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Motivated by problems coming from planning and operational management in power generation
companies, this work extends the traditional two-stage linear stochastic program by adding
probabilistic constraints in the second stage. In this work we describe, under special assumptions,
how the two-stage stochastic programs with mixed probabilities can be treated computationally.
We obtain a convex conservative approximations of the chance constraints defined in second
stage of our model and use Monte Carlo simulation techniques for approximating the expectation
function in the first stage by the average. This approach raises with another question: how to solve
the linear program with the convex conservative approximation (nonlinear constrains) for each
scenario?

1. Introduction

Optimization problems involving stochastic models occur in almost all areas of science and
engineering. Financial planning or unit commitment in power systems are just few examples
of areas in which ignoring uncertainty may lead to inferior or simply wrong decisions.

Stochastic programming models are optimization problems where the decision have
to bemade under uncertainty because some of the parameters are random variables, and they
may use probabilistic constraints and/or penalties in the objective function. In practice, the
numerical solvability of the problem plays an important role and there is a tradeoff between
correct statistical modeling and computability. For earlier reviews on the various aspects in
stochastic programming see, for example, [1–5].

Two-stage stochastic programming is useful for problems where an analysis of
strategy scenarios is desired and when the right-side coefficients are random. The main idea
of this model is the concept of recourse, which defines possibility to take corrective actions
after a realization of the random event. A decision is first undertaken before values of random
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variables are known, and then, after the random events have occurred and their values are
known, a second stage decision is made to minimize “penalties” that may appear because of
any infeasibility. For a good introduction and deepen in various aspects of these models, you
should see the books in [4, 6].

Chance constrained optimization problems were introduced in Miller and Wagner
[7], and Prékopa [8]. An alternative to the scenario approximation (Monte Carlo sampling
techniques) is an approximation based on analytical upper bounding of the probability for
the randomly perturbed constraint to be violated. The simplest approximation scheme of
this type was proposed in [9] and for a new class of analytical approximation (referred
to as Bernstein approximations), see the works by Nemirovski and Shapiro [10]. Another
approximation of probabilities constraints, is by using the Boole-Bonferroni inequalities; see,
for example, [11, 12].

When the stochastic program includes nonlinear terms or when continuous random
variables are explicitly included, a finite-dimensional linear programming deterministic
equivalent does not exist. In this case, we must use some nonlinear programming types of
procedures, see, for instance, [3, 13–16].

In previous work (see [17]) was extended the traditional two-stage linear stochastic
program by probabilistic constraints imposed in the second stage. In the next section, we
present a summary with assumptions under which the mixed-probability stochastic program
is structurally well behaved and stable under perturbation of both probabilities measures.
Moreover, in [17] can be find, under general conditions, first qualitative continuity properties
for the expectation of the objective function and the constraint set-valued maps. Hence, we
deduced quantitative stability results for the optimal value function and the solution set
under perturbations of probabilities measures.

In the third section, two possible applications that could have this model were shown,
the first one is a summary of the case of planning and operational management in power
generation companies presented in [17] and the other one is an application to the problem of
air pollution.

2. Some Preliminaries: Basic Well-Posedness

In previous work (see [17])was introduced the following parametric family of mixed proba-
bility stochastic programs P(μ, λ):

min
{
c′x +

∫
Rs

Q(z −Ax, λ)μ(dz) : x ∈ C

}
,
(
μ, λ
) ∈ Δ ×Λ, (2.1)

where Q(t, λ) is the optimal value function of the problem in second stage:

min
{
q′y : Wy = t, y ≥ 0, λ

(
Hj

(
y
)) ≥ pj , j = 1, . . . , d

}
(2.2)

and
(i) Hj , j = 1, . . . , d, are set-valued mappings from R

m to R
r with closed graph;

(ii) pj , j = 1, . . . , d, are predesigned probability levels;

(iii) if P(Rs), P(Rr) denote the sets of all Borel probability measures on R
s and R

r ,
respectively, we assume that Δ and Λ are subsets of P(Rs) and P(Rr);

(iv) C is a close subset of R
m.

All remaining vectors and matrices have suitable dimensions.



Mathematical Problems in Engineering 3

This model extends the traditional two-stage linear stochastic program by introducing
some probabilistic constraints λ(Hj(y)) ≥ pj , j = 1, . . . , d in the second stage of the problem.
These types of constraints add nonlinearities to the problem and basic arguments to analyze
the well-posedness of P(μ, λ)were studied in [17].

The major difficulty in understanding the structure of P(μ, λ) rests in a dilemma about
the function Q.

On the one hand, Q is the optimal-value function of a nonlinear program with
parameters t and λ, and parametric optimization mainly provides local results about the
structure of Q but global results are very scarce and require specific assumptions that are
often hard to verify.

