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This paper considers a Legendre polynomials spectral approximation for the infinite-dimensional
Hamiltonian systems. As a consequence, the Legendre polynomials spectral semidiscrete system
is a Hamiltonian system for the Hamiltonian system whose Hamiltonian operator is a constant
differential operator.

1. Introduction

The numerical method for infinite-dimensional Hamiltonian Systems has been widely
developed. One of the great challenges in the numerical analysis of PDEs is the development
of robust stable numerical algorithms for Hamiltonian PDEs. For the numerical analysis,
we always look for those discretizations which can preserve as much as possible some
intrinsic properties of Hamiltonian equations. In fact, for Hamiltonian systems, the most
important is its Hamiltonian structure. From this point of view, some semidiscrete numerical
methods which are based on spectral methods have been developed. Spectral methods have
proved to be particularly useful in infinite-dimensional Hamiltonian. Wang [1] discussed the
semidiscrete Fourier spectral approximation of infinite-dimensional Hamiltonian systems,
Hamiltonian of infinite-dimensional Hamiltonian systems, and Hamiltonian structure. Shen
[2] studied the dual-Petrov-Galerbin method for third and higher odd-order equations. Ma
and Sun [3] deliberated the third-order equations by using an interesting Legendre-Petrov-
Galerbin method. So we consider that the Legendre polynomials basis is very important to
analysis of the discretization of Hamiltonian systems.
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In this paper, we consider a Legendre polynomials spectral approximation for the KdV
equation and the wave equation. As a consequence, we show that the Legendre polynomials
spectral semidiscrete system is also a Hamiltonian system for the Hamiltonian system whose
Hamiltonian operator is a constant differential operator.

The paper is organized as follows. In Section 2, we give a brief description of infinite-
dimensional Hamiltonian equations. In Section 3, we introduce semidiscrete Legendre
polynomials spectral approximation. In the last two sections, we consider the Legendre
polynomials spectral approximation for the boundary value problem of the KdV equation
and the wave equation. Moreover, we give the conclusion about the Hamiltonian structure.

2. A Brief Description of Infinite-Dimensional Hamiltonian Equations

First, we get familiar with some basic knowledge about the infinite-dimensional Hamilton
system.

Let the setA = {H[u] ≡ H(x, u(n)) |His a infinite differentiable smooth function}; here
u(n) = (u1T , u2T , . . . , unT)T , and ui denotes the ith derivative of u. To each H[u] ∈ A, there
exists a functional H =

∫
H[u]dx, and the corresponding set of all functional is F = {H =∫

H[u]dx|H[u] ∈ A}. δH/δu is the variational derivative of the functional H ∈ F. With the
aid of the differential operator D, we can define a binary operator on F:

{H, G} =
∫
δH
δu

DδG
δu

, ∀H, G ∈ F. (2.1)

If this binary operator satisfies the following conditions:

(i) { , } is antisymmetric,

{H, G} = −{G, H}, (2.2)

(ii) { , } is bilinear,
{
αH + βG, K} = α{H, K} + β{G, K}, ∀α, β ∈ R, (2.3)

(iii) { , } satisfies the Jacobi identity,

{{H, G}, K} + {{G, K}, H} + {{K, H}, G} = 0, (2.4)

for all functionalsH, G, K ∈ F, then, it is called a Poisson bracket. In this case,D is
called Hamiltonian operator.

For given a Hamiltonian functional H ∈ F and a Hamiltonian operator D, Hamilto-
nian equation takes the following form:

ut = DδH
δu

. (2.5)

This evolution equation is called an infinite-dimensional Hamiltonian system.
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Consider the infinite-dimensional Hamiltonian system of the KdV equation:

ut + 6uux + uxxx = 0. (2.6)

It has the Hamiltonian structure

ut = DδH[u], (2.7)

where D = ∂x is the Hamiltonian operator and

H[u] =
∫1

−1

(
1
2
u2x − u3

)
dx (2.8)

is the Hamiltonian functional.

