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We investigate Noether and partial Noether operators of point type corresponding to a Lagrangian
and a partial Lagrangian for a system of two linearly coupled nonlinear Duffing oscillators. Then,
the first integrals with respect to Noether and partial Noether operators of point type are obtained
explicitly by utilizing Noether and partial Noether theorems for the system under consideration.
Moreover, if the partial Euler-Lagrange equations are independent of derivatives, then the partial
Noether operators become Noether point symmetry generators for such equations. The difference
arises in the gauge terms due to Lagrangians being different for respective approaches. This study
points to new ways of constructing first integrals for nonlinear equations without regard to a
Lagrangian. We have illustrated it here for nonlinear Duffing oscillators.

1. Introduction

In this paper, we study a system of two linearly coupled nonlinear Duffing oscillators

y′′ + Ω2y = −β(y − z
) − αy3,

z′′ + Ω2z = −β(z − y
) − αz3,

(1.1)

where α and β are nonlinearity linear coupling parameters, and prime denotes differentiation
with respect to x. The system of two second-order ordinary differential equations (ODEs)
frequently arises in nonlinear oscillations, nonlinear dynamics, relativity, fluid mechanics,
and so forth. These oscillators, in general, describe different mechanical systems of
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practical importance and have two types of characteristics (see, e.g., [1, 2]). The hardening
characteristic approaches to linear for small amplitudes and it raises towards infinity when
the amplitude tends to certain limits. The softening characteristic performs in a non-
monotonic way, and for large amplitude the vibration shape changes to the rectangular shape.

There is great interest in studying the system of two linearly coupled nonlinear Duffing
oscillators, especially for first integrals, which are important from a physical point of view
and for reduction purposes as well. Of course, a Lagrangian exists for the system of two
equations under study. Our purpose is two fold: one is how first integrals can be constructed
for ODEs; secondly, we want to investigate the effectiveness of the partial Lagrangian
approach.

The Noether symmetries and first integrals are important due to their wide range of
applications for Euler-Lagrange equations (see, e.g., Noether [3] and later works [4, 5]). This
theorem is based on the existence of a Lagrangian and variational symmetries. It gives the
relationship between equivalence classes of point symmetries and first integrals. There are
equations that arise in application that do not admit standard Lagrangians, for example,
the simple system of two second-order equations y′′ = y2 + z2, z′′ = y; the curve family is
nonextremal for this system. The scalar evolution equations also do not admit Lagrangians.
Similarly, for the system of two coupled Van der pol oscillators with linear diffusive coupling

y′′ + ε
(
y2 − 1

)
y′ + y = A

(
z − y

)
+ B

(
z′ − y′),

z′′ + ε
(
z2 − 1

)
z′ + z = A

(
y − z

)
+ B

(
y′ − z′

)
,

(1.2)

where A and B are constants and ε is a small parameter and no variational problem exists
which can be verified from Douglas [5]. The interested reader is referred to the interesting
paper cited above for the classification of Lagrangians in which Douglas [5] has provided
the complete solution to the inverse problem for three-dimensional space (system of two
second-order ODEs). Now, we raise the question as to how one can construct first integrals
for equations which are not variational as mentioned above. It is well known that there
are other methods which provide first integrals without making use of a Lagrangian. The
most elementary method is the direct method [6, 7]which is often used for constructing first
integrals without the variational principle. There are some other approaches as well (see, e.g.,
[4, 8, 9]) in which the equations can be expressed in characteristic form.