On the other hand, Q arises as an integrand in P(μ, λ). For studying properties of the
related integral we require global information about Q.

From this viewpoint, it is not surprising that most of the structural results about two-
stage stochastic programs concern the purely linear and the linear mixed integer cases, that is,
the widest problem classes where parametric optimization offers broader results about global
stability.

To lay a foundation for the structural analysis ofQwe formulate the following general
assumptions.

Assumption A.1. For any λ ∈ Λ there exists a nonempty set Rλ ⊆ R
s and a Lebesgue null set

Nλ ⊆ R
s such that the function Q(·, λ) is real valued and measurable on Rλ, and continuous

on Rλ \Nλ.

Assumption A.2. It holds that

⋃
μ∈Δ

suppμ ⊆
⋂
λ∈Λ

⋂
x∈C

{Ax + Rλ}, (2.3)

where suppμ denotes the smallest closed set in R
s with μ-measure one.

Assumption A.3. There exists a real-valued, measurable function h on R
s, we call bounding

function, with the following properties.

(1) Q-Majorization

It holds that |Q(t, λ)| ≤ h(t) for all t ∈ Rλ and all λ ∈ Λ.

(2) Integrability

It holds that
∫
Rs h(z)μ(dz) < +∞ for all μ ∈ Δ.

(3) Generalized Subadditivity

There exists a κ > 0 such that h(t1 + t2) ≤ κ(h(t1) + h(t2)) for all t1, t2 ∈ R
s.

(4) Local Boundedness

For each t ∈ R
s there exists an open neighborhood of twhere h is bounded.
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The essence of Assumptions A.1–A.3 is the following: since Q(·, λ) is the optimal-
value function of a minimization problem it well may attain the values +∞ if the problem
is infeasible and −∞ if the problem is unbounded. Indeed, Assumption A.1 makes sure that
Q(·, λ) is finite on some set Rλ and A.2 Guarantees that the arguments z − Ax are in Rλ

for all relevant z and x. Otherwise, Q(z − Ax, λ) would attain infinite values with positive
probability, immediately preventing finiteness of the integral:

G
(
x, μ, λ

)
:=
∫

Rs

Q(z −Ax, λ)μ(dz). (2.4)

The continuity part of Assumption A.1 together with Assumption A.3 provides a framework
for applying dominated convergence to show continuity of G(·, μ, λ).

Introducing the exceptional setNλ in Assumption A.1 makes sense, sinceQ(·, λ) often
lacks continuity on lower-dimensional subsets of its domain of finiteness.

Furthermore, Assumption A.3 ensures an integrable upper bound for the functions
|Q(· −Ax, λ)|when x is varying in some neighborhood. Any other set of conditions ensuring
this could be placed instead.

Clearly, h reflects the global growth of |Q(·, λ)|whose quantitative analysis is acknowl-
edged nontrivial for nonlinear problems.

3. Applications

Motivated by the study of stochastic programming problems coming from planning and
operational management in power generation companies, in previous work (see [17]) was
presented an example where was consider a power systems of plants to be operated over
a time horizon. In the case of planning and operational management in power generation
companies, the first stage variable x in the model represents generation capacity investment
decisions, such as changes (continuous) of maximum generation capacity for thermal
plants, the variable z is a random demand and y is the second-stage operational variable
representing the level of production of energy.

The latter is also limited by emission rights for carbondioxide that may concern single
plants or consortia of plants. The level of permitted emission is considered random, since
emission rights are traded at predesignedmarkets via auctions, for instance, whose outcomes
are uncertain to market participants. This motivates to model limitations on the operational
variables resulting from emission rights by probabilistic rather than deterministic constraints.

Works in [18, 19] havemade several applications tomodel the problem of air pollution;
in these papers authers combine different techniques, including two-stage stochastic
programming. We now present, based on these previous works, a variation of these models
which include restrictions on the type “chance constraints” in the second stage of the model,
that is, an example where there are two completely independent probability measures and of
different nature.

In air quality management systems, there are uncertainties in a variety of pollution-
related processes, such as pollutant characteristics, emission rates, and mitigation measures.
These uncertainties would affect the efforts inmodeling pollutant. On the other hand, because
it is economically infeasible and sometimes technically impossible to design processes
leading to zero emission, decision makers and authorities seek to control the emissions to
levels at which the effects are minimized. The problem is how to minimize the expected
systems cost for pollution abatement while satisfying the policy in terms of allowable
pollutant-emission levels.
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The SO2 generation rates may vary with the type of coal that is used at the power
plants, as well as the related combustion conditions, which could be expressed as a random
variable. As an illustrative example, consider a power system consisting of plants i =
1, 2, . . . , I to be operated over a time horizon with subintervals t = 1, 2, . . . , T and a set of
control methods j = 1, 2, . . . , J . The first stage variables xijt represent the amount of SO2

generated from source i, to be mitigated through control measures j in period t under the
regulated emission allowance, and cjt is the operating cost of control measure j during period
t. The second-stage variables are related to the probabilistic excess SO2 from source i to be
mitigated through control measures j in period t under SO2 generation rate z(ξ), and djt

is the operating and penalty cost for excess SO2 emission during period t. In general, it is
considered that this cost is much greater than the cost of operating the first stage variables.

