh k2c

k2

+(k1 − k2)A3
e−k3y sinh k3c

k3

]
for y ≥ c,

GrQo(1 + υos)
sβξ

[
(k2 − k3)A1

e−k1c sinh k1y

k1
+ (k3 − k1)A2

e−k2c sinh k2y

k2

+(k1 − k2)A3
e−k3c sinh k3y

k3

]
for y ≺ c.

(3.8)

Using (3.8) and (3.5), we obtain the velocity distribution

u =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−GrQo(1 + υos)
sβξ

[
(k2 − k3)A1e−k1y sinh k1c

+(k3 − k1)A2e−k2y sinh k2c

+(k1 − k2)A3e−k3y sinh k3c
]

for y ≥ c,

GrQo(1 + υos)
sβξ

[
(k2 − k3)A1e−k1c cosh k1y

+(k3 − k1)A2e−k2c coshk2y

+(k1 − k2)A3e−k3c coshk3y
]

for y ≺ c.

(3.9)

Differentiating (3.9) and using the resulting expressions together with (2.28), we obtain

h =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GrηQo(1 + υos)
sβ

[
(k2 − k3)(k2 + k3 −w)e−k1y sinh k1c

+(k3 − k1)(k1 + k3 −w)e−k2y sinh k2c

+(k1 − k2)(k1 + k2 −w)e−k3y sinh k3c
]

for y ≥ c,
GrηQo(1 + υos)

sβ

[
(k2 − k3)(k2 + k3 −w) e−k1c sinh k1y

+(k3 − k1)(k1 + k3 −w) e−k2c sinh k2y

+(k1 − k2)(k1 + k2 −w) e−k3c sinh k3y
]

for y ≺ c.

(3.10)
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Figure 1: Variation of θ with y, (−) for υ0 = 0.03, (−·) for υ0 = 0.4, and t = 0.7, 1 at Pr = 7, Gr = 4, K = 1.2,
α = 0.3, and c = 2 representing onset stationary convection.

Substituting (3.10) and (2.21), we can get

E =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GrηQo(1 + υos)
β

[
(k2 − k3)(k2 + k3 −w)e−k1y

sinh k1c

k1

+(k3 − k1)(k1 + k3 −w)e−k2y
sinh k2c

k2

+(k1 − k2)(k1 + k2 −w)e−k3y
sinh k3c

k3

]
for y ≥ c,

−Grη Qo(1 + υos)
β

[
(k2 − k3)(k2 + k3 −w)e−k1c

cosh k1y

k1

+(k3 − k1)(k1 + k3 −w)e−k2c
coshk2y

k2

+(k1 − k2)(k1 + k2 −w)e−k3c
coshk3y

k3

]
for y ≺ c.

(3.11)

Clearly, ∂u(0, s)/∂y = h(0, s) = 0 in agreement with (3.1).
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Figure 2: Variation of u with y, (−) for υ0 = 0.03, (−·) for υ0 = 0.4, and t = 0.7, 1 at Pr = 7, Gr = 4, K = 1.2,
α = 0.3, and c = 2 representing onset stationary convection.

4. Inversion of the Laplace Transform

In order to invert the Laplace transforms in the above equations, we will use a numerical
technique based on Fourier expansions of functions.

Let g(s) be the Laplace transform of a given function g(t). The inversion formula of
Laplace transforms states that

g(t) =
1

2πi

∫d+i∞
d−i∞

estg(s)ds, (4.1)

where d is an arbitrary positive constant greater than all the real parts of the singularities of
g(s). Taking s = d + iy, we get

g(t) =
edt

2π

∫∞
−∞

eityg
(
d + iy

)
dy. (4.2)

This integral can be approximated by

g(t) =
edt

2 π

∞∑
k=−∞

eiktΔyg
(
d + ikΔy

)
Δy. (4.3)
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Figure 3: Variation of h with y, (−) for υ0 = 0.03, (−·) for υ0 = 0.4, and t = 0.7, 1 at Pr = 7, Gr = 4, K = 1.2,
α = 0.3, and c = 2 representing onset stationary convection.

Taking Δy = π/t1, we obtain

g(t) =
edt

t1

[
1
2
g(d) + Re

(
∞∑
k=1

eikπt/t1g

(
d +

ikπ

t1

))]
. (4.4)

For numerical purposes, this is approximated by the function

gN(t) =
edt

t1

[
1
2
g(d) + Re

(
N∑
k=1

eikπt/t1g

(
d +

ikπ

t1

))]
, (4.5)

where N is a sufficiently large integer chosen such that

edt

t1
Re
[
eiNπ(t/t1)g

(
d +

iNπ

t1

)]
≺ η, (4.6)

where η is a preselected small positive number that corresponds to the degree of accuracy to
be achieved, Formula (3.11) is the numerical inversion formula valid for 0 ≤ t ≤ 2t1 [22]. In
particular, we choose t = t1, getting

gN(t) =
edt

t

[
1
2
g(d) + Re

(
N∑
k=1

(−1)kg
(
d +

ikπ

t

))]
. (4.7)
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Figure 4: Variation of E with y, (−) for υ0 = 0.03, (−·) for υ0 = 0.4, and t = 0.7, 1 at Pr = 7, Gr = 4, K = 1.2,
α = 0.3, and c = 2 representing onset stationary convection.