The Noether symmetries and the corresponding first integrals have been subjects of
rigorous investigations and play an important role in the reduction of differential equations.
Some important works have been done relating to first integrals. In [10, 11], the authors
deduce a relation between “symmetries” and first integrals without a variational principle.
The classification of Noether point symmetries for a three degrees of freedom Lagrangian
system was given by Damianou and Sophocleous in [12], and the results for one and
two degrees of freedom were also reported in their paper. The first integrals associated
with Noether and partial Noether operators of point type for a linear system of two
second-order ODEs with variable coefficients were constructed by the authors in [13]. They
showed that the first integrals resulting from Noether and partial Noether approaches are
equivalent. The difference occurs in the gauge terms due to Lagrangians being different for
the respective approaches. The classification of partial Noether operators and first integrals
for a system with two degrees of freedom was also discussed by Naeem and Mahomed in
[14]. Furthermore, a new perturbation method based on integrating vectors and multiple
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scales for perturbed systems of ODEs is presented in [15]. By using this perturbation method
a strongly nonlinear forced oscillator based on integrating factors is studied which yields the
approximate first integrals [16]. For an account of this theory, the reader is referred to an
interesting book [17].

In this paper, we show that the first integrals corresponding to Noether and partial
Noether operators of point type for a system of two linearly coupled nonlinear Duffing
oscillators are equivalent, and the algebras for both cases are isomorphic. We give an elegant
way to construct first integrals for such equations with respect to point symmetries. Firstly,
we obtain the partial Noether operators of point type and then first integrals are constructed
by utilizing a partial Noether’s theorem. This approach gives new ways of constructing first
integrals for the equations without regard to a Lagrangian as partial Lagrangians do exist for
such equations. It would definitely be of interest to obtain the first integrals of the Duffing
oscillator system with respect to first-order Lie-Bäcklund operators. This will provide a more
complete picture for such systems. Further work can then be done on reductions using these
symmetries.

The outline of the work is as follows. In Section 2, the basic definitions are adapted
from the literature. The Noether point symmetries and the corresponding first integrals are
presented in Section 3. In Section 4, we construct the partial Noether operators of point type
and the relating first integrals. Concluding remarks are summarized in Section 5.

2. Preliminaries

Suppose x is considered to be the independent variable and u = (u1, u2) = (y, z), the
dependent variable with coordinates y and z. The derivatives of uα with respect to x are
denoted by

uα
x = Dx(uα), α = 1, 2, (2.1)

in which

Dx =
∂

∂x
+ uα

x

∂

∂uα
+ uα

xx

∂

∂uα
x
+ · · · , (2.2)

is the total derivative operator with respect to x. Note that the summation convention is
assumed for repeated indices throughout. The collection of first derivative uα

x is denoted by
u′ = (u1, u2) = (y′, z′), and all higher-order derivatives are denoted by u′, u′′, u′′′, . . ..

The following definitions and results are easily adaptable from the literature (see, e.g.,
[10–12, 18–20]).

(1) The Lie-Bäcklund operator is

X = ξ
∂

∂x
+ ηα ∂

∂uα
+ ζαx

∂

∂uα
x
, (2.3)

where ζαx are defined by

ζαx = Dx

(
ηα) − uα

xDx(ξ), α = 1, 2. (2.4)
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(2) A Lie-Bäcklund operator X defined in (2.3) is a Noether symmetry generator
corresponding to a Lagrangian L if there exists a function B(x, u) such that

XL + (Dxξ)L = Dx(B), (2.5)

where Dx is the total derivative operator given in (2.2). The function B(x, u) is
known as the gauge term.

(3) The Lie-Bäcklund operator X is known to be a partial Noether operator
corresponding to a partial Lagrangian L if it is determined from

XL + (Dxξ)L =
(
ηα − ξuα

x

) δL

δuα
+Dx(B), (2.6)

for a suitable function B(x, u), where

δ

δuα
=

∂

∂uα
−Dx

∂

∂uα
+D2

x

∂

∂uα
x
−D3

x

∂

∂uα
xx

+ · · · , α = 1, 2 (2.7)

is the Euler operator.

(4) If the Lie-Bäcklund operator X is a Noether symmetry generator corresponding to
a Lagrangian L ∈ A of Euler-Lagrange differential equations, then

I = B −
[
ξL +

(
ηα − ξuα

x

) ∂L

∂uα
x

]
, α = 1, 2 (2.8)

is known as the first integral of Euler-Lagrange differential equations.