3. Semidiscrete Legendre Polynomials Spectral Approximation

Let Ln(x) be the nth degree Legendre polynomial. The Legendre polynomials satisfy the
three-term recurrence relation:

L0(x) = 1, L1(x) = x,

(n + 1)Ln+1(x) = (2n + 1)xLn(x) − nLn−1(x), n ≥ 1
(3.1)

and the orthogonality relation:

∫1

−1
Lk(x)Lj(x)dx =

1
k + (1/2)

δkj ,

Ln(±1) = (±1)n.
(3.2)

As suggested in [4], the choice of compact combinations of orthogonal polynomials
as basis functions to minimize the bandwidth and the conditions number of the coefficient
matrix is very important. Let {Ln} be a sequence of orthogonal polynomials. As a general rule,
for differential equations with m boundary conditions, our task is to look for basis functions
in the form

φk(x) = Lk(x) +
m∑

j=1

a
(k)
j Lk+j(x), (3.3)

where a(k)j (j = 1, 2, . . . , m) are chosen so that φk(x) satisfy the m homogeneous boundary
conditions.
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Suppose that U = {H(x)|H(x) is a smooth function, x ∈ [−1, 1]}, for the fixed homo-
geneous boundary conditions

H(−1) = H(1) = 0. (3.4)

Asm = 2, (3.3) has the form

φk(x) = Lk(x) + a1Lk+1(x) + a2Lk+2(x). (3.5)

Using the basic properties of Legendre polynomials and the boundary value conditions,
obviously

φk(−1) = 0, φk(1) = 0. (3.6)

We can verify readily that

φk(x) = Lk(x) − Lk+2(x). (3.7)

Easily, we obtain φ0(x), φ1(x), φ2(x), . . .. The L2-inner product on U is defined by

(
p, q

)
=
∫1

−1
p · qdx, ∀p, q ∈ U. (3.8)

The basis functions φk(x) (k = 1, 2, . . .) can be orthogonalized standard on the L2-
inner product. Thus, we can get the sequence of standard orthogonal basis functions ψk(x).

After carefully calculation, the orthogonal basis is

ψ0 =
1
4

(√
15 − 3x2

)
,

ψ1 =
1
4

(√
105x −

√
105x3

)
,

ψ2 =
1
8

(
−3

√
5 + 24

√
5x2 − 21

√
5x4
)
,

...

(3.9)

Set

B = span
{
ψ0, ψ1, ψ2, . . . , ψN

} ⊂ U, (3.10)

and set P as an orthogonal projection. P : U → B,

u −→ u = Pu = a0ψ0 + a1ψ1 + · · · + aNψN, (3.11)
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where

an =
∫1

−1
u(x)ψn(x)dx, n = 1, 2, 3, . . . . (3.12)

Denote B̂ = {û = (a0, a1, . . . , aN)T ∈ RN+1}. The inner product of B̂ is usually denoted
by Euclidean inner 〈·, ·〉, that is,

〈
p̂, q̂

〉
= a0 · ã0 + a1 · ã1 + a2 · ã2 + · · · + aN · ãN, ∀p̂, q̂ ∈ B̂, (3.13)

where q̂ = (ã0, ã1, ã2, . . . , ãN)T . Set I : B̂ → B,

û −→ u = Iû = a0ψ0 + a1ψ1 + · · · + aN. (3.14)

Denote P̂ = I−1 ◦ P : U → B̂,

u −→ P̂u = (a0, a1, a2, . . . , aN)T . (3.15)

Hamiltonian equation

ut = DδH
δu

(3.16)

has the special Poisson structure; so we can exploit it to design numerical approximations.
We can discretize Hamiltonian operator D and Hamiltonian functionals; then a numerical
bracket can be defined.

The discretization of the Hamiltonian operator D is

D̂ = P̂ ◦ D ◦ I : B̂ −→ B̂,

D̂(p̂)q̂ = p̂ ◦ D̂(Ip̂) · Iq̂, ∀p̂, q̂ ∈ B̂.
(3.17)

The discretization of a functionalH(x) in U is

Ĥ(û) =
∫1

−1
H(Iû)dx, ∀û ∈ B̂. (3.18)

LetU be the set of discrete functionals; then we can define a bracket onU,

{
Ĥ, Ĝ

}
= ∇ĤD̂

(
∇Ĝ
)T
,

∇Ĥ =

(
∂Ĥ

∂û1
,
∂Ĥ

∂û2
, . . . ,

∂Ĥ

∂ûN

)

,

(3.19)

which is an approximation of bracket {H, G}.
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Now we define the semidiscrete approximative equation in B̂ of the infinite-dimen-

sional Hamiltonian system ut = DδH
δu

as

dû

dt
= D̂(∇H(û))T . (3.20)

If D̂ is still a Hamiltonian operator, then (3.20) is exactly a finite-dimensional Hamilto-
nian system. The function Ĥ(Pu) is a conservation law if and only if (3.20) always preserves
conservation law.

