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A new algorithm for solving the general nonlinear third-order differential equation is developed
by means of a shifted Jacobi-Gauss collocation spectral method. The shifted Jacobi-Gauss points
are used as collocation nodes. Numerical examples are included to demonstrate the validity and
applicability of the proposed algorithm, and some comparisons are made with the existing results.
The method is easy to implement and yields very accurate results.

1. Introduction

During the past three decades, there has been a remarkable growth of interest in problems
associated with systems of linear, nonlinear, and algebraic ordinary differential equations
with split initial or boundary conditions. Throughout engineering and applied science, we
are confronted with nonlinear or algebraic initial (two-point boundary) value problems
that cannot be solved by analytical methods. With this interest in finding solutions to
particular nonlinear initial (two-point boundary) value problems, came an increasing need
for techniques capable of rendering relevant profiles. Although considerable progress has
been made in developing new and powerful procedures, notably in the fields of fluid and
celestial mechanics and chemical and control engineering, much remain to be done.

In an initial value problem, we have to approximately determine in some interval t0 ≤
t ≤ T that solution u(t) of a third-order differential equation

∂3t u(t) = f
(
t, u(t), ∂tu(t), ∂2t u(t)

)
, (1.1)
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which has prescribed initial values

u(t0) = d0, ∂tu(t0) = d1, ∂2t u(t0) = d2, (1.2)

at the initial point t = t0. The existence and uniqueness of such a problem u(t) in this
interval will be assumed. In fact, the problem of existence and uniqueness of solutions
for initial value problems has been carefully investigated, and a detailed analysis has been
published. Most approximate methods in current use yield approximations u1, . . . , uk, . . . to
the values u(t1), . . . , u(tk), . . . of the exact solution at a number of discrete points t1, . . . , tk, . . . .
The choice of method from among the numerous approximate methods available and the
whole arrangement of the calculation is governed decisively by the number of steps, that
is, the number of points tk and the accuracy required. In initial value problems, conditions
particularly unfavorable to accuracy are met; not only is a lengthy calculation involved, in
which inaccuracies at the beginning of the calculation influence all subsequent results, but
also inaccuracies in the individuals u1, u2, . . . cause additional increases in the error. The
above-mentioned points motivate our interest in spectral methods.

Spectral methods (see, e.g., [1–3]) are one of the principal methods of discretization for
the numerical solutions of differential equations. Themain advantage of these methods lies in
their accuracy for a given number of unknowns. For smooth problems in simple geometries,
they offer exponential rates of convergence/spectral accuracy. In contrast, finite-difference
and finite-element methods yield only algebraic convergence rates. The three most widely
used spectral versions are the Galerkin, collocation, and tau methods. Collocation method
[1, 4, 5] has become increasingly popular for solving differential equations. Also, they are
very useful in providing highly accurate solutions to nonlinear differential equations.

The use of general Jacobi polynomials has the advantage of obtaining the solutions
of differential equations in terms of the Jacobi parameters α and β (see, e.g., [6–10]). In
the present paper, we intend to extend the application of Jacobi polynomials from Galerkin
method for solving two-point linear problems (see, [8, 9, 11]) to collocation method to solve
nonlinear initial value problems.

In particular, the third-order differential equations arise in many important number
of physical problems, such as the deflection of a curved beam having a constant or varying
cross-section, three-layer beam, the motion of rocket, thin film flow, electromagnetic waves,
or gravity-driven flows [12–14]. Therefore, third-order differential equations have attracted
considerable attention over the last three decades, and so many theoretical and numerical
studies dealing with such equations have appeared in the literature (see [15–18] and
references therein).

The most common approach for solving third-order ordinary differential equations
(ODEs) is the reduction of the problem to a system of first-order differential equations and
then solving the system by employing one of the methods available, which notably has been
inspected in the literature, see [19–21]. However, asmentioned previously, some authors have
remarked that this approach wastes a lot of computer time and human effort (see [22–24]).

