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Exact solutions for models describing heat transfer in a two-dimensional rectangular fin
are constructed. Thermal conductivity, internal energy generation function, and heat transfer
coefficient are assumed to be dependent on temperature. We apply the Kirchoff transformation
on the governing equation. Exact solutions satisfying the realistic boundary conditions are
constructed for the resulting linear equation. Symmetry analysis is carried out to classify the
internal heat generation function, and some reductions are performed. Furthermore, the effects
of physical parameters such as extension factor (the purely geometric fin parameter) and Biot
number on temperature are analyzed. Heat flux and fin efficiency are studied.

1. Introduction

Fins are extended surfaces used to increase the heat transfer rate between a hot body and its
surroundings. There are a variety of uses such as in air conditioning systems, compressors,
and cooling of electronic components. The theory on heat transfer in extended surface may
be found in texts such as [1, 2]. Few exact solutions exist even for the one dimensional fin
problem with constant thermal conductivity and heat transfer coefficient [3]. Series solutions
for one-dimensional fin problem with constant heat transfer coefficient and temperature-
dependent thermal conductivity are given in [4]. Furthermore, analytical and exact solutions
for one dimensional fins models with temperature-dependent thermal conductivity and heat
transfer coefficient were obtained for example, in [5–7]. A compendium of heat transfer in
all types of one dimensional fins is given in [8]. Exact steady-state solutions exist for two-
dimensional models with constant thermal conductivity and heat transfer coefficient, with
no internal heat generation [9–15], and with internal heat generation function depending on
a spatial variable [16, 17]. Solutions for transient heat transfer in fins are constructed in [18].
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Figure 1: Schematic representation of a rectangular straight fin.

In this paper, we apply the Kirchoff transformation to the two-dimensional steady-
state heat balance equation in Section 2. The resulting model contains the arbitrary source
term. In Section 3, we construct exact solutions which satisfy the physical boundary
conditions. Symmetry analysis is carried out for the single governing equation, wherein
group classification is performed in Section 4. Heat transfer results including fin efficiency
and heat flux are analyzed in Section 5. Lastly, we provide concluding remarks in Section 6.

2. Mathematical Model

We consider a two-dimensional rectangular fin of length L as shown in Figure 1. The fin
is mounted to a base surface of temperature Tbg(y) and extended into its surrounding of
temperature T∞. The heat flow is assumed to be symmetric along the line y = 0. We assume
that the heat transfer coefficient along the fin is nonuniform and temperature dependent.
Also, the internal heat generation is nonzero and temperature dependent.

The two-dimensional heat balance equation is given by (see, e.g., [16, 17])
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Here, T is the dimensionless temperature, Tb is the fin base temperature,H is the heat
transfer coefficient, x1 is the longitudinal coordinate, y1 is the transverse coordinate, S is
the internal heat generation function, and K is the thermal conductivity. Several authors
have considered the two-dimensional problem with S = 0 and thermal conductivity being
a constant (see, e.g., [19, 20]) and the case S = 0 with a temperature-dependent thermal
conductivity [21].

Introducing the dimensionless variables

θ =
T − T∞
Tb − T∞ , x =

x1
L
, y =

y1
l/2

, k(θ) =
K(T)
Ka

,

h(θ) =
H(T)
hb

, E2 =
(

L

l/2

)2

, S(θ) =
s(T)(l/2)2

Ka(Tb − T∞) ,
(2.3)

we obtain
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The corresponding dimensionless boundary conditions are
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, x = 1,
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(2.5)

where E is the fin extension factor (purely geometric parameter), and Biφ = hbL/Ka and
Biψ = hb(l/2)/Ka are the Biot numbers. E is the reciprocal to aspect ratio (see, e.g., [16]). hb
and ka are the heat transfer at the base and thermal conductivity of the fin at the ambient
temperature, respectively.

3. Exact Solutions

In this section, we construct exact solutions for the boundary value problem (BVP) (2.4)–
(2.5). The problem is simplified by the introduction of the Kirchoff transformation. The
Kirchoff’s transformation (see, e.g., [21])

ω
(
x, y

)
=
∫θ

θ0

k(θ∗)dθ∗, (3.1)
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with θ0 being an arbitrary constant, reduces the BVP (2.4)–(2.5) to

E2 ∂
2ω

∂y2 +
∂2ω

∂x2
= E2S(ω), (3.2)

subject to the conditions

∂ω

∂x
+ Biφω = 0, x = 0, (3.3)

∂ω

∂y
+ Biψω = 0, y = 1, (3.4)

∂ω

∂y
= 0, y = 0, (3.5)

ω
(
1, y

)
= G

(
y
)
. (3.6)

We consider two cases of the thermal conductivity. Note that in (3.3) and (3.4),
we required the product of the heat transfer coefficient and temperature to match the
integral of thermal conductivity. In fact, in a one-dimensional case, hmust be the differential
consequence of k (see, e.g., [7]). G(y) is quadratic in g(y)whenK is linear, andG is given by
the power law g(y)n+1 when K is nonlinear.

