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This paper investigated the nonlinear stability problem of dished shallow shells under circular
line loads. We derived the dimensionless governing differential equations of dished shallow shell
under circular line loads according to the nonlinear theory of plates and shells and solved the
governing differential equations by combing the free-parameter perturbation method (FPPM)
with spline function method (SFM) to analyze the nonlinear instability modes of dished shallow
shell under circular line loads. By analyzing the nonlinear instability modes and combining with
concrete computational examples, we obtained the variation rules of the maximum deflection
area of initial instability with different geometric parameters and loading action positions and
discussed the relationship between the initial instability area and the maximum deflection area
of initial instability. The results obtained from this paper provide some theoretical basis for
engineering design and instability prediction and control of shallow-shell structures.

1. Introduction

The dished shallow shell is a thin shallow shell that is composed by circular plate and shallow
conical shell. The instability phenomenon of dished shallow shell is usually regarded as
a control signal in automatic control systems of instruments. So, the theoretical analysis
of nonlinear instability characters of dished shallow shell is necessary for the engineering
design and application. The nonlinear stability problem of shallow shell has been focused
and studied by many scholars, and some research results have been achieved. Liu and Chen
[1, 2] applied the modified iteration method to study the nonlinear stability problem of
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Figure 1: Geometrical size and load of the dished shallow shell.

dished shallow shells. Chakrabarti et al. [3] investigated the nonlinear stability of a shallow
unsymmetrical heated orthotropic sandwich shell of double curvature with orthotropic core.
Tani [4] studied the large deflection instability problem of truncated conical shells under
compound loads by using finite differencemethod. Xu et al. [5] studied the nonlinear stability
problem of truncated conical shell with variable thickness under uniformly distributed loads
by applying modified iteration method. Ramsey [6] and H. Wang and J.-K. Wang [7] applied
perturbationmethod to investigate the plastic instability problem of conical shells under axial
pressure and the nonlinear instability problem of thin shallow conical shell under uniformly
distributed loads. The existing research mainly focused on the characteristic equation that
was constructed by the external load and the center deflection. The reason for the fact that
they choose the center deflection to construct the characteristic equation is that they believe
the instability characteristics firstly appear at the center point of the shallow shell, and they
can discuss the overall stability according to this characteristic equation. Very few people
discussed the nonlinear local stability problem of shallow shell, which is where does the
shallow shell under external loads start to lose stability? (i.e., where is the initial instability
area?). Only Zheng and Chen [8, 9] have studied the nonlinear local stability of dished
shallow shell. However, so far, researchers have not presented studies of nonlinear instability
modes of dished shallow shell or investigated the internal relationship between the initial
instability area and the instability modes.

In this paper, the free-parameter perturbationmethod [10] and spline functionmethod
[11] are combined to analyze the nonlinear instability modes of dished shallow shell
under circular line loads. The relationships between the maximum deflection area of initial
instability and the geometrical parameter and loading position are studied when the simply
supported dished shallow shell start to lose stability, and the internal relationships between
the initial instability area and the initial instability modes are investigated. The research
results obtain some valuable and significant conclusions for engineering application and
theoretical research and provide some basis for engineering design and instability prediction
and control.

2. Dimensionless Basic Equations

The dished shallow shell is shown in Figure 1. The radius of the bottom circular plate plane
is a, the radius of the upper circular plate is b2, the thickness of the dished shallow shell is h,
and the radius of axisymmetric circular line load is b1.
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Choose the dimensionless quantities as follows:

W =
w

h
·
√
12 · (1 − ν2), k =

√
12 · (1 − ν2) · f

h
, γ ′ =

b1
a
, γ =

b2
a
, θ =

dW

dρ
,

S = −a
2 · ρ ·Nr

E · h3 · 12 ·
(
1 − ν2

)
, ρ =

r

a
, P =

a2 · b2 · P ′

E · h4 · 12
(
1 − ν2

)
·
√
3(1 − ν2),

(2.1)

wherew denotes deflection, E denotes Young’s modulus,Nr denotes radial membrane force,
r denotes radial coordinate value, v denotes Poisson’s ratio, P ′ is load parameter, and f
denotes the vector height of dished shallow shell: f = a · tgα.