5. Numerical Results

The constants of the problem were taken as εo = 0.003, α = 0.3, Gr = 4, K = 1.2, and c = 2. All
constants are given in SI units. The computations were carried out for the two different values
of time, namely, t = 0.7 and 1. The functions θ, u, h, andE are evaluated. The results are shown
in Figures 1, 2, 3, and 4. In these figures, solid lines represent the solution corresponding to
using the generalized Fourier equation of heat conduction (υo = 0.4), while dashed lines
represent the solution corresponding to using the classical Fourier heat equation (υo = 0.03).

The important phenomenon observed in all computations is that the solution of any of
the considered functions vanishes identically outside a bounded region of space surrounding
the heat source at a distance from it equal to x∗(t), and say that x∗(t) is a particular value of y
depending only on the choice of t and is the location of the wave front. This demonstrates
clearly the difference between the solution corresponding to using classical Fourier heat
equation (υo = 0.03) and to using the non-Fourier case (υo = 0.4). In the first and older theory,
the waves propagate with infinite speeds, so the value of any of the functions is not identically
zero (though it may be very small) for any large value of y. In the non-Fourier theory, the
response to the thermal and mechanical effects does not reach infinity instantaneously but
remains in a bounded region of space given by 0 ≺ y ≺ y∗(t) for the semispace problem and
by Min(0, y∗(t) − c) ≺ y ≺ y + y∗(t) for the whole space problem.

We notice that results for all functions considered in the semispace problem when
the relaxation time is appeared in heat equation are distinctly different from those when the
relaxation time disappeared.

We also notice that for small values of time, the solution is localized in a finite region
near the plane of heat sources. This region grows with increasing time until it fills the whole
boundary-layer region.
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Figure 5: Velocity distribution u with y, for different values of α, Pr , and Gr , with t = 0.7, υ0 = 0.4, K = 1,
and c = 2 representing onset stationary convection.

Also, we observe from Figure 5. that the effect of heating by free convention currents
when Gr 	 0. In this case, it is noticed that as Alfven velocity α increases, the velocity is found
to decrease. This is mainly due to the fact that the effect of the magnetic field corresponds to
a term signifying a positive force that tends to decelerate the fluid particles. Also, it is noticed
that the velocity increases as Gr increases, while it decreases when the Prandtl number pr
increases.

We notice that results for the temperature distribution when the relaxation time is
appears in the heat equation are distinctly different from those when the relaxation time is
not mentioned in the heat equation. This is due to the fact that thermal waves in the Fourier
theory of heat equation travel with an infinite speed of propagation as opposed to finite speed
in the non-Fourier case. We also notice that for small values of time, the solution is localized in
a finite region near the plane surface. This region grows with increasing time until it fills the
whole boundary-layer region. As time t increases, results for both theories of heat equation
almost coincide which is expected, since magnetohydrodynamic free convection flow effects
are short lived. At all values of time, the velocity distributions for both theories coincide.

The effect of the relaxation time on the variation temperature and velocity distribution
for this problem is shown in Figures 1 and 2, respectively.

The values of Grashof number Gr have been chosen as they are interesting from
physical point of view.
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6. Concluding Remarks

Many metallic materials are manufactured after they have been redefined sufficiently in the
molten state. Therefore, it is a central problem in metallurgical chemistry to study the free
convection effects on conducting fluid metal. For instance, liquid sodium Na (100◦C) exhibit
very small electrical resistivity.

The effects of Grashof number, Alfven velocity, Prandtl number, and relaxation time
on the oneset temperature and velocity distribution are discussed. A discussion is provided
for the effects of heating on a viscous conducting fluid is given.

The importance of state space analysis is recognized in fields where the time behavior
of any physical process is of interest.

The state-space approach is more general than the classical Laplace and Fourier
transform techniques. Consequently, state space is applicable to all systems that can be
analyzed by integral transforms in time and is applicable to many systems for which
transform theory breaks down [32].

Owing to the complicated nature of the governing equations for the unsteady
magnetohydrodynamic with gradient pressure flow, few attempts have been made to solve
problems in this field. These attempts utilized approximate methods valid for only a specific
range of some parameters.

In this work, the method of direct integration by means of the matrix exponential,
which is a standard approach in modern control theory and developed in detail in
many texts such as Ogata [33], and Ezzat et al. [34, 35], is introduced in the field of
magnetohydrodynamics and applied to two specific problems in which the temperature and
velocity are coupled. This method gives exact solutions in the Laplace transform domain
without any assumed restrictions on either the applied magnetic field or the velocity,
temperature distributions, and viscoelastic parameter.

The method used in the present work is applicable to a wide range of problems. It
can be applied to problems which are described by the linearized Navier-Stokes equations.
The same approach was used quite successfully in dealing with problems in thermoelasticity
theory [14, 15, 19, 34, 35].

Nomenclature

t: Time
x, y: Coordinates system
v: =(u, 0, 0) velocity vector of the fluid
T : Temperature distribution
To: Temperature of the plate
T∞: Temperature of the fluid away from the plate
pr : Prandtl number
Gr : Grashof number
cp: Specific heat at constant pressure
g: Acceleration due to gravity
ρ: Density
λ: Thermal diffusivity
h: Induced magnetic field
Qo: Constant
Q: The strength of the applied heat source
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E: Electric field
c: Spead of light
F: Magnetic viscosity
J : Electric current density
μo: Magnetic permeability
β: Coefficient of volume expansion
εo: Electric permeability
Ho: Magnetic intensity vector
υ0: Relaxation time
δ(y): Dirac delta function
H(t): Heaviside unit step function
K: Permeability of the porous medium
α: Alfven velocity
σo: Electric conductivity.
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