3.1. Case 1. Linear Thermal Conductivity

Thermal conductivity is assumed to be a linear function of temperature for many engineering
applications [3]. We assume thermal conductivity to be linear function of temperature (see
also [21, 22])

K(T) = ka
(
1 + β(T − T∞)

)
. (3.7)

β is the parameter that describes temperature dependency [3, 4]. In dimensionless variables,
k(θ) = 1 + Bθ where B = β(Tb − T∞). This case of k requires h(θ) = (1 + (B/2)θ) − (θ0 +
(B/2)θ20)θ

−1, so that BVP (3.2)–(3.6) hold. Note that θ = 0 renders heat transfer coefficient
to be singular. However, one can remove singularity by choosing, without loss of generality,
θ0 = 0. Assuming the internal heat generation to be linearly dependent on temperature, then
the governing equation becomes the modified Helmholtz type equation

E2 ∂
2ω

∂y2 +
∂2ω

∂x2
= E2ω. (3.8)

We seek exact solutions of (3.8) subject to (3.3)–(3.6). Usingmethod of separation of variables,
we obtain the nontrivial exact solutions for two cases of the separation constant σ. Note that
σ = 0 leads to trivial solutions.
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Table 1: Extra point symmetries admitted by (3.2).

S(ω) Symmetries
(α1 + α2ω)

m; α1,α2 ∈ �, m/= 0, 1 X4 = −(2(α1 + α2ω)/α2(m − 1))(∂/∂ω) + y(∂/∂y) + x(∂/∂x)

ωm, m/= 0, 1 X4 = −(2ω/(m − 1))(∂/∂ω) + y(∂/∂y) + x(∂/∂x)

ω
X4 = ω(∂/∂ω), X5 = P(x, y)(∂/∂ω)

where E2Pyy + Pxx = E2P

3.1.1. σ < 0; say σ = −λ2, λ > 0

ω
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)
= γ cosh
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λy

)[
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E
√
λ2 − 1x

)
− Biφ

E
√
λ2 − 1

sin
(
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, λ2 /= 1, (3.9)

where γ is an arbitrary constant and λ satisfies λ tanh(λ) = −Biψ . Also,

ω
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(
y
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)
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G
(
y
)
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(3.12)

The temperature profile for solution (3.11) is given in Figures 2(a) and 2(b). In Figures 3(a)
and 3(b), we plot the temperature profile at the boundaries y = 1 and x = 0, respectively. For
simplicity, we allowed Biφ and Biψ to be equal. We list the first five eigenvalues of (3.12) for
various values of the Biot number in Table 2.

In terms of the original temperature variable, we obtain the exact solution

θ =
−1 ±

√
1 + 2B(ω + δ)
B

, (3.13)

where δ = θ0 + (B/2)θ20 .
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Figure 2: Temperature profile for the first twenty terms of the series given in (3.11).

Table 2: The first five eigenvalues of (3.12).

Biψ 0.2 0.4 0.6 0.8 1.0
λ1 3.204 3.264 3.320 3.374 3.426
λ2 6.315 6.346 6.377 6.407 6.437
λ3 9.446 9.467 9.488 9.509 9.529
λ4 12.582 12.598 12.614 12.630 12.645
λ5 15.720 15.733 15.746 15.759 15.771

3.2. Case 2: Nonlinear Thermal Conductivity

Assuming the power law temperature-dependent thermal conductivity

K(T) = ka
(
T − T∞
Tb − T∞

)n

, (3.14)

which is given in dimensionless variables as k(θ) = θn, requires

h(θ) =
θn

n + 1
− θn+10

(n + 1)θ
, n/= − 1. (3.15)

Again, one may, without loss of generality, assume, θ0 = 0. We obtain in terms of original
variables the exact solution

θ = [(n + 1)ω]1/(n+1), n/= − 1,

θ = exp(ω), n = −1,
(3.16)

where ω is given in Sections 3.1.1 and 3.1.2.
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4. Symmetry Analysis

