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Experimental data are often very complex since the underlying dynamical system may be
unknown and the data may heavily be corrupted by noise. It is a crucial task to properly analyze
data to get maximal information of the underlying dynamical system. This paper presents a novel
principal component analysis (PCA) method based on symplectic geometry, called symplectic
PCA (SPCA), to study nonlinear time series. Being nonlinear, it is different from the traditional
PCAmethod based on linear singular value decomposition (SVD). It is thus perceived to be able to
better represent nonlinear, especially chaotic data, than PCA. Using the chaotic Lorenz time series
data, we show that this is indeed the case. Furthermore, we show that SPCA can conveniently
reduce measurement noise.

1. Introduction

Data measured in experimental situations, especially in real environments, can be very
complex since the underlying dynamical system may be nonlinear and unknown structure,
and the data may be very noisy. It is challenging to appropriately analyze the measured data,
especially the noisy ones. Since chaotic phenomena have been discovered, interpretation of
irregular dynamics of various systems as a deterministic chaotic process has been popular
and widely used in almost all fields of science and engineering. A number of important
algorithms based on chaos theory have been employed to infer the system dynamics from the
data or reduce noise from the data [1–6]. The first step of these approaches is to reconstruct
a phase space from the data so that the dynamic characteristic of the system can be properly
studied [7]. This is achieved using Takens’ embedding theorem [8], which states that the
system dynamics under the noise-free case can be reconstructed from one-dimensional signal,
that is, a time series. However, the actual systems may often be noisy—sometimes so noisy
that the reconstructed attractor of the nonlinear system could exhibit different features
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when different analysis techniques are used [9–12]. Therefore, appropriate analyses of the
measured data are a critical task in the fields of science and engineering. In this work, we
propose a novel nonlinear analysis method based on symplectic geometry and principal
component analysis, called symplectic principal component analysis (SPCA).

The symplectic geometry is a kind of phase space geometry. Its nature is nonlinear.
It can describe the system structure, especially nonlinear structure, very well. It has been
used to study various nonlinear dynamical systems [13–15] since Feng [16] has proposed
a symplectic algorithm for solving symplectic differential. However, from the view of
data analysis, few literatures have employed symplectic geometry theory to explore the
dynamics of the system. Our previous works have proposed the estimation of the embedding
dimension based on symplectic geometry from a time series [17–20]. Subsequently, Niu et al.
have used our method to evaluate sprinter’s surface EMG signals [21]. Xie et al. [22] have
proposed a kind of symplectic geometry spectra based on our work. In this paper, we show
that SPCA can well represent chaotic time series and reduce noise in chaotic data.

2. Method

Consider a dynamical system defined in phase space Rd. A discretized trajectory at times
t = nts, n = 1, 2, . . ., may be described by maps of the form

xn+1 = f(xn). (2.1)

In SPCA, a fundamental step is to build the multidimensional structure (attractor) in
symplectic geometry space. Here, in terms of Taken’s embedding theorem, we first construct
an attractor in phase space, that is, the trajectory matrix X from a time series. Then, we
describe the symplectic principal component analysis (SPCA) based on symplectic geometry
theory and give its corresponding algorithm.

2.1. Attractor Reconstruction

Let the measured data (the observable of the system under study) x1, x2, . . . , xn be recorded
with sampling interval ts; n is the number of samples. Takens’ embedding theorem states that
if the time series is indeed composed of scalar measurements of the state from a dynamical
system, then, under certain genericity assumptions, a one-to-one image of the original set {x}
is given by the time-delay embedding, provided d is large enough. That is, the time-delay
embedding provides the map into Rd-d-dimensional series XT

i , i = 1, . . . , m:

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

XT
1

XT
2

...

XT
m

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 x2 · · · xd

x2 x3 · · · xd+1

...
... · · · ...

xm xm+1 · · · xn

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.2)

where d is embedding dimension, m = n − d + 1 is the number of dots in d-dimension
reconstruction attractor, and Xm×d denotes the trajectory matrix of the dynamical system in
phase space, that is, the attractor in phase space.
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2.2. Symplectic Principal Component Analysis

SPCA is a kind of PCA approaches based on symplectic geometry. Its idea is to map
the investigated complex system in symplectic space and elucidate the dominant features
underlying the measured data. The first few larger components capture the main relationship
between the variables in symplectic space. The remaining components are composed of the
less important components or noise in the measured data. In symplectic space, the used
geometry is called symplectic geometry. Different from Eulid geometry, symplectic geometry
is the even-dimensional geometry with a special symplectic structure. It is dependent on a
bilinear antisymmetric nonsingular cross product—symplectic cross product:

[
x, y
]
=
〈
x, Jy

〉
, (2.3)

where

J = J2n =

[
0 +In

−In 0

]
(2.4)

when n = 1, x = [x1, x2], y = [y1, y2],

J =

[
0 1

−1 0

]
,

[
x, y
]
= [x1 x2]J

[
y1

y2

]
=

∣∣∣∣∣
x1 y1

x2 y2

∣∣∣∣∣.
(2.5)

The measurement of symplectic space is area scale. In symplectic space, the length of
arbitrary vectors always equals zero and without signification and there is the concept of
orthogonal cross-course. In symplectic geometry, the symplectic transform is the nonlinear
transform in essence, which is also called canonical transform, since it has measure-
preserving characteristics and can keep the natural properties of the original data unchanged.
It is fit for nonlinear dynamics systems.

The symplectic principal components are given by symplectic similar transform. It is
similar to SVD-based PCA. The corresponding eigenvalues can be obtained by symplectic
QR method. Here, we first construct the autocorrelation matrix Ad×d of the trajectory matrix
Xm×d. Then, the matrix A can be transformed as a Hamilton matrix M in symplectic space.

Theorem 2.1. Any d × d matrix can be made into a Hamilton matrixM. Let a matrix as A, so

M =

(
A 0

0 −AT

)
, (2.6)

whereM is Hamilton matrix.
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Theorem 2.2. Hamilton matrixM keeps unchanged at symplectic similar transform.

Theorem 2.3. LetM ∈ C2d×2d be Hamilton matrix, so eM is symplectic matrix.

Theorem 2.4. Let S ∈ C2d×2d be sympletcic matrix, and there is S = QR, where Q is symplectic
unitary matrix; and R is upper triangle matrix.

Theorem 2.5. The product of sympletcic matrixes is also a symplectic matrix.

Theorem 2.6. Suppose that Household matrix H is

H = H(k,ω) =

(
P 0

0 P

)
, (2.7)

where

P = In − 2��∗

�∗�
, � = (0, . . . , 0;ωk, . . . , ωd)T /= 0, (2.8)

soH is symplectic unitary matrix.�∗ is� conjugate transposition.

Proof. For proving that H matrix is symplectic matrix, we only need to prove H∗JH = J .

H∗JH =

(
P 0

0 P

)∗

J

(
P 0

0 P

)

=

(
0 P ∗P

−P ∗P 0

)
,

(2.9)

∵ P = In − 2��∗

�∗�

∴ P ∗ = P

P ∗P = P 2

=
(
In − 2��∗

�∗�

)(
In − 2��∗

�∗�

)

= In − 4��∗

�∗�
+

4�(�∗�)�∗

(�∗�)(�∗�)

= In,

(2.10)

where � = (0, . . . , 0;ωk, . . . , ωd)
T
/= 0.
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Plugging (2.10) into (2.9), we have:

H∗JH = J

∴ H is symplectic matrix

H∗H =

(
P 0

0 P

)∗(
P 0

0 P

)

=

(
P ∗P 0

0 P ∗P

)

= I2n

∴ H is also unitary matrix

∴ H is symplectic unitary matrix.

(2.11)

For Hamilton matrixM, its eigenvalues can be given by symplectic similar transform
and the primary 2d-dimension space can be transformed into d-dimension space to resolve
[17–19], as follows:

(i) Let N = M2,

M2 =

[
Aτ G

F −A

]2
. (2.12)

(ii) Construct a symplectic matrix Q,

QτNQ =

[
B R

0 Bτ

]
, (2.13)

where B is up Hessenberg matrix (bij = 0, i > j + 1). The matrix Q may be a
symplectic Household matrix H. If the matrix M is a real symmetry matrix, M
can be considered asN. Then, one can get an upper Hessenberg matrix (referred to
(2.13)), namely,

HMH ′ =

(
P 0

0 P

)(
A 0

0 −A′

)(
P 0

0 P

)′

=

(
PAP ′ 0

0 −PA′P ′

)

=

(
B 0

0 −B′

)
,

(2.14)

where H is the symplectic Householder matrix.
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(iii) Calculate eigenvalues λ(B) = {μ1, μ2, . . . , μd} by using symplectic QR decomposi-
tion method; ifM is a real symmetry matrix, then the eigenvalues ofA are equal to
those of B:

μ = λ(B) = λ(A),

λ(A) = λ2(X).
(2.15)

(iv) These eigenvalues μ = {μ1, μ2, . . . , μd} are sorted by descending order, that is,

μ1 > μ2 > · · · > μk � μk+1 ≥ · · · ≥ μd. (2.16)

Thus, the calculation of 2d-dimension space is transformed into that of d-dimension space.
The μ is the symplectic principal component spectrums of A with relevant symplectic
orthonormal bases. In the so-called noise floor, values of μi, i = k + 1, . . . , d, reflect the noise
level in the data [18, 19]. The corresponding matrix Q denotes symplectic eigenvectors of A.