4. Legendre Polynomials Spectral Approximation for the Boundary
Value Problem of the KdV Equation

We consider the KdV equation with the fixed boundary conditions discussed above:

ut + 6uux + uxxx = 0, x ∈ (−1, 1), t ∈ [0, T],
u(−1, t) = u(1, t) = 0, t ∈ [0, T].

(4.1)

The KdV equation can be written as Hamiltonian form:

ut = ∂x
δH1

δu
, (4.2)

where the Hamiltonian operator is D1 = ∂x and the the Hamiltonian functional is H1 =
∫1
−1((1/2)u

2
x − u3)dx.

By above analysis and the chosen orthogonal basis, forN = 2,

D̂1 =

⎛

⎜
⎜⎜⎜
⎜⎜
⎝

0
2
√
7
2

0

−
√
7
2

0

√
21
2

0 −
√
21
2

0

⎞

⎟
⎟⎟⎟
⎟⎟
⎠

,

Ĥ1(û) =
∫1

−1

[
1
2
(
a0ψ0 + a1ψ1 + a2ψ2

)2
x −
(
a0ψ0 + a1ψ1 + a2ψ2

)3
]
dx

=
5
4
a20 +

21
4
a21 +

√
3
2
a0a2 +

51
4
a22 +

3
√
15

14
a30 −

3
√
15

14
a20a2

+
15

√
5

22
a21a2 +

423
√
5

2002
a32 +

√
15
2

a0a
2
1 +

69
√
5

154
a0a

2
2.

(4.3)
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Then

∇ĤT
1 =

⎛

⎜
⎜⎜⎜
⎜⎜
⎝

5
2
a0 +

√
3
2
a2 +

9
√
15

14
a20 −

3
√
5

7
a0a2 +

√
15
2

a21 +
√
5

154
a22

21
2
a1 +

15
√
5

11
a1a2 +

√
15
7

a0a1√
3
2
a0 +

51
2
a2 − 3

√
5

14
a20 +

15
√
5

22
a21 +

1269
√
5

2002
a22 +

69
√
5

77
a0a2

⎞

⎟
⎟⎟⎟
⎟⎟
⎠

. (4.4)

This equations can be written as Hamiltonian form in another way, that is,

ut = (∂xxx + 4u∂x + 2uxI)
δH2

δu
, (4.5)

where the Hamiltonian operator is D2 = ∂xxx + 4u∂x + 2uxI abd the Hamiltonian functional is
H2 =

∫1
−1(−(1/2)u2)dx.
In the same theory, forN = 2, we can get

D̂2 =

⎛

⎜
⎜⎜⎜
⎜⎜
⎝

−2
√

15
7
a1 −13

√
7

2
+ 4
√

15
7
a0 − 6

√
5
7
a2 10

√
5
7
a1

−
√
7 − 2

√
15
7
a0 − 4

√
5
7
a2 0 R

−4
√

5
7
a1 −5

√
21
2

− 6
√

5
7
a0 − 16

11

√
15
7
a2

8
11

√
15
7
a1

⎞

⎟
⎟⎟⎟
⎟⎟
⎠

Ĥ2(û) =
∫1

−1

[
−1
2
(
a0ψ0 + a1ψ1 + a2ψ2

)2
]
dx = −1

2

(
a20 + a

2
1 + a

2
2

)

(4.6)

where R denotes − 20
√
21 + 10

√
5
7
a0 +

8
10

√
15
7
a2.

Then

∇ĤT
2 = (−a0, −a1, −a2). (4.7)

The corresponding semidiscrete approximation is

dû

dt
= D̂(∇H(û))T , û = (a0, a1, a2)T . (4.8)

It is easy to verify that D̂1 is Hamiltonian operator; so the approximating system can
be written as

dû

dt
= D̂1(∇H1(û))

T , (4.9)
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adifferent Hamiltonian form, and it can be verified that D̂2 is not a Hamiltonian operator. As
D̂1 is a constant antisymmetric matrix,

dû

dt
= P̂ ◦ ∂x ◦ I · δH1

δu
(Iû) (4.10)

is a finite-dimensional Hamiltonian system. So the approximating system can preserve the
Poisson structure given by Hamiltonian operator D̂1.

Theorem 4.1. The equation dû/dt = D̂1(∇H1(û))
T is the discretization of the KdV equation ut +

6uux + uxxx = 0; then dû/dt = D̂1(∇H1(û))T has the property of energy conservation law.

Proof.