(5) If the Lie-Bäcklund operatorX is a partial Noether operator with respect to a partial
Lagrangian L(x, u, u′) of partial Euler-Lagrange equations, then the constant of
motion or first integral I can be constructed from (2.8).

3. Noether’s Approach

In this section, we derive the Noether point symmetry operators for the coupled nonlinear
Duffing oscillators (1.1) corresponding to a standard Lagrangian and construct the first
integrals by Noether’s theorem.

3.1. Noether Point Symmetry Generators for Coupled Nonlinear
Duffing Oscillators

A Lagrangian for system (1.1) satisfying the Euler-Lagrange equations δL/δy = 0 and
δL/δz = 0 is

L =
1
2
y

′2 +
1
2
z

′2 − Ω2

2

(
y2 + z2

)
− β

2

(
y2 + z2

)
− α

4

(
y4 + z4

)
+ βyz. (3.1)
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The Noether point symmetry operator X corresponding to a Lagrangian for a system of two
linearly coupled nonlinear Duffing oscillators (1.1) is calculated from the formula (2.5) with
respect to some function B(x, y, z). The Noether point symmetry determining equations are

ξy = 0, ξz = 0, (3.2)

η1
y −

1
2
ξx = 0, η2

z −
1
2
ξx = 0, η1

z + η2
y = 0, (3.3)

η1
x = By, η2

x = Bz, (3.4)

η1
(
−Ω2y − βy − αy3 + βz

)
+ η2

(
−Ω2z − βz − αz3 + βy

)
(3.5)

+ξx
[
−1
2

(
y2 + z2

)(
β + Ω2

)
− α

4

(
y4 + z4

)
+ βyz

]
= Bx. (3.6)

After some simple calculations, (3.2)–(3.4) give rise to

ξ = f(x),

η1 =
1
2
f ′y − zb1 + g(x),

η2 =
1
2
f ′z + yb1 + h(x),

B =
1
4
f ′′

(
y2 + z2

)
+ yg ′(x) + zh′(x) + T(x),

(3.7)

where b1 is an arbitrary constant and f, g, h, and T are arbitrary functions of x. The insertion
of (3.7) in (3.6) and separation with respect to powers of y and z reduce to the following
system:

αb1 = 0, βf ′ = 0, (3.8)

αf ′(x) = 0, αg(x) = 0, αh(x) = 0, (3.9)

1
4
f ′′′ + βf ′ + Ω2f ′ − βb1 = 0, (3.10)

1
4
f ′′′ + βf ′ + Ω2f ′ + βb1 = 0, (3.11)

g ′′(x) +
(
β + Ω2

)
g(x) − βh(x) = 0, (3.12)

h′′(x) +
(
β + Ω2

)
h(x) − βg(x) = 0, (3.13)

T ′(x) = 0. (3.14)
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Equation (3.14) results in

T(x) = c0, (3.15)

where co is a constant.
In order to solve system (3.8)–(3.13), the following cases arise.

Case 1. α = 0, β = 0.
The solution of system (3.8)–(3.13) with α = 0 and β = 0 yields

f(x) = b2 + b3 cos 2Ωx + b4 sin 2Ωx,

g(x) = b5 cosΩx + b6 sinΩx,

h(x) = b7 cosΩx + b8 sinΩx,

(3.16)

where b1, . . . , b8 are constants.
Now, (3.7) together with (3.16) gives

ξ = b2 + b3 cos 2Ωx + b4 sin 2Ωx, (3.17)

η1 = (−b3 sin 2Ωx + b4 cos 2Ωx)Ωy − b1z + b5 cosΩx + b6 sinΩx, (3.18)

η2 = (−b3 sin 2Ωx + b4 cos 2Ωx)Ωz + b1y + b7 cosΩx + b8 sinΩx, (3.19)

B = −Ω2[b3 cos 2Ωx + b4 sin 2Ωx]
(
y2 + z2

)
+ yΩ[−b5 sinΩx + b6 cosΩx]

+zΩ[−b7 sinΩx + b8 cosΩx] + co.

