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This paper deals with the analysis of the sixth elementary Volterra’s distortion for a circular hollow,
homogeneous, elastic, isotropic cylinder. More precisely, the specific load connected to the sixth
distortion is proved to be equivalent (in Saint Venant’s theory) to a right combined compressive
and bending stress and to a right combined tensile and bending stress. Our results have been
applied to a material made up of steel to compare the obtained numerical results with Volterra’s
predictions: the values calculated through Saint Venant’s theory are more strictly related to those
calculated by Volterra when the cylinder thickness tends to zero.

1. Introduction

The first original and fundamental contribution to the dislocation theory was found in
Weingarten’s note [1], where it is shown that, in absence of external forces, equilibrium
configurations for elastic bodies with nonzero internal stress can exist. Given, for example,
an elastic ring initially in a natural configuration, one can create a state of deformation and,
therefore of stress, by making a radial cut adding a thin slice of matter and finally soldering
the two faces of the cut. The solid assumes a new equilibrium configuration (spontaneous
equilibrium configuration); obviously, it is not a natural equilibrium configuration since,
adding matter, nonzero internal stress can be found.

Weingarten raised the problem and indicated some concrete examples with this
anomalous behavior, but he did not give analytic instruments to tackle and solve it. A
fundamental contribution in this direction was given by Volterra, who used Weingarten’s
note as a starting point to develop a general theory. Volterra began with the observation
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that Weingarten’s considerations could not be validated in case of simply-connected bodies
in the range of regular deformations. Hence, Volterra proposed a new theory of elastic
distortions, that implied a deep revision of the mathematical theory of elasticity in the
case of multiconnected domains: when in analytic structure of solutions multivalued terms
appear, theorems of uniqueness cannot be valid in equilibrium problems with assigned
forces [3, 7]. Note that in case of multiconnected domains, these terms, being physically
admissible, cannot be discarded (as one does, in order to have uniqueness of solution, in
simply-connected domains where multivalued terms have no physical meaning); hence to
obtain an uniqueness theorem is not enough to assign external forces, but it is necessary
to know the physically admissible multivalued properties. (The notion of distortion has
been proposed by Volterra [2, 3] about one hundred years ago. The term has undergone
some changes: in Love’s book [4] the distortions were called dislocations. Presently, the
word-combination “Volterra’s distortions” is stable and identifiable: the term distortions
is used for designations of phenomena creating the stress-strain state, when the external
forces are absent (e.g., the inhomogeneous temperature field can create the distortion)
[5, 6].)

The most general elastic distortion able to bring a right, circular, homogenous,
hollow, isotropic cylinder to a state of spontaneous equilibrium, consists of six elementary
distortions. For each, Volterra has tried to determine a field of displacements which fulfills the
indefinite equations of elastic equilibrium and brings the body to a spontaneous equilibrium
configuration. Really, Volterra was only able to determine a field of displacement that brings
the cylinder to an equilibrium configuration, generating a distribution of forces globally
equivalent to zero but not identically vanishing. So the problem of distortion was partially,
but not totally solved. Since Volterra considered exclusively isotropic hollow cylinders,
Caricato recently proposed an extension of the theory of Volterra’s distortions to the case
of a transversally isotropic homogeneous elastic hollow cylinder [8]; later on his findings
have been reconsidered and expanded in [9]. Recently, the nonlinear aspect of distortion has
been analyzed in [5, 6].

In the context of Volterra’s partially results, our paper analyzes the forces induced
by the sixth elementary distortion on the right circular, homogenous, hollow, isotropic
cylinder with a different point of view. More precisely, exploiting Saint Venant’s theory
and generalizing some previous results [10, 11], we have underlined that, apart from a
limited zone in the immediate vicinity of bases, the distribution of forces, considered as
a specific load, can be replaced with one statically equivalent. This can be done without
consequences on the effective distributions of stress and strain, and therefore, without the
necessity to define the effective punctual distribution of this load acting on the bases of the
cylinder.