In this section, we analyze (3.2) with an arbitrary source term. We employ symmetry
techniques. A symmetry group of a system of differential equations is a group of
transformations mapping any arbitrary solution to another solution of the system. Such
groups depend on continuous parameters. Given a continuous one-parameter symmetry
group, in most practical cases, one may reduce the number of independent variables by
one. The most familiar symmetry is the rotational symmetry that enables one to reduce the
variables (x, y) to a single radial variable r. Recent accounts on this theory may be found in
many excellent texts such as those of [23, 24]. We use the methods in [24] (which exclude
the use of equivalence transformations) to determine possible cases of S for which extra
symmetries are obtained.

In the initial symmetry analysis where S is arbitrary, we obtain the translations of the
spatial variables x and y and the rotational symmetry. Cases for which extra symmetries are
obtained are listed in Table 1. Note that S = 0 reduces (3.2) to the steady two-dimensional
thermal diffusion equation (the Laplace equation which has been already analyzed).

4.1. Symmetry Reductions: Illustrative Example

Given the internal heat generation term as the power law s(w) = ωm, m/= 1 (as listed in
Table 1), X4 leads to the functional form

ω = x2/(1−m)F(ξ), ξ =
x

y
, (4.1)

where F satisfies a nonlinear ordinary differential equation (ODE)

(
1 − E2ξ2

)
F ′′ +

[
2E2ξ +

(
4

1 −m
)
1
ξ

]
F ′ +

(
2

1 −m
)(

2
1 −m − 1

)
1
ξ
F −

(
E

ξ

)2

Fm = 0. (4.2)

The ODE (4.2) is harder to solve exactly. Furthermore, the boundary conditions are not
invariant under X4. In fact, the BVP (2.4)–(2.5) is not invariant under all the admitted
symmetries listed. One may seek numerical solutions when internal heat generation term
is nonlinear. We omit numerical analysis in this paper. However, the obtained exact solutions
in Section 3 may be used as benchmarks for the numerical schemes.

5. Heat Transfer Results

The number of eigenvalues required to calculate the temperature distribution, heat flux, and
fin efficiency accurately depends on the Biot number Biψ . We observe in Table 2 below that
Biot number is directly proportional to the eigenvalues. Similar results are obtained for heat
transfer in orthotropic convective pin fin [14]. The expression for the temperature distribution
is given explicitly in (3.9) and (3.11). However, in further analysis, we focus on solution
(3.11). The temperature distribution depends on a number of variables including Biφ, Biψ ,
eigenvalues, and the arbitrary function of y describing the temperature at the base of the fin.
We are free to choose any function G. Note that temperature distribution is proportional to
both Biφ and Biψ .
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Figure 3: Graphical representation of temperature distribution at the fin boundaries.

We observe in Figure 2(a) that the Biot number is directly proportional to the
temperature distribution in the fin. Also, in Figure 2(b), we notice that temperature decreases
with the increase of the extension factor. Clearly, if the length of the fin is increased,
temperature is at its lowest value, or increased width of the fin results in increased
temperature distribution. Figures 3(a) and 3(b) depict the temperature distribution at the
boundaries of the fin. We note that, in Figure 3(a), there is a significant reduction in
temperature along the boundary and toward the tip of the fin (one may recall that we
assumed that the fin is measured from the tip to the base). Figure 3(b) shows temperature
variation at the tip of the fin.
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5.1. Fin Efficiency and Heat Flux

5.1.1. Heat Flux

The heat transfer from the fin base may be constructed by evaluating heat conduction rate at
the base (see, e.g., [12])

qb =
∫�/2

0
K(T)

∂T

∂x1

∣∣∣∣
x1=L

dy1 =
Ka(Tb − T∞)l/2

L

∫1

0
k(θ)

∂θ

∂x

∣∣∣∣
x=1
dy. (5.1)

The dimensionless heat transfer rate from the base of the fin is defined by [12]

Q =
qbL

Ka(Tb − T∞)l/2 =
∫1

0
k(θ)

∂θ

∂x

∣∣∣∣
x=1
dy. (5.2)

5.1.2. Fin Efficiency

Fin efficiency (overall fin performance) is defined as the ratio of the actual heat transfer from
the fin rate of heat that would be ideally transferred if the entire fin was at the temperature of
the fin base [25]. The local fin efficiency is defined by [13]

η =
qb
Qi

=
((Ka(Tb − T∞)l/2)/L)