The approximate solutions to general third-order ODEs were given by P-stable linear
multistep method [25] and class of hybrid collocation method [26]. Recently, Mehrkanoon in
[22] proposed a direct three-point implicit block multistep method for direct solution of the
general third-order initial value problem using variable step size, and this method was based
on a pair of explicit and implicit of Adams-Bashforth- and Adams-Moulton-type formulae.
Recently, Guo and Wang [27] and Guo et al. [28] proposed two new collocation methods for
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initial value problems of first order ODEs with spectral accuracy. However, so far, there is
no work concerning the collocation methods keeping the spectral accuracy, for initial value
problems of third-order ODEs, since it is not easy to design proper algorithms and analyze
their numerical errors precisely.

The fundamental goal of this paper is to develop a suitable way to obtain approximate
solutions for the nonlinear third-order differential equations on the interval (0, T) using
truncated Jacobi polynomials expansion uN(t) =

∑N
j=0 ajP

(α,β)
j (t), where N is the number

of retained modes. The nonlinear ODE is collocated only at the (N − 2) points that are the
(N − 2) nodes of the shifted Jacobi-Gauss interpolation on (0, T). These equations together
with three initial conditions generate (N + 1) nonlinear algebraic equations which can be
solved using Newton’s iterative method. Finally, the accuracy of the proposed algorithm is
demonstrated by solving some test problems. Numerical results are presented to illustrate
the usual well-known exponential convergence behaviour of spectral approximations.

This paper is arranged as follows. In Section 2, we give an overview of shifted
Jacobi polynomials and their relevant properties needed hereafter, and, in Section 3, the
way to construct the collocation technique using the shifted Jacobi polynomials for solving
numerically the nonlinear third-order differential equations is described. In Section 4, the
proposed algorithm is applied to some types of nonlinear third-order differential equations,
and some comparisons are made with the existing analytic solutions that were reported in
other published works in the literature. Also, a conclusion is given in Section 5.

2. Preliminaries

The classical Jacobi polynomials associated with the real parameters (α > −1, β > −1; see,
[29]) are a sequence of polynomials P

(α,β)
n (n = 0, 1, 2, . . .), each respective of degree n,

satisfying the orthogonality relation

∫1

−1
(1 − t)α(1 + t)βP (α,β)

m (x)P (α,β)
n (t)dt =

⎧
⎨
⎩
0, m/=n,

h
(α,β)
n , m = n,

(2.1)

where

h
(α,β)
n =

2λΓ(n + α + 1)Γ
(
n + β + 1

)

n!(2n + λ)Γ(n + λ)
, λ = α + β + 1. (2.2)

The following two relations will be of fundamental importance in what follows

P
(α,β)
k (−t) = (−1)kP (α,β)

k (t), (2.3)

DmP
(α,β)
k (t) =

Γ
(
m + k + α + β + 1

)

2mΓ
(
k + α + β + 1

) P
(α+m, β+m)
k−m (t). (2.4)
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Let w(α,β)(t) = (1 − t)α(1 + t)β be the weight function of the Jacobi polynomials on [−1, 1],
then we define the weighted space L2

w(α, β) (−1, 1) as usual, equipped with the following inner
product and norm as

(u, v)w(α,β) =
∫1

−1
u(t)v(t)w(α, β)(t)dt, ‖v‖w(α,β) = (v, v)1/2

w(α,β) . (2.5)

It is well known that the set of Jacobi polynomials forms a complete L2
wα,β(−1, 1)-orthogonal

system, and

∥∥∥P (α,β)
k

∥∥∥
2

w(α,β)
= h

(α,β)
k

, (2.6)

where h
(α,β)
k is as defined in (2.2).

Let T > 0, then the shifted Jacobi polynomial of degree k is defined by P
(α, β)
T, k

(t) =

P
(α,β)
k

(2t/T − 1 ), and by virtue of (2.3) and (2.4), we have

P
(α,β)
T,k (0) =

(−1)kΓ(k + β + 1
)

k!Γ
(
β + 1

) ,

DqP
(α,β)
T, k (0) =

(−1)k−qΓ(k + β + 1
)(
k + α + β + 1

)
q

Tq
(
k − q

)
!Γ
(
q + β + 1

) .