Because of the homogeneity and isotropy of the material and of the geometric and
loading symmetry of the body, we have approached the specific load as linear, constructed
an auxiliary bar which has as longitudinal section the axial section of the cylinder and
followed the basic considerations of Saint Venant’s theory. We have found the specific
load connected to the sixth distortion is equivalent (in Saint Venant’s theory) to a right
combined compressive and bending stress and to a right combined tensile and bending
stress.

Our paper is organized as follows: in Section 2 the general theory of Volterra’s
distortions is briefly recalled. In Section 3 the specific load is analyzed by Saint Venant’s
theory. In Section 4 numerical results and their comparison with Volterra’s predictions are
discussed.
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Figure 1: The hollow cylinder in the natural state and one of its cross-sections.

2. Volterra’s Distortions for a Circular Hollow Cylinder

Let’s consider a circular hollow (therefore doubly connected) cylinder, which is, at a certain
assigned temperature, in a natural stateC. This wewill assume as the reference configuration.
This solid is depicted in Figure 1 with one cross-section to which a generic point P belongs.

We introduce into an ordinary space a Cartesian rectangular reference 0x1x2x3 with
respective versors {c1, c2, c3} and we choose the axis 0x3 coinciding with the symmetry axis
of the cylinder and the coordinate plane 0x1x2 placed over the base. We indicate with ρ(x) =√
x21 + x22 and θ(x) = arctg(x2/x1), respectively, the distance of P from the axis of the cylinder

and the anomaly.
Hereafter, we call Σ the surface of C, made from the two cylindrical coaxial surfaces Σ1

(internal surface of radius R1) and Σ2 (external surface of radius R2), and from the two bases
Σ3 (at height x3 = 0) and Σ4 (at the height x3 = d).

Let u(x) be the displacement vector which is the solution of the elastic equilibrium
problem for a body subjected to given external forces (without external constraints and
mass forces); let us assume that u(x) includes a multivalued term related to θ(x). This
term is physically significant in a doubly-connected region of space, as a body with hollow
cylindrical symmetry.

Themultivalued field of displacement u(x) has been physically interpreted by Volterra
[3] in terms of the following operations: if the doubly connected cylinder is transformed into
one which is simply connected by a transversal cut on an axial semiplane having the x3 axis
as edge, the vector u(x) can be characterized by a discontinuity of the first type through the
semiplane of the cut. If a translatory and a rotatory displacement is imposed on one of the
faces of the cut by the application, at constant temperature, of a system of external forces,
a state of deformation, and therefore of stress due to the multivalued term including θ(x), is
created into the cylinder. In order that the cylinder remains in a state of spontaneous equilibrium
in the deformed configuration, that is, with a regular internal stress but absent of superficial
forces, it is enough to reestablish the continuity remaking the cylinder doubly connected by
soldering the two faces of the cut (they are soldered by adding or removing a thin slice of
matter). In this way a distortion in the multiconnected body is induced.

In addition, since the rigid displacement of a face of cut with respect to the other can
be obtained through a rigid translation displacement and a rigid rotation displacement, a
distortion can be described by six constant parameters l, m, n, p, q, r, called characteristic
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Figure 2: The six elementary Volterra’s distortions.

coefficients of distortion. They correspond to the three Cartesian components of translation
and rigid rotation in respect to the axes x1, x2, x3. Once the characteristic coefficients are
introduced, we can give the following.

Definition 2.1. Elementary distortion is the definition of the distortion that has only one of
the six characteristic coefficients different from zero [3, 7, 12]. Analogously, the displacement
induced by an elementary distortion has nonzero only one of the following coefficients l, m,
n, p, q, r.

So making, Volterra characterized six independent distortions that are showed in
Figure 2. In particular, the 6th elementary distortion is the distortion related to the coefficient
r. It is realized by cutting the cylinder with an axial plane, rotating the face of the cut that
faces the semiplane x2 < 0 and, after adding (when r > 0) or removing (when r < 0) a thin
slide of matter, soldering the sides.