(3.20)

Setting one of the constants equal to one and the rest to zero, we find the following
Noether point symmetry operators and gauge terms:

X1 = −z ∂

∂y
+ y

∂

∂z
, B = 0,

X2 =
∂

∂x
, B = 0,

X3 = cos 2Ωx
∂

∂x
− yΩ sin 2Ωx

∂

∂y
− zΩ sin 2Ωx

∂

∂z
, B = −Ω2

(
y2 + z2

)
cos 2Ωx,

X4 = sin 2Ωx
∂

∂x
+ yΩ cos 2Ωx

∂

∂y
+ zΩ cos 2Ωx

∂

∂z
, B = −Ω2

(
y2 + z2

)
sin 2Ωx,

X5 = cosΩx
∂

∂y
, B = −Ωy sinΩx,
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X6 = sinΩx
∂

∂y
, B = Ωy cosΩx,

X7 = cosΩx
∂

∂z
, B = −Ωz sinΩx,

X8 = sinΩx
∂

∂z
, B = Ωz cosΩx .

(3.21)

Case 2. α = 0, β /= 0.
The utilization of solution of (3.8)–(3.13) together with (3.7) results in

b1 = 0, ξ = f(x) = c1, (3.22)

η1 = g(x) =
c2
2
cosΩx +

c3
2
sinΩx + c4 cos

(√
2β + Ω2

)
x + c5 sin

(√
2β + Ω2

)
x, (3.23)

η2 = h(x) =
c2
2
cosΩx +

c3
2
sinΩx − c4 cos

(√
2β + Ω2

)
x − c5 sin

(√
2β + Ω2

)
x, (3.24)

B =
Ω
2
(
y + z

)
(−c2 sinΩx + c3 cosΩx) +

(
y − z

)√
2β + Ω2

×
[
−c4 sin

(√
2β + Ω2

)
x + c5 cos

(√
2β + Ω2

)
x
]
+ co,

(3.25)

where c1, . . . , c5 are constants and 2β +Ω2 > 0. If 2β +Ω2 < 0 then cos(
√
2β + Ω2)x is replaced

with cosh(
√
2β + Ω2)x and sin(

√
2β + Ω2)x with sinh(

√
2β + Ω2)x.

The Noether point symmetries for α = 0, β /= 0 are

X1 =
∂

∂x
, B = 0, (3.26)

X2 =
1
2
cosΩx

(
∂

∂y
+

∂

∂z

)
, B = −Ω

2
(
y + z

)
sinΩx, (3.27)

X3 =
1
2
sinΩx

(
∂

∂y
+

∂

∂z

)
, B =

Ω
2
(
y + z

)
cosΩx, (3.28)

X4 = cos
(√

2β + Ω2
)
x

(
∂

∂y
− ∂

∂z

)
, B = −

√
2β + Ω2

(
y − z

)
sin

(√
2β + Ω2

)
x, (3.29)

X5 = sin
(√

2β + Ω2
)
x

(
∂

∂y
− ∂

∂z

)
, B =

√
2β + Ω2

(
y − z

)
cos

(√
2β + Ω2

)
x. (3.30)

Case 3. If α/= 0, β = 0, then from system (3.8)–(3.13), we obtain

b1 = 0, f(x) = d1,

h(x) = 0, g(x) = 0,
(3.31)
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where d1 is a constant. Hence,

ξ = d1, η1 = 0, η2 = 0, B = 0. (3.32)

We get only one generator for this case as

X1 =
∂

∂x
, B = 0. (3.33)

Case 4. α/= 0, β /= 0.
System (3.8)–(3.13)with α/= 0 and β /= 0 yields the following results:

b1 = 0, f(x) = e1,

h(x) = 0, g(x) = 0,
(3.34)

where e1 is a constant. Thus,

ξ = e1, η1 = 0, η2 = 0, B = 0. (3.35)

For this case, the symmetry generator is

X1 =
∂

∂x
, B = 0. (3.36)

The interpretation of the results in case of Noether point symmetries are given below.