(2.7)

Next, let w
(α,β)
T (t) = (T − t)αtβ, then we define the weighted space L2

w
(α,β)
T

(0, T), with the

following inner product and norm as

(u, v)
w

(α,β)
T

=
∫T

0
u(t)v(t)w(α,β)

T (t)dt, ‖v‖
w

(α,β)
T

= (v, v)1/2
w

(α,β)
T

. (2.8)

It can be easily shown that the set of shifted Jacobi polynomials forms a complete
L2
w

(α,β)
T

(0, T)-orthogonal system. Moreover, and due to (2.6), it is not difficult to see that

∥∥∥P (α,β)
T,k

∥∥∥
2

w
(α,β)
T

=
(
T

2

)α+β+1

h
(α,β)
k = h

(α,β)
T,k . (2.9)

It is worth noting that for α = β, one recovers the shifted ultraspherical polynomials
(symmetric shifted Jacobi polynomials) and for α = β = ∓1/2, α = β = 0, the shifted
Chebyshev of the first and second kinds and shifted Legendre polynomials, respectively; for
the nonsymmetric shifted Jacobi polynomials, the two important special cases α = −β = ∓1/2
(shifted Chebyshev polynomials of the third and fourth kinds) are also recovered.

We denote by t
(α,β)
N,j , 0 � j � N, to the nodes of the standard Jacobi-

Gauss interpolation on the interval (−1, 1). Their corresponding Christoffel numbers are
�

(α,β)
N,j , 0 � j � N. The nodes of the shifted Jacobi-Gauss interpolation on the interval (0, T)



Mathematical Problems in Engineering 5

are the zeros of P (α,β)
T,N+1(t) which we denote by t

(α,β)
T,N,j , 0 � j � N. Clearly, t(α,β)T,N,j = (T/2)(t(α,β)N,j +

1), and their corresponding Christoffel numbers are�(α,β)
T,N,j = (T/2)α+β+1�(α,β)

N,j , 0 � j � N. Let
SN(0, T) be the set of polynomials of degree at mostN, thanks to the property of the standard
Jacobi-Gauss quadrature, then it follows that for any φ ∈ S2N+1(0, T),

∫T

0
(T − t)αtβφ(t)dt =

(
T

2

)α+β+1 ∫1

−1
(1 − t)α(1 + t)β φ

(
T

2
(t + 1)

)
dt

=
(
T

2

)α+β+1 N∑
j=0

�
(α,β)
N,j φ

(
T

2

(
t
(α,β)
N,j + 1

))

=
N∑
j=0

�
(α,β)
T,N,jφ

(
t
(α,β)
T,N,j

)
.

(2.10)

3. Jacobi-Gauss Collocation Method for Nonlinear Third-Order ODEs

The third-order nonlinear ODEs

F
(
t, u(t), ∂tu(t), ∂2t u(t), ∂

3
t u(t)

)
= 0, (3.1)

can often be solved for ∂3t u(t) term to determine that

∂3t u(t) = f
(
u(t), ∂tu(t), ∂2t u(t)

)
. (3.2)

By the implicit function theorem, if

∂F

∂3t u(t)

(
t, u(t), ∂tu(t), ∂2t u(t), ∂

3
t u(t)

)
/= 0, (3.3)

then the solutions of (3.2) are the only solutions possible. However, at these points where

∂F

∂3t u(t)

(
t, u(t), ∂tu(t), ∂2t u(t), ∂

3
t u(t)

)
= 0, (3.4)

there exists the possibility of singular solutions.
If the ∂3t u(t) term is eliminated from the two equations

F
(
t, u(t), ∂tu(t), ∂2t u(t), ∂

3
t u(t)

)
= 0,

∂F

∂3t u(t)

(
t, u(t), ∂tu(t), ∂2t u(t), ∂

3
t u(t)

)
= 0,

(3.5)
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then an equation of the form

H
(
t, u(t), ∂tu(t), ∂2t u(t)

)
= 0 (3.6)

results. Its solution (s) describe the singular loci. In this section, we are interested in using the
shifted Jacobi-Gauss collocation method to solve numerically the following model problem

∂3t u(t) = f
(
t, u(t), ∂tu(t), ∂2t u(t)

)
, 0 < t ≤ T, (3.7)

subject to Cauchy initial conditions

u(0) = d0, ∂tu(0) = d1, ∂2t u(0) = d2, (3.8)

where the values of d0, d1, and d2 describe the initial state of u(t) and f(t, u(t), ∂tu(t), ∂2t u(t))
is a nonlinear function of t, u, ∂tu, and ∂2t u which may be singular at t = 0.