Introducing Heaviside step function:

u
(
ρ − γ) =

⎧
⎨
⎩
1

(
ρ ≥ γ),

0
(
ρ < γ

)
.

(2.2)

The dimensionless governing differential equations of the dished shallow shells under
circular line loads [1] are

L
(
ρθ

)
= P · ρ2 − S · [k · u(ρ − γ) + θ],

L
(
ρS

)
= k · θ · u(ρ − γ) + 1

2
θ2,

(2.3)

where L(· · · ) = ρ · (d/dρ) · (1/ρ) · (d/dρ)(· · · ).
The corresponding boundary conditions are

ρ = 0 : θ = 0, S = 0,

ρ = 1 :
dθ

dρ
+ ν1 · θ = 0,

dS

dρ
− ν2 · S = 0,

(2.4)

where the values of v1 and v2 are related to the concrete boundary conditions, and for the
general boundary conditions, their values are as follows [10]:

rigidly clamped edge: ν1 = ∞, ν2 = ν,
clamped but free slip edge: ν1 = ∞, ν2 = ∞,
simply supported but free slip edge: ν1 = ν, ν2 = ∞,
simply supported: ν1 = ν, ν2 = ν.
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3. The Free-Parameter Perturbation Expansion of
Dimensionless Equation

Expand the dimensionless load P , angle θ, and radial membrane force S as the following
forms with respect to the perturbation parameter ε:

P = P1ε + P2ε2 + P3ε3 + · · · + Pnεn + o
(
εn+1

)
, (3.1)

θ = θ1ε + θ2ε2 + θ3ε3 + · · · + θnεn + o
(
εn+1

)
, (3.2)

S = S1ε + S2ε
2 + S3ε

3 + · · · + Snεn + o
(
εn+1

)
, (3.3)

where Pi (i = 1, 2, . . . , n) are undetermined constant coefficients and θi and Si (i = 1, 2, . . . , n)
are undetermined coefficients with respect to ρ.

Substituting (3.1)–(3.3) into (2.3) and (2.4) and comparing the coefficient of the same
order power of ε, we can obtain the following stepwise approximate equations:

when the coefficients of ε1 are equal,

L
(
ρθ1

)
= P1 · F

(
ρ
) − S1 · k · u(ρ − γ),

L
(
ρS1

)
= θ1 · k · u(ρ − γ),

(3.4)

when the coefficients of ε2 are equal,

L
(
ρθ2

)
= P2 · F

(
ρ
) − S2 · k · u(ρ − γ) − S1 · θ1,

L
(
ρS2

)
= θ2 · k · u(ρ − γ) + 1

2
· θ21 ,

(3.5)

when the coefficients of ε3 are equal,

L
(
ρθ3

)
= P3 · F

(
ρ
) − S3 · k · u(ρ − γ) − (S1 · θ2 + S2 · θ1),

L
(
ρS3

)
= θ3 · k · u(ρ − γ) + θ1 · θ2.

(3.6)

According to the above derivation method, the four and more than four order power
stepwise approximate equations can be obtained, but they will not be discussed here.

The corresponding boundary conditions for (3.4)–(3.6) can be expressed as follows:

ρ = 0 : θi = 0, Si = 0,

ρ = 1 :
dθi
dρ

+ ν1 · θi = 0,
dSi
dρ

− ν2 · Si = 0,
(3.7)

where i = 1, 2, 3.
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Assume that ϕi(ρ) and ψi(ρ) are the functions that satisfy the following equations:

L
(
ρϕ1

)
= ρ2 − k · u(ρ − γ) · ψ1,

L
(
ρψ1

)
= k · u(ρ − γ) · ϕ1,

(3.8)

L
(
ρϕ2

)
= −k · u(ρ − γ) · ψ2 − ψ1 · ϕ1,

L
(
ρψ2

)
= k · u(ρ − γ) · ϕ2 +

ϕ2
1

2
,

(3.9)