Noether point symmetries

Case 1: in this case, we obtain an eight-dimensional Lie algebra.
Case 2: the Lie algebra is five dimensional.
Case 3: we deduce a one-dimensional Lie algebra.
Case 4: the Lie algebra for this case is also one dimensional.

3.2. First Integrals

The first integrals for Noether point symmetry generators for system (1.1) corresponding to
the Lagrangian (3.1) are (by (2.8))

I = B −
[
ξL +

(
η1 − ξy′

)
y′ +

(
η2 − ξz′

)
z′
]
, (3.37)
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where we have used ∂L/∂y′ = y′ and ∂L/∂z′ = z′ which hold for all the cases. The first
integrals for each case computed with the help of (3.37) are summarized below.

Case 1. α = 0, β = 0.
If we invoke the Noether point symmetry generators and gauge terms from system

(3.21) in (3.37), we obtain the following first integrals:

I1 = y′z − yz′,

I2 =
1
2

(
y′2 + z′2

)
+
Ω2

2

(
y2 + z2

)
,

I3 = −Ω2
(
y2 + z2

)
cos 2Ωx − 1

2
cos 2Ωx

[
y′2 + z′2 −Ω2

(
y2 + z2

)]

+
(
yy′ + zz′

)
Ω sin 2Ωx +

(
y′2 + z′2

)
cos 2Ωx,

I4 = −Ω2
(
y2 + z2

)
sin 2Ωx − 1

2
sin 2Ωx

[
y′2 + z′2 −Ω2

(
y2 + z2

)]

− (
yy′ + zz′

)
Ω cos 2Ωx +

(
y′2 + z′2

)
sin 2Ωx,

I5 = −Ωy sinΩx − y′ cosΩx,

I6 = Ωy cosΩx − y′ sinΩx,

I7 = −Ωz sinΩx − z′ cosΩx,

I8 = Ωz cosΩx − z′ sinΩx.

(3.38)

For a system of two second-order ODEs, there are exactly four functionally independent
first integrals. What we obtained are seven first integrals. Out of these, there are only four
functionally independent first integrals.

Case 2. α = 0, β /= 0.
The first integrals for this case are

I1 =
1
2

(
y′2 + z′2

)
+
Ω2

2

(
y2 + z2

)
+
β

2

(
y2 + z2

)
− βyz,

I2 = −Ω
2
(
y + z

)
sinΩx − 1

2
cosΩx

(
y′ + z′

)
,

I3 =
Ω
2
(
y + z

)
cosΩx − 1

2
sinΩx

(
y′ + z′

)
,

I4 = −(y − z
)√

2β + Ω2 sin
(√

2β + Ω2
)
x − (

y′ − z′
)
cos

(√
2β + Ω2

)
x,

I5 =
(
y − z

)√
2β + Ω2 cos

(√
2β + Ω2

)
x − (

y′ − z′
)
sin

(√
2β + Ω2

)
x.

(3.39)
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Case 3. α/= 0, β = 0.
The simple calculations lead to the following integral:

I1 =
1
2

(
y′2 + z′2

)
+
Ω2

2

(
y2 + z2

)
+
α

4

(
y4 + z4

)
. (3.40)

Case 4. α/= 0, β /= 0.
Straightforward manipulations result in the following first integral:

I1 =
1
2

(
y′2 + z′2

)
+
1
2

(
y2 + z2

)(
β + Ω2

)

+
α

4

(
y4 + z4

)
− βyz.