Let us first introduce some basic notation that will be used in the sequel. We set

SN(0, T) = span
{
P
(α,β)
T,0 (t), P (α,β)

T,1 (t), . . . , P (α,β)
T,N (t)

}
, (3.9)

and we define the discrete inner product and norm as

(u, v)
w

(α,β)
T ,N

=
N∑
j=0

u
(
t
(α,β)
T,N,j

)
v
(
t
(α,β)
T,N,j

)
�

(α,β)
T,N,j , ‖u‖

w
(α,β)
T ,N

=
√
(u, u)

w
(α,β)
T ,N

, (3.10)

where t
(α,β)
T,N,j and �

(α,β)
T,N,j are the nodes and the corresponding weights of the shifted Jacobi-

Gauss-quadrature formula on the interval (0, T), respectively.
Obviously,

(u, v)
w

(α,β)
T ,N

= (u, v)
w

(α,β)
T

, ∀uv ∈ S2N−1. (3.11)

Thus, for any u ∈ SN(0, T), the two norms ‖u‖
w

(α,β)
T ,N

and ‖u‖
w

(α,β)
T

coincide.

Associated with this quadrature rule, we denote by I
P
(α,β)
T

N to the shifted Jacobi-Gauss
interpolation, that is,

I
P
(α,β)
T

N u
(
t
(α,β)
T,N,j

)
= u
(
t
(α,β)
T,N,j

)
, 0 ≤ j ≤ N. (3.12)
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The shifted Jacobi-Gauss collocation method for solving (3.7) and (3.8) is to seek
uN(t) ∈ SN(0, T) such that

∂3t uN

(
t
(α,β)
T,N,k

)
= f
(
t
(α,β)
T,N,k

, uN

(
t
(α,β)
T,N,k

)
, ∂tuN

(
t
(α,β)
T,N,k

)
, ∂2t uN

(
t
(α,β)
T,N,k

))
, k = 0, 1, . . . ,N − 3,

u
(i)
N (0) = di, i = 0, 1, 2.

(3.13)

Now, we derive an algorithm for solving (3.7) and (3.8). For this purpose, let

uN(t) =
N∑
j=0

ajP
(α,β)
T,j (t), a = (a0, a1, . . . , aN)T , (3.14)

then we obtain ∂tu(t), and ∂2t u(t) and ∂3t u(t) with the aid of (3.14), and accordingly by (3.7)
takes the form

N∑
j=0

ajD
3P

(α,β)
T,j (t) = f

⎛
⎝t,

N∑
j=0

ajP
(α,β)
T,j (t),

N∑
j=0

ajDP
(α,β)
T,j (t),

N∑
j=0

ajD
2P

(α,β)
T,j (t)

⎞
⎠. (3.15)

and by virtue of (2.4), we deduce that

1
T3

N∑
j=3

aj

(
j + λ

)
3 P

(α+3, β+3)
T,j−3 (t) = f

⎛
⎝t,

N∑
j=0

ajP
(α,β)
T,j (t),

1
T

N∑
j=1

aj

(
j + λ

)
P
(α+1, β+1)
T,j−1 (t),

1
T2

N∑
j=2

aj

(
j + λ

)
2P

(α+2, β+2)
T,j−2 (t)

⎞
⎠.