2.3. Proposed Algorithm

For a measured data x1, x2, . . . , xn, our proposed algorithm consists of the following steps:

(1) Reconstruct the attractor Xm×d from the measured time series, where d is the
embedding dimension of the matrix X and m = n − d + 1.

(2) Remove the mean values Xmean of each row of the matrix X.

(3) Build the real d × d symmetry matrix A, that is,

A = (X −Xmean)′(X −Xmean). (2.17)

Here, d should be larger than the dimension of the system in terms of Taken’s
embedding theorem.

(4) Calculate the symplectic principal components of the matrix A by QR decomposi-
tion, and give the Household transform matrix Q.

(5) Construct the corresponding principal eigenvalue matrix W according to the
number k of the chosen symplectic principal components of the matrix A, where
W ⊆ Q. That is, when k = d, W = Q; otherwise, W ⊂ Q. In use, k can be chosen
according to (2.16).

(6) Get the transformed coefficients S = {S1, S2, . . . , Sm}, where

Si = W ′Xi, i = 1, . . . , m. (2.18)

(7) Reestimate the Xs from S

Xsi = WSi. (2.19)

Then, the reestimation data xs1 , xs2 , . . . , xsm can be given.
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(8) For the noisy time series, the first estimation of data is usually not good. Here, one
can go back to the step (6) and let Xi = Xs in (2.18) to do step (6) and (7) again.
Generally, the second estimated data will be better than the first estimated data.

Besides, it is necessary to note that, for the clean time series, the step (8) is unnecessary
to handle.

3. Numerical and Experimental Data

In order to investigate the feasibility of SPCA, this paper employs the chaotic Lorenz time
series as follows:

ẋ = σ
(
y − x

)
,

ẏ = γx − y − xz,

ż = −bz + xy,

xs(t) = x(t) + e(t),

(3.1)

where σ = 10, b = 8/3, γ = 28, x(0) = 5, y(0) = 5, and z(0) = 15. Here, e is a white Gaussian
measurement noise. The measurement noise e is used because all real measurements are
polluted by noise. For more details of noise notions, refer to the literature [23–26].

4. Performance Evaluation

SPCA, like PCA, not only can represent the original data by capturing the relationship
between the variables, but also can reduce the contribution of errors in the original data.
Therefore, this paper studies the performance analysis of SPCA from the two views, that is,
representation of chaotic signals and noise reduction in chaotic signals.

4.1. Representation of Chaotic Signals

We first show that, for the clean chaotic time series, SPCA can perfectly reconstruct the
original data in a high-dimensional space. We first embed the original time series to a phase
space. Considering that the dimension of the Lorenz system is 3, d of the matrix A is chosen
as 8 in our SPCA analysis. To quantify the difference between the original data and the SPCA-
filtered data, we employ the root-mean-square error (RMSE) as a measure:

RMSE =

√
1
N

∑N

i=1
[x(i) − x̂(i)]2, (4.1)

where x(i) and x̂(i) are the original data and estimated data, respectively.
When k = d, the RMSE values are lower than 10−14 (see Figure 1). In Figure 1, the

original data are generated by (3.1) when noise e = 0. The estimated data is obtained by
SPCA with k = d. The results show that the SPCA method is better than the PCA. Since the
real systems are usually unknown, it is necessary to study the effect of sampling time, data
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Figure 1: RMSE versus sampling time curves for the SPCA and PCA.
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Figure 2: RMSE versus data length curves for the SPCA and PCA.

length, and noise on the SPCA approach. From Figures 1 and 2, we can see that the sampling
time and data length have less effect on SPCA method in the case of free noise.

For analyzing noisy data, we use the percentage of principal components (PCs) to
study the occupancy rate of each PC in order to reduce noise. The percentage of PCs is defined
by

Pi =
μi∑d
i=1μi

× 100%, (4.2)

where d is the embedding dimension and μi is the ith principal component value. From
Figure 3, we find that the first largest symplectic principal component (SPC) of the SPCA
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Figure 3: The percentage of principal components for the SPCA and PCA.

is a little larger than that of the PCA. It is almost possessed of all the proportion of the
symplectic principal components. This shows that it is feasible for the SPCA to study the
principal component analysis of time series.