(3.41)

Note that the partial Lagrangian approach is similar to the Lagrangian approach; when one
uses point-type operators one may not obtain all the first integrals. A familiar example is
the Laplace-Runge-Lenz vector for the well-known Kepler plroblem which comes from a
higher symmetry and not a geometric sysmmetric of point type. Here, too, we expect that
the existence of an elliptic type integral will arise from a derivative dependent operator
which will be of interest to look at in a future work. We only obtain the kinetic plus
potential energy integrals here. Presumably, a higher derivative dependent operator could
yield further integrals if they exist. These need to be further investigated.

4. Partial Noether’s Approach

In this section, we derive the partial Noether operators of point type associated with a partial
Lagrangian of (1.1) and then construct the first integrals for (1.1).

4.1. Partial Noether Operators of Point Type for Coupled Nonlinear
Duffing Oscillators

A partial Lagrangian for system (1.1) is

L =
1
2
y

′2 +
1
2
z

′2, (4.1)

so that system (1.1) can be written as

δL

δy
= Ω2y + β

(
y − z

)
+ αy3,

δL

δz
= Ω2z + β

(
z − y

)
+ αz3. (4.2)
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The partial Noether operator X corresponding to a partial Lagrangian for the system (1.1)
can be determined from (2.6) with respect to some function B(x, y, z). The partial Noether
operator of point-type determining equations are

ξy = 0, ξz = 0, (4.3)

η1
y −

1
2
ξx = 0, η2

z −
1
2
ξx = 0, η1

z + η2
y = 0, (4.4)

η1
x = By − ξ

(
Ω2y + βy + αy3 − βz

)
, (4.5)

η2
x = Bz − ξ

(
Ω2z + βz + αz3 − βy

)
, (4.6)

Bx + η1
(
Ω2y + βy + αy3 − βz

)
+ η2

(
Ω2z + βz + αz3 − βy

)
= 0. (4.7)

The solution of (4.3)–(4.6) yields

ξ = f(x),

η1 =
1
2
f ′y − zb1 + g(x),

η2 =
1
2
f ′z + yb1 + h(x),

B =
1
4
f ′′

(
y2 + z2

)
+ yg ′(x) + zh′(x)

+f
[
1
2

(
Ω2 + β

)(
y2 + z2

)
+
α

4

(
y4 + z4

)
− yzβ

]
+ T(x),

(4.8)

where b1 is an arbitrary constant and f , g, h, and T are arbitrary functions of x. The
substitution of (4.8) in (4.7) and separation with respect to powers of y and z reduce to
the system of (3.8)–(3.13) that we have obtained in the case of Noether point symmetries
and T(x) = co. In case of partial Noether operators of point type the same cases need to be
considered as we have for the Noether point symmetry operators.

Case 1. α = 0, β = 0.
For this case ξ, η1, and η2 are the same as given in (3.17), (3.18), and (3.19) and,

therefore, the partial Noether operators of point type are identical to the Noether point
symmetry operators but the gauge terms are different. The gauge term for the partial Noether
operators of point type is

B =
Ω2b2
2

(
y2 + z2

)
− 1
2
Ω2[b3 cos 2Ωx + b4 sin 2Ωx]

(
y2 + z2

)

+ yΩ[−b5 sinΩx + b6 cosΩx] + zΩ[−b7 sinΩx + b8 cosΩx] + co.

(4.9)
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Notice from (3.20) and (4.9) that only the B’s relating to X2, X3, and X4 for the partial
Noether’s case are different from that for the Noether’s approach. The B’s relating to X2,
X3, and X4 for the partial Noether case are

B =
Ω2

2

(
y2 + z2

)
,

B = −Ω
2

2

(
y2 + z2

)
cos 2Ωx,

B = −Ω
2

2

(
y2 + z2

)
sin 2Ωx.