∫1
0 k(θ) (∂θ/∂x)|x=1dy

hb(Tb − T∞)l/2
, (5.3)

or simply

η =
1

EBiψ

∫1

0
k(θ)

∂θ

∂x

∣∣∣∣
x=1

dy. (5.4)

5.1.3. Flux and Fin Efficiency Given (3.11)

Given the solution (3.11), we obtain heat flux in terms ofw,

Q =
∫1

0

∂w

∂x

∣∣∣∣
x=1
dy =

∞∑
n=1

kn
sin(λn)
λn

[
E
√
λ2n + 1 sinh

(
E
√
λ2n + 1

)
− Biφ cosh

(
E
√
λ2n + 1

)]
,

(5.5)

and fin efficiency

η =
1

EBiψ

∫1

0

∂w

∂x

∣∣∣∣
x=1
dy

=
1

EBiψ

∞∑
n=1

kn
sin(λn)
λn

[
E
√
λ2n + 1 sinh

(
E
√
λ2n + 1

)
− Biφ cosh

(
E
√
λ2n + 1

)]
.

(5.6)
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Figure 4: Graphical representation of the heat flux and the fin performance in (5.5) and (5.6), respectively.
Here, the first twenty terms of the series in (3.11) are plotted. Biψ is fixed at 0.2, and Biφ varies as indicated
in the graph.

Fin efficiency (5.6) and heat flux (5.5) are depicted in Figures 4(a) and 4(b),
respectively. Wherein both heat flux and fin efficiency are plotted against the extension factor.
Here, Biψ is fixed at 0.2. In Figure 4(a), we observe that fin performance decreases with
increased extension factor. Moreover, the increased Biot number Biψ yields decreased fin
efficiency. In our entire analysis, we have assumed a nonuniform internal heat generation.
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Internal heat generation function is assumed to be a uniform in [26]. In Figure 4(b), we
observe that Biot number Biψ is inversely proportional to the heat flux. However, heat flux is
directly proportional to the extension factor (implying that longer fins result in higher heat
flux (see also [14])). The observations in Figures 4(a) and 4(b) are consistent with the results
in the literature (see, e.g., [26, 27] or Chapter 15 in [1]). In [26], finite elements methods
were used to determine, among others, the effects of uniform internal heat generation. Here,
internal energy generation is given as linear function of temperature, and base temperature
is quadratic in y. Sikka and Iqbal [27] provided the fin efficiency for two-dimensional pin fin.
The observations in Figure 4(b) are consistent with those of [27].

6. Concluding Remarks

We have successfully applied the Kirchoff’s transformation to reduce the nonlinearity of
(2.4) (the source term remained arbitrary). Exact solutions for two-dimensional rectan-
gular fin with temperature-dependent thermal conductivity and heat transfer coefficient,
furthermore with internal energy generation function, which depend linearly on temperature
are constructed. In the analysis, we allowed the temperature of the fin base to be
quadratic in y. The forms of the internal energy generation term for which extra
symmetries are admitted were obtained. Reduction of the single PDE (given nonlinear
source term) to the ODE is achieved. As far as we know, symmetry methods have
not yet been employed to two-dimensional fin problems. However, the entire BVP is
not invariant under the admitted symmetries. Constructed exact solutions have provided
insight into the heat transfer processes in a rectangular straight fin and may be used
as benchmarks for the numerical schemes, particularly when thermal conductivity, heat
transfer coefficient, and internal thermal energy generation function are all temperature
dependent.

Nomenclature

T : Temperature distribution
Tb: Fin base temperature
T∞: Surrounding temperature
θ: Dimensionless temperature
ω: Transformed temperature variable
K: Thermal conductivity
Ka: Thermal conductivity of the fin at the ambient temperature
k: Dimensionless thermal conductivity
H : Heat transfer coefficient
hb: Heat transfer coefficient at the fin base
h: Dimensionless heat transfer coefficient
y1: Transverse coordinate
x1: Longitudinal coordinate
x: Spatial variable
y: Spatial variable
L: Length of the fin
l/2: Half width
s(T): Internal energy generation function
S(θ): Dimensionless internal energy generation function
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Biψ = (hb(l/2))/Ka: Biot number
Biφ = (hbL)/Ka: Biot number
E: Extension factor (purely geometric

parameter)
qb: Heat flux at the fin base
Q: Heat flux
Qi: Overall heat flux for an ideal fin
η: Fin efficiency
B, β, θ0, δ,n,m,α1,α2: Constants given in the paper.
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