Note that the axial plane of the cut can be, for example, the plane 0x1x3. However,
since the elementary distortion is uniquely characterized by the value of r (and not by the
particular plane having the axis Ox3 as edge), it is not essential that the plane chosen to
determine the 6th elementary distortion corresponds to the coordinate plane Ox1x3.

2.1. Forces on the Bases: Volterra’s Analysis

Volterra, after having analyzed the elastic distortion from a qualitative point of view, has
partially dealt and solved the problem from a purelymathematics point of view [3]. In partic-
ular, he focused his attention on a linearly elastic, isotropic, homogeneous, doubly-connected
cylinder with finite height d. The study of doubly-connected body only it is not restrictive
since the analysis of multiconnected bodies requires more complex analytic problems and
hence, more complex computation, but it adds nothing of conceptual interest [3].
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Now, in order to briefly recall Volterra’s considerations for the sixth elementary
distortion, let us refer to cylindric coordinates and call (P, ρ∗, t∗,x∗

3) the counterclockwise
rectangular reference system obtained by translating in P the axes ρ, t, and x3 (see Figure 3).

More precisely, for forces acting only on the bases, the components of a displacement
vector u(P) related to the 6th elementary distortions are [3, 4, 12–14]
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(2.1)

where μ and λ are the two Lamé constants.
u(P) satisfies the indefinite equations of elastic equilibrium in the absence of forces of

mass and generates a distribution of surface forces on the bases
∑

3 and
∑

4. In (O, ρ, θ,x3),
this distribution has the following independent from θ components (see [3, 4, 12]):
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Figure 3: Hollow cylinder referred to Cartesian and cylindrical reference system.

3. Analysis of the Specific Load as Characteristic of
the External Solicitation

In this section, we will analyze the solution of the elastic equilibrium proposed by Saint
Venant for a prismatic isotropic homogeneous linearly elastic solid subjected to a specific
load on the bases.

In Saint Venant’s theory one can replace the specific loadwith an equivalent one. In this
way, apart from a thin zone near the bases, called extinction zone, we have no consequences
on the effective distribution of stress and strain. So, every solution of the problem of the
elastic equilibrium can be considered as a solution of an infinity of cases which are pertinent
to an infinity of load models, distributed with different laws, but having the same resultant.
This resultant can be replaced, as we know from static, by a force through a generic point P ′

belonging to the base section, and by a couple that has, in respect to P ′, the same moment of
the resultant. Note that the resultant is applied in a suitable point, generally different from
P ′.

Since the force and the couple can be decomposed with respect to the three axes of the
reference system, the six characteristics of the external solicitation, that is, the three components
of the force and of the couple, are individuated.

Hence, since these characteristics completely define every system of external loads
acting on the bases of the solid, it is unnecessary to define their effective punctual
distributions. As a consequence, the more general case can be solved through a linear
combination of six elementary cases: normal stress, shear stress along x2, shear stress along
x1, bending moment around x1, bending moment around x2, and torsional moment.

3.1. Saint Venant’s Theory to Analyze the Sixth Elementary Distortion

This section deals with the analysis the specific load in Saint Venant’s theory (see [10, 11, 15]).
Hereafter, we will assume that the hollow cylinder is thin (i.e., its thickness Δρ = R2 − R1 is
small with respect to the radius R1) and we will consider just the vertical component of the
load, that is, fx3(ρ,d), acting on the base x3 = d. It is clear that, for the equilibrium, the vertical
component acting on the inferior base x3 = 0, will be directly opposed.
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fx3(ρ,d) can be simply denoted with f(ρ), since, once x3 is fixed, it is a function of ρ
only. Moreover, since f(ρ) is monotone in [R1,R2], the equation f(ρ) = 0 has in (R1,R2) one
real root:

ρn =
√
e(R

2
2 logR

2
2−R2

1 logR
2
1)/(R

2
2−R2

1)−1. (3.1)

In other words, ρn is the value or the radius of the cylindrical neutral surface of the hollow
body with respect to the specific load.