L
(
ρϕ3

)
= −k · u(ρ − γ) · ψ3 −

(
ψ1 · ϕ2 + ψ2 · ϕ1

)
,

L
(
ρψ1

)
= k · u(ρ − γ) · ϕ3 + ϕ1 · ϕ2,

(3.10)

ϕi(ρ) and ψi(ρ) satisfy the following boundary conditions:

ρ = 0 : ϕi = 0, ψi = 0,

ρ = 1 :
dϕi
dρ

+ ν1 · ϕi = 0,
dψi
dρ

− ν2 · ψi = 0,
(3.11)

where i = 1, 2, 3.
We can prove the following formulas are correct according to (3.8)–(3.11):

θ1 = P1 · ϕ1, θ2 = P2 · ϕ1 + P 2
1 · ϕ2, θ3 = P3 · ϕ1 + 2P1 · P2 · ϕ2 + P 3

1 · ϕ3,

S1 = P1 · ψ1, S2 = P2 · ψ1 + P 2
1 · ψ2, S3 = P3 · ψ1 + 2P1 · P2 · ψ2 + P 3

1 · ψ3.
(3.12)

Substituting θi and Si (i = 1, 2, 3) into (3.2) and (3.3) yields

θ = P1ϕ1ε +
(
P2ϕ1 + P 2

1ϕ2

)
ε2 +

(
P3ϕ1 + 2P1P2ϕ2 + P 3

1ϕ3

)
ε3, (3.13)

S = P1ψ1ε +
(
P2ψ1 + P 2

1ψ2

)
ε2 +

(
P3ψ1 + 2P1P2ψ2 + P 3

1ψ3

)
ε3. (3.14)

In (3.13) and (3.14), the constant coefficients Pi (i = 1, 2, 3) and perturbation parameter ε
are unknown quantities. Pi (i = 1, 2, 3) can be determined by giving ε a specific definition
according to the traditional perturbation method, but we will not give ε a specific definition
in this paper.

4. Spline Function Solution to Functions ϕi(ρ) and ψi(ρ)

Cubic multiple nodes spline function is applied to solve (3.8)–(3.10). Cubic multiple nodes
spline function was widely applied to solve nonlinear equations [11].
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Transforming (3.8) into integral forms yields

ϕ1
(
ρ
)
= −ρ

2

∫1

0
G1

(
ρ, ξ

) · ξ · u(ξ − γ1
)
dξ +

ρ

2
·
∫1

0
G1

(
ρ, ξ

) · k · ξ · u(ξ − γ2
) · ψ1(ξ)dξ, (4.1)

ψ1
(
ρ
)
= −ρ

2
·
∫1

0
G2

(
ρ, ξ

) · k · ξ · u(ξ − γ2
) · ϕ1(ξ)dξ. (4.2)

Substituting (4.2) into (4.1) yields the following nonlinear integral equations:

ϕ1
(
ρ
)
= F

(
ρ
)
+
∫1

0
K
(
ρ, ξ

) · ϕ1(ξ)dξ, (4.3)

where

F
(
ρ
)
= −ρ

2

∫1

0
G1

(
ρ, ξ

) · ξ · u(ξ − γ1
)
dξ, (4.4)

K
(
ρ, ξ

)
= −1

4

∫1

0
k2 · ρ · ξ · η2 · u(η − γ2

) · u(ξ − γ2
) ·G1

(
ρ, η

) ·G2
(
η, ξ

)
dη, (4.5)

Gi

(
ρ, ξ

)
=

⎧
⎪⎪⎨
⎪⎪⎩

1
ρ2

+ λi, 0 < ξ ≤ ρ
1
ξ2

+ λi, ρ < ξ < 1
(i = 1, 2), (4.6)

λ1 =
1 − ν1
1 + ν1

, λ2 =
1 + ν2
1 − ν2 .

(4.7)

Because F(ρ) and K(ρ, ξ) are continuous on interval [0, 1] and square interval 0 ≤
ρ, ξ ≤ 1, respectively, the consistent approximation of F(ρ) and K(ρ, ξ) can be obtained by
using polynomials on the two intervals.