Next, we study the reduced space spanned by a few largest symplectic principal
components (SPCs) to estimate the chaotic Lorenz time series (see Figure 4). In Figure 4,
the data x is given with a sampling time of 0.01 from chaotic Lorenz system. The estimated
data is calculated by the first three largest SPCs. The average error and standard deviation
between the original data and the estimated data are −6.55e − 16 and 1.03e − 2, respectively.
The estimated data is very close to the original data not only in time domain (see Figure 4(a))
but also in phase space (see Figure 4(b)). We further explore the effect of sampling time in
different number of PCs. When the PCs number k = 1 and k = 7, respectively, the SPCA and
PCA give the change of RMSE values with the sampling time in Figure 5. We can see that
the RMSE values of the SPCA are smaller than those of the PCA. The sampling time has less
impact on the SPCA than the PCA. In the case of k = 7, the data length has also less effect on
the SPCA than the PCA (see Figure 6).

Comparing with PCA, the results of SPCA are better in Figures 4, 5, and 6. We can
see that the SPCA method keep the essential dynamical character of the primary time series
generated by chaotic continuous systems. These indicate that the SPCA can reflect intrinsic
nonlinear characteristics of the original time series. Moreover, the SPCA can elucidate the
dominant features underlying the observed data. This will help to retrieve dominant patterns
from the noisy data. For this, we study the feasibility of the proposed algorithm to reduce
noise by using the noisy chaotic Lorenz data.

4.2. Noise Reduction in Chaotic Signals

For the noisy Lorenz data x, the phase diagrams of the noisy and clean data are given in
Figures 7(a) and 7(b). The clean data is the chaotic Lorenz data x with noise-free (see (3.1)).
The noisy data is the chaotic Lorenz data x with Gaussian white noise of zero mean and one
variance (see (3.1)). The sampling time is 0.01. The time delay L is 11 in Figure 7. It is obvious
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Figure 5: The RMSE values versus the sampling time for the SPCA and PCA, where (a) the PCs number
k = 7; (b) k = 1.

that noise is very strong. The first denoised data is obtained in terms of the proposed SPCA
algorithm (see Figures 7(c)–7(f)). Here, we first build an attractor X with the embedding
dimension of 8. Then, the transform matrix W is constructed when k = 1. The first denoised
data is generated by (2.18) and (2.19). In Figure 7(c), the first denoised data is compared with
the noisy Lorenz data x from the view of time field. Figure 7(d) shows the corresponding
phase diagram of the first denoised data. Compared with Figure 7(a), the first denoised data
can basically give the structure of the original system. In order to obtain better results, this
denoised data is reduced noise again by step (8). We can see that, after the second noise
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Figure 6: The RMSE versus the data length for the SPCA and PCA, where k = 7. The sampling time is 0.1.

reduction, the results are greatly improved in Figures 7(e) and 7(f), respectively. The curves
of the second denoised data are better than those of the first denoised data whether in time
domain or in phase space by contrast with Figures 7(c) and 7(d). Figure 7(g) shows that the
PCA technique gives the first denoised result. We refer to our algorithm to deal with the first
denoised data again by the PCA (see Figure 7(h)).

Some of noise has been further reduced but the curve of PCA is not better than
that of SPCA in Figure 7(e). The reason is that the PCA is a linear method indeed. When
nonlinear structures have to be considered, it can be misleading, especially in the case of
a large sampling time (see Figure 8). The used program code of the PCA comes from the
TISEAN tools (http://www.mpipks-dresden.mpg.de/∼tisean/).

Figure 8 shows the variation of correlation dimension D2 with embedding dimension
d in the sampling time of 0.1 for the clean, noisy, and denoised Lorenz data. We can observe
that, for the clean and SPCA denoised data, the trend of the curves tends to smooth in the
vicinity of 2. For the noisy data, the trend of the curve is constantly increasing and has no
platform. For the PCA denoised data, the trend of the curve is also increasing and trends to a
platform with 2. However, this platform is smaller than that of SPCA. It is less effective than
the SPCA algorithm. This indicates that it is difficult for the PCA to describe the nonlinear
structure of a system, because the correlation dimension D2 manifests nonlinear properties
of chaotic systems. Here, the correlation dimension D2 is estimated by the Grassberger-
Procaccia’s algorithm [27, 28].

5. Discussion and Conclusion

In this paper, we have proposed a novel PCA based on symplectic geometry, called SPCA.
From the view of theory, this method can reflect nonlinear structure of nonlinear dynamical
systems very well because it is intrinsically nonlinear. Using chaotic Lorenz data and
calculating RMSE, percentage, correlation dimension, and phase space diagrams, we have
shown that the SPCAmethod can yieldmore reliable results for chaotic time series withwider
range of data length and sampling time, especially with short data length and undersampled
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sampling time than the classic PCA. With regard to noise reduction, SPCA algorithm is also
more effective than PCA.

We wish to emphasize that SPCA has phase delay property; that is, the second row of
SPCA-filtered data is closer to the original data. It is worth further investigation in future.
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