Note that in every axial section, since the deformed hollow cylinder has stretched and
compressed bending fibres to conserve its original volume, R1 < ρn < R2 must be verified. In
addition (see [3, page 435] and Figure 4)

ρM < ρn < R2, (3.2)

where

RM = ρM =
R1 + R2

2
. (3.3)

Now, let us consider a simply connected auxiliary rectangular beam. We suppose that it
has height d (i.e., the same height of the cylinder) and cross-section with unitary base for
convenience. More precisely, we suppose that the cross-section of the auxiliary beam is a
rectangle whose area is (R2 − R1) ∗ 1 and if we consider an axial section of the cylinder of
height d, then it can be assimilated to a longitudinal section of the auxiliary beam.

Moreover, the auxiliary beam is subjected to the load f(ρ) on the bases.
With reference to the aforementioned beam, from (3.2)we obtain that, in modulus, the

area delimited by f(ρ) on [R1, ρn] is greater than that delimited on [ρn,R2]:

∣∣∣∣∣
∫ρn

R1

f
(
ρ
)
dρ

∣∣∣∣∣ >
∣∣∣∣∣
∫R2

ρn

f
(
ρ
)
dρ

∣∣∣∣∣. (3.4)

Now, we would like to analyze the two zones delimitated by ρn (see Figure 4) and separately
study the distribution of load.

More precisely, since in Saint Venant’s theory it is unnecessary to define the effective
punctual distribution of the load on the bases of the body, we will appropriately reduce the
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load induced in each section by the sixth elementary distortion to a normal stress and to a
couple.

The normal stress and the momentum of the couple, both applied in the barycenter
of the section, will have a fundamental role in our analysis; more precisely, they allow us
to prove the specific load connected to the sixth distortion is equivalent (in Saint Venant’s
theory) to a right combined compressive and bending stress and to a right combined tensile
and bending stress. These ideas will be developed in detail in the following sections.

3.1.1. Upper Section: ρ ∈ [ρn,R2]

Let’s focus our attention on ρ ∈ [ρn,R2]; let ρe be the value of ρ where we have to translate
the diagram of f(ρ) to divide the upper section in two with, in modulus, the same area (see
Figure 5).

The explicit value of ρe is obtained by solving the following equation:

∫ρe

ρn

[
f
(
ρ
) − f

(
ρe
)]
dρ +

∫R2

ρe

[
f
(
ρ
) − f

(
ρe
)]
dρ = 0, (3.5)

from which we easily derive

ρe =
√
e−(2R2−2ρn−R2 logR2

2+ρn logρ
2
n)/(R2−ρn). (3.6)

As already underlined, the specific load acting on the section can be represented by a normal
stress N applied on the barycenter G1 of the section whose modulus is

N = f
(
ρe
)(
R2 − ρn

)
= a
(
R2 − ρn

)(
b + log ρ2e

)
, (3.7)

and by a couple (C1,−C1), whose vectors are applied in G
(1)
1 and G

(2)
1 , respectively, that is, in

the barycenters of the two sections having the same area (see Figure 5).
So, in order to evaluate the couple, its arm and the coordinate of its center, we want to

specify the positions of these barycenters.
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More precisely, using the technique of static momenta, we compute the values of ρ
corresponding to the two barycenters; so, by the formula

ρ
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obtained by the analogous formula
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Moreover, referring to the area
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It is clear that, referring to the area
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[f(ρ)− f(ρe)]dρ, when we evaluate the modulus of the

second vector of the couple it is equal to a[2ρe − 2ρn − ρn(log ρ2e − log ρ2n)]. Note that since the
evaluated areas are equal, this vector can be called −C1.