We make equidistant node division on interval [0, 1] and square interval 0 ≤ ρ, ξ ≤ 1,
the node values are ρi and (ρi, ξi), where ρi = i/N, ξj = j/M (i = 0, 1, . . . ,N; j = 0, 1, . . . ,M),
andN andM are the divided node number.

We use K̃(ρ, ξ) and F̃(ρ) to replace F(ρ) andK(ρ, ξ) approximately, then the consistent
approximation of F(ρ) and K(ρ, ξ) are as follows:

K̃
(
ρ, ξ

)
=

N∑
i=0

M∑
j=0

Kij ×
N

φi
(
ρ
) ×

M

φj(ξ),

F̃
(
ρ
)
=

N∑
i=0

Fi ×
N

φi
(
ρ
)
,

(4.8)

where Kij = K(ρi, ξj), Fi = F(ρi), Kij , and Fi denote the function values of corresponding
nodes. φi(ρ) and φj(ξ) are cubic multiple nodes spline functions.
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Assume that the solution of ϕ1(ρ) is

ϕ1
(
ρ
)
=

N∑
i=0

ϕ1
(
ρi
) · φi

(
ρ
)
. (4.9)

Substituting (4.8)–(4.9) into (4.3) and making coefficients of φi(ρ) (i = 0, 1, . . . ,N) are
equal yields the following linear equations:

ϕ1
(
ρi
) −

N∑
k=0

ϕ1
(
ρk
) · aik = Fi, (4.10)

where

aik =
M∑
j=0

Kij · cjk,

cjk =
∫1

0
φj(ξ) · φk(ξ)dξ,

(4.11)

ϕ1(ρi) can be obtained by solving linear equations (4.10). Substituting ϕ1(ρi) into (4.9) can
obtain an approximate solution of ϕ1(ρ). We can obtain the approximate solution of (4.2) by
using the same method

ψ1
(
ρ
)
=

N∑
j=0

ψ1
(
ρj
) · φj

(
ρ
)
. (4.12)

Adopting the same method and the data that have been figured out, we also can obtain
solutions of (3.9) and (3.10). Therefore, all the approximate solutions of ϕi(ρ) and ψi(ρ) are as
follows:

ϕi
(
ρ
)
=

N∑
j=0

ϕi
(
ρj
) · φj

(
ρ
)
, (4.13)

ψi
(
ρ
)
=

N∑
j=0

ψi
(
ρj
) · φj

(
ρ
)
. (4.14)

5. The Determination of Dimensionless Critical Load and Deflection

5.1. The Determination of Dimensionless Critical Load

Assume that the dimensionless critical load P and deflection W satisfy the following
equations:

P = α1
(
ρ
) ·W(

ρ
)
+ α2

(
ρ
) ·W2(ρ) + α3

(
ρ
) ·W3(ρ) + o

(
W4(ρ)

)
, (5.1)
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W(ρ) can be obtained according to (3.13)

W
(
ρ
)
= P1 · Y1

(
ρ
) · ε +

[
P2 · Y1

(
ρ
)
+ P 2

1 · Y2
(
ρ
)] · ε2

+
[
P3 · Y1

(
ρ
)
+ 2P1 · P2 · Y2

(
ρ
)
+ P 3

1 · Y3
(
ρ
)] · ε3 + o

(
ε4
)
,

(5.2)

where

Yi
(
ρ
)
=
∫ρ

1
ϕi
(
ρ
)
dρ (i = 1, 2, 3). (5.3)

Substituting (5.2) into (4.1), and omitting high-order minuteness that more than four
orders, and comparing with (3.1) yield expressions of αi(ρ):

α1
(
ρ
)
= Y−1

1

(
ρ
)
,

α2
(
ρ
)
= −Y−3

1

(
ρ
) · Y2

(
ρ
)
,

α3
(
ρ
)
= −Y−4

1

(
ρ
) · Y3

(
ρ
)
+ 2Y−5

1

(
ρ
) · Y 2

2
(
ρ
)
.