(4.10)

Case 2. α = 0, β /= 0.
For this case, ξ, η1, and η2 are the same as given in (3.22), (3.23), and (3.24) and

therefore the partial Noether operators of point type are similar to the case of Noether point
symmetries (3.30) but the gauge terms are different. The gauge term for partial Noether case
is

B =
Ω
2
(
y + z

)
(−c2 sinΩx + c3 cosΩx)

+
(
y − z

)√
2β + Ω2

[
−c4 sin

(√
2β + Ω2

)
x + c5 cos

(√
2β + Ω2

)
x

]

+ c1

[
1
2

(
Ω2 + β

)(
y2 + z2

)
− yzβ

]
+ co.

(4.11)

Note that in (4.11) all the gauge terms are similar as in the case of Noether symmetries (see
(3.25)) except one gauge term relating to X1 is different which is given as follows:

B =
1
2

(
Ω2 + β

)(
y2 + z2

)
− βyz. (4.12)

Case 3. α/= 0, β = 0.
The partial Noether operator of point type when α/= 0, β = 0 is X1 = ∂/∂x which is

identical to the case of Noether point symmetries but the difference occurs in the gauge term
as

B =
Ω2

2

(
y2 + z2

)
+
α

4

(
y4 + z4

)
. (4.13)

Case 4. α/= 0, β /= 0.
The operator for this case is also similar to the case of Noether point symmetries except

B in (3.36) is different as follows

B =
1
2

(
Ω2 + β

)(
y2 + z2

)
+
α

4

(
y4 + z4

)
− βyz. (4.14)
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4.2. First Integrals

For the partial Lagrangian (4.1) ∂L/∂y′ = y′ and ∂L/∂z′ = z′ also hold and therefore the first
integrals can be computed from (3.37). Moreover, since Noether and partial Noether operator
of point type are the same for each case, only the term B−ξL in formula (3.37)will be different
from the Noether case.

Case 1. α = 0, β = 0.
For operators X1 and X5 to X8, we have ξ = 0 and the gauge terms are the same as for

the case of Noether point symmetries. Therefore, we obtain the same first integrals. The gauge
term B’s relating to X2, X3, and X4 for the partial Noether case are different from that for the
Noether’s approach and ξ /= 0 for these operators; hence, formula (3.37) yields the same first
integrals as we have constructed for the Noether’s case.

Similarly, for other cases, the first integrals for the partial Noether operators of point
type are identical to the case of Noether point symmetry generators.

The interpretation of the results in case of partial Noether operators of point type is as
follows.

4.3. Partial Noether Operators of Point Type

The partial Noether operators of point type for the coupled nonlinear Duffing oscillators
are the same as the Noether point symmetry operators. The difference arises in the “gauge”
terms due to the Lagrangians being different. The algebras for both cases are isomorphic due
to the fact that δL/δy and δL/δz are independent of derivatives. The first integrals due to the
partial Noether operators of point type associated with a partial Lagrangian are equivalent
to the case of Noether point symmetries.

5. Concluding Remarks

The Noether point symmetry operators corresponding to a Lagrangian of a system of two
linearly coupled nonlinear Duffing oscillators have been constructed. We have computed the
first integrals associated with Noether point operators by utilization of Noether’s theorem.
Then the partial Noether operators of point type and first integrals for the system under study
are constructed corresponding to a partial Lagrangian. The partial Euler-Lagrange equations
obtained herein are independent of derivatives, and therefore the partial Noether operators
become point symmetry operators and the algebras are isomorphic for both the Noether and
partial Noether cases. The first integrals corresponding to the Noether and partial Noether
operators of point type are equivalent and these form one-, five-, and eight-dimensional Lie
algebras. It would be of value to extend the results here to more general symmetries of Lie-
Bäcklund type. Moreover, it is of interest to obtain reductions for the system using point or
Lie-Bäcklund symmetries.

This study also points to new ways of constructing first integrals for systems without
use of a Lagrangian. However, a partial Lagrangian can exist for such equations and one can
invoke a formula for the construction of the first integrals. Since, in general, no variational
problem exists for equations, one can utilize a partial Lagrangian approach which we have
shown here to be effective for the coupled Duffing oscillators. The first integrals still can be
constructed by using a Noether-like theorem.
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