D̂ = P̂ ◦ D ◦ I : B̂ −→ B̂,

I : B̂ −→ B,

û −→ u = Iû = a0ψ0 + a1ψ1 + · · · + aNψN,
P : U −→ B,

u −→ u = Pu = a0ψ0 + a1ψ1 + · · · + aNψN,

P̂ = I−1 ◦ P : U −→ B̂,

u −→ P̂u = (a0, a1 , a2, . . . , aN)T ,

D̂ =

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜⎜
⎝

(Dψ1, ψ1
)

(
ψ1, ψ1

)

(Dψ2, ψ1

)

(
ψ1, ψ1

) · · ·
(DψN, ψ1

)

(
ψ1, ψ1

)
(Dψ1, ψ2

)

(
ψ2, ψ2

)

(Dψ2, ψ2

)

(
ψ2, ψ2

) · · ·
(DψN, ψ2

)

(
ψ2, ψ2

)

...
...

. . .
...

(Dψ1, ψN
)

(
ψN, ψN

)

(Dψ2, ψN
)

(
ψN, ψN

) . . .

(DψN, ψN
)

(
ψN, ψN

)

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟⎟
⎠

.

(4.11)

ψ0, ψ1, ψ2, . . . , ψN are a sequence of standard orthogonal basis,

(
ψi, ψi

)
= 1, i = 1, 2, . . . ,N,

(Dψi, ψj
)
= −(Dψj , ψi

)
,
(
i /= j

)
,

(Dψi, ψi
)
=
(
∂xψi, ψi

)
= 0, i = 1, 2, . . . ,N.

(4.12)

D̂1 is a constant antisymmetric matrix.
According to {Ĥ, Ĝ} = ∇ĤD̂(∇Ĝ)T , then {Ĥ1, Ĥ1} = ∇Ĥ1D̂(∇Ĥ1)T = 0.

The function Ĥ1(û) is a conservation law of energy, that is,
dû

dt
= D̂1(∇H1(û))

T has the

property of energy conservation law.
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5. Legendre Polynomials Spectral Approximation for the Boundary
Value Problem of the Wave Equation

Now we consider the wave equation with the fixed boundary conditions discussed above:

∂2u

∂t2
=
∂2u

∂x2
, x ∈ (−1, 1), t ∈ [0, T],

u(−1, t) = u(1, t) = 0, t ∈ [0, T].

(5.1)

It can be rewritten as two forms of the first-order equations:

∂u

∂t
=
∂v

∂x
,

∂v

∂t
=
∂u

∂x
.

(5.2)

This equation can be written as Hamiltonian form:

∂u

∂t
= D1

δH1

δu
, u =

(
u

v

)

. (5.3)

The Hamiltonian operator is D1 =
(

0 ∂x
∂x 0

)
, and the corresponding Hamiltonian func-

tional isH1 = 1/2
∫1
−1(u

2 + v2)dx.
There is another way to write the equation into Hamiltonian form, that is,

∂u

∂t
= D2

δH1

δu
, u =

(
u

v

)

. (5.4)

The corresponding Hamiltonian operator is D2 =
( 0 1
−1 0

)
, and the Hamiltonian

functional isH2 = 1/2
∫1
−1(u

2
x + v2)dx.

In this case, the element inU is denoted by u = (u1, u2)T . The inner product is denoted
by (u, v) =

∑2
i=1(ui, vi), u, v ∈ U, where (ui, vi) =

∫1
−1 uividx.

Take the orthogonal basis:

(
ψ0

0

)

,

(
0

ψ0

)

,

(
ψ1

0

)

,

(
0

ψ1

)

,

(
ψ2

0

)

,

(
0

ψ2

)

, . . . . (5.5)

Set

B = span

{(
ψ0

0

)

,

(
0

ψ0

)

,

(
ψ1

0

)

,

(
0

ψ1

)

, . . . ,

(
ψN

0

)

,

(
0

ψN

)}

⊂ U. (5.6)

That is, B is 2N + 1-dimensional subspace of U.
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The orthogonal projection is P : U → B,

u −→ u = Pu = a0

(
ψ0

0

)

+ ã0

(
0

ψ0

)

+ · · · + aN
(
ψN

0

)

+ ãN

(
0

ψN

)

. (5.7)

Denote B̂ = {û = (a0, ã0, a1, ã1, . . . , aN, ãN)T ∈ R2N+2}. The inner product of B̂ is
usually denoted by Euclidean inner 〈·, ·〉, that is,

〈
p̂, q̂

〉
= a0b0 + ã0b̃0 + · · · + aNbN + ãNb̃N, (5.8)

where p̂ = (a0, ã0, . . . , aN, ãN)T and q̂ = (b0, b̃0, . . . , bN, b̃N)T .
Set I : B̂ → B,