(5.4)

ϕi(ρ) (i = 1, 2, 3) can be figured out according to (4.13) and values of αi(ρ) (i = 1, 2, 3)
can be obtained by substituting concrete values of ρ into (5.3) and (5.4). Then, we can obtain
the characteristic equation (5.1) that is determined by deflections of different points on shell
surface. Therefore, we obtained the solution of (3.13) and (3.14) such as (5.1) while did
not determine the perturbation parameter ε. Now, we can calculate the critical geometric
parameter kcr and critical load Pcr according to the following steps.

Firstly, substituting concrete values of k into extremum condition dP/dW = 0 yields

Wcr =
α2 ±

√
α22 − 3 · α1 · α2
3 · α3 . (5.5)

The corresponding formula of critical force is

Pcr = α1 ·Wcr + α2 ·W2
cr + α3 ·W3

cr. (5.6)

For the dished shallow shell whose truncated conical ratio γ and geometric condition
k are determined values, each value of ρ have a corresponding group of concrete αi(ρ) (i =
1, 2, 3). Then we can find values of k that satisfy the following condition according to trial
method.

α22 − 3α1 · α3 = 0. (5.7)

Here, k, namely (5.6), is significant. That is, only k ≥ kcr with (5.6) is significant, and the
instability phenomenon is existent, namely, the jumping phenomenon of dished shallow shell
happen.
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Comparing all corresponding critical loads of values of ρ, the minimum critical load is
the critical load for initial instability.

5.2. The Determination of Deflection of Each Point under
Dimensionless Loads

For the dished shallow shell whose truncated conical ratio γ and geometric condition k are
determined values, the elastic characteristic equation of dimensionless load and deflection
(5.1) is permanently significant when P is equal or less than the initial instability critical load.

For the dished shallow shell whose geometric condition is k, each value of ρ has a
corresponding group of concrete αi(ρ) (i = 1, 2, 3). Then, we can construct a concrete function
P with respect toW(ρ).

From the analysis of (5.1), we know that for concrete value of ρ, αi(ρ) (i = 1, 2, 3) is a
determined value. Here, if P is a determined value, (5.1) is a standard simple cubic equation.
Therefore, we can obtain the deflection valueW(ρ) according to the solvingmethod of simple
cubic equations supplied in paper [11]. That is, we can get the deflection of each point when
the external load is determined.

If we figure out the deflection of each point when the geometric condition is k and
the external load is initial instability critical load, we can determine the corresponding initial
instability mode of the dished shallow shell under determined geometric condition and initial
instability critical load.

If we figure out the deflection of each point under corresponding external load when
the geometric condition is k and the external load equal or less than the initial instability
critical load, we can obtain the deflection curve of the dished shallow shell under specific
geometric condition and external load.

6. Computational Examples and Analysis of Numerical Results

In the following computational example, the number of fitting point isM =N = 100 and the
Poisson’s ratio is v = 0.3.

For the dished shallow shell under circular line load p′ whose boundary condition is
simply supported, we take γ = 0.3 and γ ′ = 0.2, 0.3, 0.5, then v1 = 0.3, v2 = 0.3. We can figure
out λ1 = 0.538461, λ2 = 1.857143 according to (4.7).

The characteristic equation (5.1) constructed by deflection of arbitrary point is

P = α1
(
ρ
) ·W(

ρ
)
+ α2

(
ρ
) ·W2(ρ) + α3

(
ρ
) ·W3(ρ). (6.1)

The corresponding Pcr − ρ curves of different values of k are shown in Figures 2(a),
3(a), and 4(a) while truncated conical ratio γ = 0.3 and γ ′ = 0.2, 0.3, 0.5, respectively. The
abscissa value denotes the radius value of the pint, where the perturbation parameter is
selected and the ordinate value denotes the corresponding value of critical load in Figures
2(a), 3(a), and 4(a). The abscissa value of the lowest point of Pcr-ρ curve is the radius value
of initial instability point of dished shallow shell. The ordinate value of the lowest point of
Pcr-ρ curve is the initial instability critical load of dished shallow shell.