(3.16)

The substitution of (3.14) into (3.8) gives

N∑
j=0

ajD
iP

(α,β)
T,j (0) = di, i = 0, 1, 2. (3.17)

Now, we collocate (3.16) at the (N − 2) shifted Jacobi roots, to get

1
T3

N∑
j=3

aj

(
j + λ

)
3P

(α+3, β+3)
T,j−3

(
t
(α,β)
T,N,k

)

= ft
(α,β)
T,N,k

,
N∑
j=0

ajP
(α,β)
T,j

(
t
(α,β)
T,N,k

)
,
1
T

N∑
j=1

aj

(
j + λ

)
P
(α+1,β+1)
T,j−1

(
t
(α,β)
T,N,k

)
,
1
T2

N∑
j=2

aj

(
j + λ

)
2P

(α+2,β+2)
T,j−2

(
t
(α,β)
T,N,k

)

k = 0, 1, . . . ,N − 3.
(3.18)
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After making use of (2.7) for q = 1 and q = 2, (3.17) can be written as

N∑
j=0

(−1)j Γ
(
j + β + 1

)

Γ
(
β + 1

)
j!

aj = d0,

N∑
j=1

(−1)j−1Γ(j + β + 1
)(
j + α + β + 1

)

T
(
j − 1

)
!Γ
(
β + 2

) aj = d1,

N∑
j=2

(−1)j−2Γ(j + β + 1
)(
j + α + β + 1

)
2

T2
(
j − 2

)
!Γ
(
β + 3

) aj = d2.

(3.19)

The scheme (3.18)-(3.19)may be rewritten in a more suitable compact matrix form. To
do this, we define the (N + 1) × (N + 1) matrix Awith entries akj as follows:

akj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
j + λ

)
3

T3
P
(α+3,β+3)
T,j−3

(
t
(α,β)
T,N,k

)
, 0 ≤ k ≤ N − 3, 3 ≤ j ≤ N,

(−1)j Γ
(
j + β + 1

)

Γ
(
β + 1

)
j!

, k = N − 2, 3 ≤ j ≤ N,

(−1)j−1Γ(j + β + 1
)(
j + α + β + 1

)

T
(
j − 1

)
!Γ
(
β + 2

) , k = N − 1, 3 ≤ j ≤ N,

(−1)j−2Γ(j + β + 1
)(
j + α + β + 1

)
2

T2
(
j − 2

)
!Γ
(
β + 3

) , k = N, 3 ≤ j ≤ N,

0, otherwise.

(3.20)

Also, we define the (N − 2)× (N + 1) three matrices B, C and D with entries bkj , ckj , and dkj

as follows:

bkj = P
(α, β)
T,j

(
t
(α,β)
T,N,k

)
, 0 ≤ k ≤ N − 3, 0 ≤ j ≤ N,

ckj =

⎧
⎪⎨
⎪⎩

(
j + λ

)

T
P
(α+1, β+1)
T,j−1

(
t
(α,β)
T,N,k

)
, 0 ≤ k ≤ N − 3, 1 ≤ j ≤ N,

0, 0 ≤ k ≤ N − 3, j = 0,

dkj =

⎧
⎪⎨
⎪⎩

(
j + λ

)
2

T2
P
(α+2, β+2)
T,j−2

(
t
(α,β)
T,N,k

)
, 0 ≤ k ≤ N − 3, 2 ≤ j ≤ N,

0, 0 ≤ k ≤ N − 3, j = 0, 1.

(3.21)

Further, let a = (a0, a1, . . . , aN)T , and

F(a) =
(
f
(
t
(α,β)
T,N,0, uN

(
t
(α,β)
T,N,0

)
, ∂tuN

(
t
(α,β)
T,N,0

)
, ∂2t uN

(
t
(α,β)
T,N,0

))
, . . . ,

f
(
t
(α,β)
T,N,N−3, uN

(
t
(α,β)
T,N,N−3

)
, ∂tuN

(
t
(α,β)
T,N,N−3

)
, ∂2t uN

(
t
(α,β)
T,N,N−3

))
, d0, d1, d2

)T
,

(3.22)
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where uN(t(α,β)
T,N,k

), ∂tuN(t(α,β)
T,N,k

), and ∂2t uN(t(α,β)
T,N,k

) are the kth component of Ba, Ca, and Da,
respectively. The scheme (3.18)-(3.19) may be written in the matrix form

Aa = F(a), (3.23)

or equivalently

a = A−1F(a), (3.24)

which constitutes an (N+1) nonlinear algebraic equation that can be solved for the unknown
coefficients aj by using the well-known Newton’s method, and, consequently, uN(t) given
in (3.14) can be evaluated. A builded package in Mathematica version 6 named “FindRoot”
searches for a solution to the simultaneous nonlinear system (3.24) based on Newton’s
method with zero initial guess used.