û −→ u = Iû = a0

(
ψ0

0

)

+ ã0

(
0

ψ0

)

+ · · · + aN
(
ψN

0

)

+ ãN

(
0

ψN

)

. (5.9)

Denote P̂ = I−1 ◦ P : U → B̂,

u −→ P̂u = (a0, ã0, a1, ã1, a2, ã2, . . . , aN, ãN)T . (5.10)

The discretization of the Hamiltonian operator D is

D̂ = P̂ ◦ D ◦ I : B̂ −→ B̂,

D̂(p̂)q̂ = p̂ ◦ D̂(Ip̂) · Iq̂, ∀p̂, q̂ ∈ B̂.
(5.11)

The discretization of a functionalsH(x) in U is

Ĥ(û) =
∫1

−1
H(Iû)dx, ∀û ∈ B̂. (5.12)
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By the above analysis and the chosen orthogonal basis, forN = 2,

D̂1 =

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

0 0
√
7
2

0 0 0

0 0 0

√
7
2

0 0

−
√
7
2

0 0 0

√
21
2

0

0 −
√
7
2

0 0 0

√
21
2

0 0 −
√
21
2

0 0 0

0 0 0 −
√
21
2

0 0

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

,

Ĥ1(û) =
1
2

∫1

−1

[(
a0ψ0 + a1ψ1 + a2ψ2

)2 +
(
ã0ψ0 + ã1ψ1 + ã2ψ2

)2]
dx

=
1
2

(
a20 + ã

2
0 + a

2
1 + ã

2
1 + a

2
2 + ã

2
2

)
.

(5.13)

Then

∇ĤT
1 = (a0, ã0, a1, ã1, a2, ã2). (5.14)

The corresponding semidiscrete approximation is

da0
dt

=

√
7
2
a1,

dã0
dt

=
√
7
2
ã1,

da1
dt

= −
√
7
2
a0 +

√
21
2

a2,

dã1
dt

= −
√
7
2
ã0 +

√
21
2

ã2,

da2
dt

= −
√
21
2

a1,

dã2
dt

= −
√
21
2

ã1.

(5.15)
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For the other form, we can also obtain

D̂2 =

⎛

⎜
⎜⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

⎞

⎟
⎟⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

,

Ĥ2(û) =
1
2

∫1

−1

[(
a0ψ0 + a1ψ1 + a2ψ2

)2
x
+
(
ã0ψ0 + ã1ψ1 + ã2ψ2

)2]
dx

=
1
2

(
5
2
a20 + ã

2
0 +

21
2
a21 + ã

2
1 +

√
3a0a2 + ã22

)
.

(5.16)

(5.17)

Then

∇Ĥ2 =

(
5
2
a0 +

√
3
2
a2, ã0,

21
2
a1, ã1,

51
2
a2 +

√
3
2
a0, ã2

)

. (5.18)

The corresponding semidiscrete approximation is

da0
dt

= ã0,

dã0
dt

= −5
2
a0 −

√
3
2
a2,

da1
dt

= ã1,

dã1
dt

= −21
2
a1,

da2
dt

= ã2,

dã2
dt

= −
√
3
2
a0 − 51

2
a2.

(5.19)

Similar to the analysis of the KdV equation, for the situation of N = 2, we can verify
that D̂1 and D̂2 are all Hamiltonian operators; so the approximating system can be written as
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dû/dt = D̂1(∇H1(û))T and dû/dt = D̂2(∇H2(û))T , two different Hamiltonian forms. As D1

and D̂2 both are constant antisymmetric matrix forN > 2,

dû

dt
= P̂ ◦

(
0 ∂x

∂x 0

)

◦ I · δH1

δu
(Iû),

dû

dt
= P̂ ◦

(
0 1

−1 0

)

◦ I · δH2

δu
(Iû) .

(5.20)

are finite-dimensional Hamiltonian systems. The approximating systems can preserve the
Poisson structure given by Hamiltonian operators D̂1 and D̂2.

Theorem 5.1. The equations dû/dt = D̂1(∇H1(û))T and dû/dt = D̂2(∇H2(û))T are the discreti-
zations of the 1-dim wave equation

∂u

∂t
=
∂v

∂x
,

∂v

∂t
=
∂u

∂x
.

(5.21)

Then dû/dt = D̂1(∇H1(û))
T and dû/dt = D̂2(∇H2(û))

T both have the property of energy conser-
vation law.

The proof of Theorem 5.1 is similar to that of Theorem 4.1.
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