The corresponding W(ρ)-ρ curves of different values of k are shown in Figures 2(b),
3(b), and 4(b), while P increase progressively and truncated conical ratio γ = 0.3 and
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γ ′ = 0.2, 0.3, 0.5, respectively. The abscissa value denotes the radius value of the pint, where
the perturbation parameter is selected and the ordinate value denotes the dimensionless
deflection value in Figures 2(b), 3(b), and 4(b). The abscissa value of the highest point of
W(ρ) − ρ curve is the radius value of the largest deflection point of dished shallow shell. The
correspondingW(ρ)−ρ curve is the initial instability mode when P is initial instability critical
load.

In order to explain Figures 2(a) and 2(b), we listed the initial instability and maximum
deflection position of the dished shallow shell under different geometric parameters in
Table 1.

We can obtain the following conclusions from Figures 2(a) and 2(b) and Table 1.

(1) When the circular line load acted on the circular plate section, the initial instability
area of dished shallow shell moved from the center of circular plate to the edge of
dished shallow shell with the increase of k while 3 ≤ k ≤ 7. The initial instability
area of dished shallow shell moved from the edge of dished shallow shell to the
edge of circular plate with the increase of k while k > 7.

(2) With the stepwise increase of external load, the increase amplitude of deflection of
each point enlarged, but the area of maximum deflection almost did not move, and
the deflection where the circular line load acted on did not fluctuate markedly. The
maximum deflection area of dished shallow shell under external load appeared at
the center of circular plate (ρ = 0) while k ≥ 3.

(3) When the external load got close to the initial instability critical load, the increase
amplitude of deflection of each point near the initial instability area was significant.
The maximum deflection area of initial instability appeared at the center of circular
plate (ρ = 0) while k ≥ 3.

As the supplementary specification data for Figures 3(a) and 3(b), the initial instability
and maximum deflection position of the dished shallow shell under different geometric
parameters are listed in Table 2.

We can obtain the following conclusions from Figures 3(a) and 3(b) and Table 2.

(1) When the circular line load acted on the edge of circular plate, the initial instability
area of dished shallow shell moved from the loading action position to the edge of
dished shallow shell with the increase of kwhile 4 ≤ k ≤ 7, and the initial instability
area of dished shallow shell moved from the edge of dished shallow shell to the
center of circular plate with the increase of k while k > 7.

(2) With the stepwise increase of external load, the increase amplitude of deflection of
each point was enlarged, but the maximum deflection area almost did not move,
and the deflection where the circular line load acted on did not fluctuate markedly.
Themaximum deflection area of dished shallow shell under external load appeared
at the center of circular plate (ρ = 0) while k ≥ 4.

(3) When the external load got close to the initial instability critical load, the increase
amplitude of deflection of each point near the initial instability area was significant.
The maximum deflection area of initial instability appeared at the center of circular
plate (ρ = 0) while k ≥ 4.
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Figure 2

Table 1: The initial instability and maximum deflection position under different geometric parameters
(γ = 0.3, γ ′ = 0.2).

The geometric parameter: k = 3 4 5 6 7 8 9 10

The initial instability position: ρ = 0.00 0.16 0.22 0.98 0.99 0.56 0.44 0.38

The maximum deflection position: ρ = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The geometric parameter: k = 11 12 13 14 15 16 17 18

The initial instability position: ρ = 0.36 0.34 0.34 0.34 0.34 0.34 0.34 0.34

The maximum deflection position: ρ = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Likewise, in order to explain Figures 4(a) and 4(b), we listed the initial instability
and maximum deflection position of the dished shallow shell under different geometric
parameters in Table 3.
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We can obtain the following conclusions from Figures 4(a) and 4(b) and Table 3.

(1) When the circular line load acted on the conical shell section, the initial instability
area moved from the loading action position to the center of circular plate with the
increase of k while 4 ≤ k ≤ 7; the initial instability area appeared at the center of
circular plate while 7 ≤ k ≤ 9; the initial instability area moved from the center
to the edge of circular plate with the increase of k while 9 < k ≤ 12; the initial
instability area moved from the edge to the center of circular plate with the increase
of k while k > 12.