4. Numerical Results

To illustrate the effectiveness of the proposed algorithm of this paper, three test examples are
carried out in this section. Comparisons of our obtained results with those obtained by some
other algorithms reveal that the present method is very effective and more convenient.

We consider the following examples.

Example 4.1. Consider the following linear third-order differential equation [22, 25]:

u′′′(t) − 2u′′(t) − 3u′(t) + 10u(t) = 34te−2t − 16e−2t − 10t2 + 6t + 34, t ∈ [0, b], (4.1)

subject to the initial conditions

u(0) = 3, u′(0) = 0, u′′(0) = 0, (4.2)

with the exact solution

u(t) = t2e−2t − t2 + 3. (4.3)

A similar problem was also investigated by Awoyemi [25] using a P-stable linear
multistep method and Mehrkanoon [22] using a direct variable step block multistep method.

In case of b = 1 in [22, 25], the best results are achieved with 200 and 32 steps and
the maximum absolute errors are 44.89 · 10−7 and 6.54 · 10−10, respectively, and when b = 4,
the maximum absolute errors are 1.46 · 10−4 and 6.19 · 10−9 with 800 and 50 steps by using
methods in [25] and [22], respectively. In Table 1, we introduce the maximum absolute error,
using SJCM with various choices of α, β, and N. Numerical results of this linear third-order
differential equation show that SJCM converges exponentially and that it is more accurate
than the two methods in [22, 25].
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Table 1: Maximum absolute error for N = 10, 20, 30 for Example 4.1.

N α β b SJCM b SJCM

10

2 1

1

8.54 · 10−7

4

4.18 · 100
1 1 1.54 · 10−6 4.14 · 100
0.5 −0.5 8.28 · 10−8 1.15 · 100
−0.5 0.5 1.18 · 10−6 2.66 · 10−1

20

2 1

1

8.32 · 10−16

4

7.52 · 10−8
1 1 9.15 · 10−16 1.33 · 10−7
0.5 −0.5 8.04 · 10−16 2.30 · 10−9
−0.5 0.5 3.92 · 10−16 6.51 · 10−8

30

2 1

1

6.10 · 10−16

4

1.18 · 10−13
1 1 1.94 · 10−16 2.14 · 10−13
0.5 −0.5 3.33 · 10−16 7.63 · 10−14
−0.5 0.5 3.73 · 10−16 2.57 · 10−13

Table 2: Maximum absolute error for N = 8, 16, 28, 32, 40 for Example 4.2.

N α β b SJCM b SJCM

8
0.5 0.5

1
2.96 · 10−5

4
1.45 · 10−1

0 0 3.38 · 10−7 1.89 · 10−2
−0.5 −0.5 1.47 · 10−5 8.24 · 10−2

16
0.5 0.5

1
4.06 · 10−11

4
1.01 · 10−4

0 0 9.05 · 10−14 8.95 · 10−8
−0.5 −0.5 6.63 · 10−12 2.04 · 10−5

24
0.5 0.5

1
2.24 · 10−16

4
6.50 · 10−8

0 0 3.33 · 10−16 2.37 · 10−11
−0.5 −0.5 4.44 · 10−16 7.62 · 10−9

32
0.5 0.5

1
3.33 · 10−16

4
3.83 · 10−11

0 0 4.44 · 10−16 8.88 · 10−15
−0.5 −0.5 4.44 · 10−16 3.19 · 10−12

40
0.5 0.5

1
3.33 · 10−16

4
1.73 · 10−14

0 0 4.44 · 10−16 8.65 · 10−15
−0.5 −0.5 4.44 · 10−16 2.44 · 10−15

Table 3: Maximum absolute error for N = 10, 20, 30 for Example 4.4.