As the vectors of the couple are applied in the barycenter of the two equivalent
sections, its arm is b1 = (ρ
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In order to obtain the load globally acting on the section (normal stress and momentum of
the couple both applied in the same point, i.e., inD1), we need to translateN inD1 and hence
evaluate, in modulus, the momentum M′

D1
related to this translation:

M′
D1

=
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ρG1 − ρD1

)
f
(
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(3.15)

So, the total momentum applied in D1 is
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(3.16)

Note that the centerD1 does not coincide with the barycenter of the section:

ρD1 < ρG1 =
R2 + ρn

2
. (3.17)

Because of this limitation and the sign of N, M′
D1
, and MD1 have opposite signs. Moreover,

M′′
D1

is less then MD1 , but has its sign.
Once the explicit form of M′′

D1
is known, we can compute the eccentricity eCS,1 of the

normal stress N with respect to the point D1 (see Figure 6), and hence, the position of the
center of stress CS,1. Note that CS,1 characterizes the point belonging to the meridian plane
(that is also plane of stress) where one can apply only the normal stress to obtain the same
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effect produced by the specific load acting on the bases of the cross-section of the auxiliary
beam. More precisely, in the coordinate-plane (0, ρ,x3),

ρCS,1 = e CS,1
+ ρD1 =
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+
1
2

(
ρ
G

(1)
1
+ ρ

G
(2)
1

)
. (3.18)

Finally, since Saint Venant’s theory refers to the barycenter, we have to evaluate the
momentum MG1 ofN with respect to G1. So, letting
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be the arm, we have
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Then, in agreement with Saint Venant’s theory, for all z ∈ [0,d] in the section there is the
action of the following linear σ(1)

x3 (ρ) (right combined tensile and bending stress):
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(3.21)

Actually, L1 is reduced toR2−ρn since the cross-section of the bar has unitary bases; moreover,
IG1 = (1/12)(R2−ρn)3, as it is known, is the momentum of inertia in respect to an axis through
G1 and parallel to the bases of the same cross-section.

3.1.2. Lower Section: ρ ∈ [R1, ρn]

Let’s consider the lower sectionwhere ρ ∈ [R1, ρn]. In order to obtain, in Saint Venant’s theory,
the explicit form of the stress acting on the bases of the auxiliary beam, we briefly recall the
same strategy amply described in the previous case. So

ρp =
√
e−(2ρn−2R1−ρn log ρ2n+R1 logR2

1)/(ρn−R1) (3.22)
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is the point where we have to translate the diagram of f(ρ) to obtain the division of the lower
section into two smaller ones with, in modulus, the same area. The normal stress applied to
the barycenter G2 of the section, whose ρG2 = (ρn + R1)/2, is in modulus

N = f
(
ρp
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ρn − R1

)
= a
(
ρn − R1

)(
b + log ρ2p

)
. (3.23)

Moreover, we can evaluate the couple (C2,−C2)
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, (3.24)

its arm
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)

4
[
ρn − ρp − ρn

(
log ρn − log ρp

)] −
ρ2p − R2

1 − 2R2
1

(
log ρp − logR1

)

4
[
ρp − R1 − R1

(
log ρp − logR1

)] ,
(3.25)

and clearly the coordinate of its center D2

ρD2 =
ρ
G

(1)
2
+ ρ

G
(2)
2

2
. (3.26)

Following the same line of reasoning, we can consider

M′′
D2

=
1
2
a
(
ρn − R1

)(
ρn − ρ

G
(2)
2
− ρ

G
(1)
2
+ R1

)(
b + log ρ2p

)

− a
(
ρ
G

(1)
2
− ρ

G
(2)
2

)[
2ρn − 2ρp − ρn

(
log ρ2n − log ρ2p

)]
,

(3.27)

and hence

ρCS,2 = eCS,2 + ρD2 =
M′′

D2

N
+
1
2

(
ρ
G

(1)
2
+ ρ

G
(2)
2

)
. (3.28)