(2) With the stepwise increase of external load, the increase amplitude of deflection of
each point was enlarged, but the maximum deflection area under each step load
almost did not move. The maximum deflection area of dished shallow shell under
external load appeared at the center of circular plate (ρ = 0) while 4 ≤ k < 7, and
the maximum deflection area appeared at the loading action position while k ≥ 7.

(3) When the external load was close to the initial instability critical load, the increase
amplitude of deflection of each point near the initial instability area was significant.
The maximum deflection area of initial instability appeared at the center of circular
plate (ρ = 0) while 4 ≤ k ≤ 5 and 6 < k ≤ 8; the maximum deflection area appeared
at the loading action position and its adjacent area while 5 < k ≤ 6 and k > 8.
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Figure 4

Table 2: The initial instability and maximum deflection position under different geometric parameters
(γ = 0.3, γ ′ = 0.3).

The geometric parameter: k = 4 5 6 7 8 9 10 11

The initial instability position: ρ = 0.30 0.34 0.86 0.98 0.80 0.26 0.18 0.12

The maximum deflection position: ρ = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The geometric parameter: k = 12 13 14 15 16 17 18 19

The initial instability position: ρ = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The maximum deflection position: ρ = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7. Conclusions

This paper obtained the nonlinear instability modes of dished shallow shell under circular
line load by applying free-parameter perturbation method. By analyzing the nonlinear
instability modes, we obtained the following conclusions.
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Table 3: The initial instability and maximum deflection position under different geometric parameters
(γ = 0.3, γ ′ = 0.5).

The geometric parameter: k = 4 5 6 7 8 9 10 11

The initial instability position: ρ = 0.50 0.48 0.44 0.00 0.00 0.00 0.22 0.26

The maximum deflection position: ρ = 0.00 0.00 0.42 0.00 0.00 0.46 0.48 0.50

The geometric parameter: k = 12 13 14 15 16 17 18 19

The initial instability position: ρ = 0.28 0.26 0.24 0.22 0.20 0.18 0.16 0.14

The maximum deflection position: ρ = 0.50 0.52 0.52 0.52 0.52 0.52 0.52 0.52

(1) When the circular line load act on the circular plate, the edge of circular plate, and
the conical shell, respectively, and the geometric parameter k is relatively small, the
initial instability area of dished shallow shell appears at the loading action position,
but the maximum deflection area of initial instability appear at the center of circular
plate (ρ = 0).

(2) The initial instability area of dished shallow shell under circular line load does not
always appear at the loading action position. The initial instability area of dished
shallow with different γ and γ ′ presents different rules with the variation of k when
k is relatively large. The maximum deflection area of initial instability appears at
the center of circular plate (ρ = 0) when the circular line load act on the circular
plate, the edge of circular plate, and the conical shell, respectively. The maximum
deflection area of initial instability appears at the loading action position when the
circular line load act on the conical shell and k is relatively large.

(3) With the stepwise increase of external load, the increase amplitude of deflection
of each point of dished shallow shell was enlarged. Under each step load, the
maximum deflection area of dished shallow shell almost does not move, and the
deflection where the circular line load act on does not fluctuate markedly, but the
maximum deflection area of initial instability will move from its lateral side to itself
when the circular line load act on the conical shell and γ is relatively large. The
increase amplitude of deflection of each point near the initial instability area is
significant when the external load is close to the initial instability critical load.

(4) The maximum deflection area of dished shallow shell presents different rules with
the variation of k, γ , and γ ′. But, when the external load gets close to the initial
instability critical load, the increase amplitude of deflection of each point near
the initial instability area is significant, so the maximum deflection area of initial
instability is not always the maximum deflection area under the previous load.

(5) When the geometric parameter k is a determined value, the critical load when
the circular line load act on the conical shell is larger than the critical load when
the circular line load act on the circular plate and the edge of circular plate, but
the maximum deflection of initial instability when the circular line load act on the
conical shell is smaller than the maximum deflection of initial instability when the
circular line load act on the circular plate and the edge of circular plate. That is, the
critical load increase with the increase of γ ′, but the maximum deflection of initial
instability decrease with the increase of γ ′.
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These conclusions provide some theoretical basis for engineering design and
instability prediction and control of shallow-shell structures.
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