N α β SJC

10
1 2 1.60 · 10−1

−0.5 −0.5 3.25 · 10−1
0 0 1.38 · 10−1

20
1 2 8.52 · 10−9

−0.5 −0.5 1.04 · 10−7
0 0 6.96 · 10−9

30
1 2 1.54 · 10−14

−0.5 −0.5 6.10 · 10−15
0 0 4.71 · 10−15
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Figure 1: Comparing the approximate solutions at N = 12 for α = β = 0, α = β = 0.5, α = β = 1, and the
exact solution of Example 4.4.

Example 4.2. Consider the following nonlinear third-order differential equation [22, 30]:

u′′′(t) + 2e−3u(t) = 4(1 + t)−3, t ∈ [0, b], (4.4)

subject to the initial conditions

u(0) = 0, u′(0) = 1, u′′(0) = −1, (4.5)

with the exact solution

u(t) = ln(1 + t). (4.6)

This type of equation has been solved in [22, 30] with the fourth-degree B-spline
functions and in [22] using a direct variable step block multistep method.

In Table 2, we list the results obtained by the shifted Jacobi-Gauss collocation method
proposed in this paper with α = β = 0 (shifted Legendre-Gauss collocation method), α = β =
−1/2 (first-kind shifted Chebyshev-Gauss collocation method) and α = β = 1/2 (second-kind
shifted Chebyshev-Gauss collocation method). The displayed results show that the value
α = β = 0 faster than other tested values of α and β, and the SJCM method converges
exponentially and is more accurate than direct variable step block multistep method [22].

Note 4.3. The Taylor series

ln(1 + t) = t − 1
2
t2 +

1
3
t3 − · · · (4.7)
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converges very slowly near t = 1, and 104 terms are needed to guarantee a truncation error
less than 10−4. In terms of the shifted Jacobi polynomials (α = β = −1/2), we find (see [31])

ln(1 + t) = ln

(
3 + 2

√
2

4

)
T ∗
0 (t) + 2

{
λT ∗

1 (t) −
1
2
λ2T ∗

2 (t) +
1
3
λ3T ∗

3 (t) − · · ·
}
, (4.8)

where λ = 3 − 2
√
2 and T ∗

i (t) = P
(−1/2,−1/2)
1,i (t) is the shifted Chebyshev polynomial of the first

kind defined on [0, 1]. This expression is similar in form to the Taylor series, but converges
much faster. In fact, truncation after the term in T ∗

3 (t) gives an error whose major term is
λ4/2 which is less than (1/2) × 10−3, compared with 0.25 of the corresponding Taylor’s series
truncation.

Example 4.4. Consider the following singular nonlinear problem

u′′′(t) +
2
t
u′(t) − u′′(t)u(t) − 16π2u2(t) =

(
8π
t

− 64π3
)
cos(4πt), t ∈ [0, 1],

u(0) = 0, u′(0) = 4π, u′′(0) = 0,

(4.9)

with the exact solution u(t) = sin(4πt).

In Table 3, we introduce maximum absolute error, using SJCM with various choices
of α, β, and N. Numerical results of this example show that SJCM converges exponentially
for all values of α and β, it also indicates that the numerical solution converges fast as N
increases. The approximate solutions at a few collocation points (N = 12) for α = β = 0,
α = β = 0.5, and α = β = 1, and the exact solution of this example are depicted in Figure 1 from
which it is evident that in case of α = β = 0 with a few collocation points, the approximate
solution agrees very well with the exact solution. From Table 3 and Figure 1, the values α =
β = 0 give the best accuracy among all the tested values of α and β for all values of N.

5. Conclusion

An efficient and accurate numerical algorithm based on the Jacobi-Gauss collocation spectral
method is proposed for solving the nonlinear third-order differential equations. The problem
is reduced to the solution of system of simultaneous nonlinear algebraic equations. To the best
of our knowledge, this is the first work concerning the Jacobi-Gauss collocation algorithm
for solving general third-order differential equations. Numerical examples were given to
demonstrate the validity and applicability of the algorithm. The results show that the method
is simple and accurate. In fact, by selecting few collocation points, excellent numerical results
are obtained. Numerical results in Tables 1–3 enables us to conclude that the expansion based
on Chebyshev polynomials (α = β = −1/2) is not always the best. This conclusion has been
asserted by Light [32].
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