Finally, since Saint Venant’s theory refers to the barycenter, we have to evaluate the
momentum MG2 ofN with respect to G2. So, letting

b′2 = −

(
ρ
G

(1)
2
− ρ

G
(2)
2

)[
2ρn − 2ρp − ρn

(
log ρ2n − log ρ2p

)]

(
ρn − R1

)(
b + log ρ2p

) (3.29)
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be the arm, we have

MG2 = −a
(
ρ
G

(1)
2
− ρ

G
(2)
2

)[
2ρn − 2ρp − ρn

(
log ρ2n − log ρ2p

)]
. (3.30)

Thus, in agreement with Saint Venant’s theory, for all z ∈ [0,d] in the section there is the
action of the following linear σ(2)

x3 (ρ) (right combined compressive and bending stress):

σ
(2)
x3

(
ρ
)
=

N

L2
+
MG2

IG2

(
ρ − R1 + ρn

2

)

= a
(
b + log ρ2p

)
−
12a
(
ρ
G

(1)
2
− ρ

G
(2)
2

)[
2ρn − 2ρp − ρn

(
log ρ2n − log ρ2p

)]

(
ρn − R1

)3
(
ρ − R1 + ρn

2

)
.

(3.31)

Actually, L2 is reduced to ρn−R1 since the cross-section of the bar has unitary bases; moreover,
IG2 = (1/12)(ρn−R1)

3, as it is known, is the momentum of inertia in respect to an axis through
G2 and parallel to the bases of the same cross-section.

4. Numerical Results

The importance of Saint Venant’s theory applied to the sixth elementary distortions is mainly
based on the information content of (3.21) and (3.31). More precisely, they underline what
kind of load is induced (in Saint Venant’s theory) by the sixth elementary distortion: it is a
right combined tensile and bending stress and a right combined compressive and bending
stress. Hence, for every axial section it is possible to evaluate the tensional state with the
well-known Saint Venant’s formulas [15].

However, in order to apply Saint Venant’s theory, our analysis has required some
assumptions: we have considered a suitable auxiliary beam and we have assumed that the
load on the bases has a linear diagram. So, to evaluate the deviation of our results from
Volterra’s predictions, in this section we compare (3.21) and (3.31) with fx3(ρ) computed
by Volterra.

More precisely, let us consider the cylinder made of steel, for which

λ = 1.53 ∗ 10−6 kg/cm2, ν = 7.89 ∗ 105 kg/cm2, (4.1)

and let us subject the side of the cut to this rotation r = −1.62 ∗ 10−5 rad.
The smallness of the chosen angle is justified by the required thickness of the cylinder,

by the material it is made of and by the hypothesis that Saint Venant’s theory is valid for
small displacements.

Moreover, we fixed R2 = 4 cm and then we examined the following two cases:

β =
R1

R2
= 0.5, β =

R1

R2
= 0.9 (4.2)
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Figure 7: Load in Volterra’s theory (black) and load in our results (dashed) for β = 0.5. The picture refers
to the upper section, that is, 3.06 cm = ρn ≤ ρ ≤ R2 = 4 cm.
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Figure 8: Load in Volterra’s theory (black) and load in our results (dashed) for β = 0.5. The picture refers
to the lower section, that is, 2 cm = R1 ≤ ρ ≤ ρn = 3.06 cm.

from which

R1 = 2 cm, ΔR = 2 cm, R1 = 3.6 cm, ΔR = 0.4 cm. (4.3)

When β = 0.5, in Figures 7 and 8, we have shown the graphics of the different loads. These
pictures clearly demonstrate that the dashed line (expression of load in our results) is a good
approximation of Volterra’s prediction. The percent deviation of our result from Volterra’s
formula, for different values of ρ, is shown in Figures 9 and 10. This deviation is calculated
dividing the difference between the load in Volterra’s theory and the load in our results by
the load in Volterra’s theory. As already underlined in the analytic treatment of the previous
section, apart from a small zone near the neutral axis this deviation is “small”: the “error”
made in such approximation can be strongly controlled.

Note that it is not restrictive to consider a small set of fixed ρ as to compute this
deviation. In fact, apart from a small zone near the neutral axis, which thickness, in both cases,
does not exceed the 16% of the thickness of the considered section, this deviation remains
bounded by the same small value. Analyzing Figures 9 and 10, it seems that this value is
about 5.
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Figure 9: Graphic representation of the percent deviation of our results from Volterra’s prediction for β =
0.5 and 3.06 cm = ρn ≤ ρ ≤ R2 = 4 cm.
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Figure 10: Graphic representation of the percent deviation of our results from Volterra’s prediction for
β = 0.5 and 2 cm = R1 ≤ ρ ≤ ρn = 3.06 cm.

We want to underline that since fx3(ρ) tends to zero in this small zone near the neutral
axis, the aforementioned formula is unable to give us information on the percent deviation,
that by Figures 7 and 8 is bounded.

Finally, we have compared the obtained numerical results with Volterra’s prediction
for a very thin cylinder. More precisely, when β = 0.9, that is, when that R1 differs little from
R2, in Figures 11 and 12 we have shown the graphics of the different loads. In this case it is
rather impossible to distinguish between them. Clearly (see Figures 13 and 14), apart from a
small zone near the neutral axis, which thickness, in both cases, does not exceed the 16% of
the thickness of the considered section, the deviation is also strongly bounded (about by 0.6
per cent).

We can conclude by seeing that the values calculated through Saint Venant’s theory
are more strictly related to those calculated by Volterra when the cylinder thickness tends to
zero.
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Figure 11: Load in Volterra’s theory (black) and load in our results (dashed) for β = 0.9. The picture refers
to the upper section, that is, 3.8 cm = ρn ≤ ρ ≤ R2 = 4 cm. Note that the two lines are indistinguishable.
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Figure 12: Load in Volterra’s theory (black) and load in our results (dashed) for β = 0.9. The picture refers
to the lower section, that is, 3.6 cm = R1 ≤ ρ ≤ ρn = 3.8 cm. Note that the two lines are indistinguishable.

5. Conclusions

In this paper we have improved Volterra’s analysis focusing our attention on the load
induced on the bases by one of the six elementary distortions, the sixth one. Precisely, taking
advantage from the Saint Venant theory, tackled for our case, we have evaluated the nature
of this force. In particular, approaching the specific load as linear one and constructing an
auxiliary bar which has as longitudinal section the axial section of the cylinder, we have
analyzed the tensional state with the well known Saint Venant’s principle.

We have obtained the specific load connected to the sixth distortion is equivalent (in
Saint Venant’s theory) to a right combined compressive and bending stress and to a right
combined tensile and bending stress.

As previously underlined, this result is achieved by considering some assumptions
and approximations. So, to evaluate its reliability and precision, we have added numerical
simulations able to visualize, and hence compare, the load given by Volterra and the load
computed through the Saint Venant’s theory. The numerical analysis, applied to a thin steel
cylinder, demonstrates that we have obtained a good approximations of Volterra’s prediction:
in all the analyzed cases, apart from the extinction zone, the deviation between the two
expression of the same load remains strongly bounded. This gives reason to a possible
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Figure 13: Graphic representation of the percent deviation of our results from Volterra’s prediction for
β = 0.9 and 3.8 cm = ρn ≤ ρ ≤ R2 = 4 cm.
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Figure 14: Graphic representation of the percent deviation of our results from Volterra’s prediction for
β = 0.9 and 3.6 cm = R1 ≤ ρ ≤ ρn = 3.8 cm.

generalization of the statement. More precisely, we stress that the various results obtained
here are limited to the analysis of the sixth elementary distortion. As an interesting research
perspective, we aim to address the generalization of our analysis to the case of a general
distortion as we are planning for forthcoming investigations.
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