The objective is to minimize the total of regular and penalty cost for SO2 abatement.

min
I∑
i=1

J∑
j=1

T∑
t=1

cjtxijt +
I∑
i=1

J∑
j=1

T∑
t=1

djtE
(
yijt

)
. (3.1)

If we denote by zit(ξ) the random variable of SO2 generation rate in source i during period t,
the constraints of pollution control demand are

J∑
j=1

(
xijt + yijt(ξ)

)
= zit(ξ), ∀i, t. (3.2)

Finally, the function H(yt(ξ), ζ) represents the accumulation of SO2 in a particular area
sensible, such as a city that is surrounded by emission sources or power plants and which
depends, on the one hand, on the excess amount of emissions from each source i, given
the extent j control taken in period t, and the random variable ζ associated with climatic
conditions and predicts SO2 concentrations in a specific area under different meteorological
conditions, then we add the probabilistic limitations on the second-stage variables:

Pr
{
H
(
yt(ξ), ζ

) ≤ 0
} ≥ pt, ∀t, (3.3)

where pt is the probability levels with which the limitations are to be met.

4. Numerical Method

In order to have some idea about how the two-stage stochastic programs with mixed
probabilities can be treated computationally, we will study the following stochastic linear
programming problem:

min
{
cTx + E(Q(x, ξ)) | Bx = b, x ≥ 0

}
, (4.1)

where

Q(x, ξ) = min
{
qTy(ξ) | Ax +Wy(ξ) = ξ, y(ξ) ≥ 0

}
,

s.t. : Pr
{
H
(
y(ξ), ζ

) ≤ 0
} ≥ 1 − p

(4.2)
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ξ and ζ represents the independent random variables.

(i) ξ ∈ Ξ is the possible realizations of the random variable ξ supported on Ξ ⊂ R
s.

(ii) E stands for expectation with respect to the random variable ξ and y(ξ) ∈ R
m for

each realization ξ.

(iii) B ∈ Ml×n(R), A ∈ Ms×n(R), and W ∈ Ms×m(R) are deterministic matrices and the
probability level p ∈ (0, 1).

(iv) ζ ∈ Θ is the possible realizations of the random variable ζ supported on Θ ⊂ R
r .

The fundamental idea is to gives a convex conservative approximation of the chance
constrained subproblems (4.2), for this, we will fallow the work by Nemirovski and Shapiro
(see [10]) and then, have an efficiently solvable deterministic optimization program with the
feasible set contained in the chance constrained subproblem.

Let H : R
m ×Θ −→ R, defined by

H
(
y, ζ
)
= h0

(
y
)
+

r∑
j=1

ζjhj

(
y
)

(4.3)

and we assume that the functions hj(y), j = 1, 2, . . . , r are convex, the components ζj , j =
1, 2, . . . , r, of the random vector ζ are independent of other random variables and the moment
generating functions

Mj(t) := E
[
exp
(
tζj
)]
, j = 1, 2, . . . , r (4.4)

are finite valued for all t ∈ R and are efficiently computable.
Then, we have that the problem:

min
{
qTy | Ax +Wy = ξ, y ≥ 0

}
,

s.t. : inf
t>0

⎡
⎣h0
(
y
)
+

r∑
j=1

tΛj

(
t−1hj

(
y
)) − t log p

⎤
⎦ ≤ 0

(4.5)

is a conservative convex approximation of the chance constrained subproblems (4.2), for each
realizations of the random variable ξ (ξ ∈ Ξ ⊂ R

s), where

Λj(t) = logMj(t). (4.6)

Note that this approximation (it is known as the Bernstein Approximation) is an explicit
convex program with efficiently computable constraints and as such is efficiently solvable.

Now, we can use the Monte Carlo simulation, that is, suppose that we can generate a
sample ξ1, ξ2, . . . , ξN of N replications of the random vector ξ and then, we can approximate
the expectation function by the average

E(Q(x, ξ)) =
1
N

N∑
k=1

Q
(
x, ξk

)
(4.7)
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and consequently, we have the sample average approximation method:

min

{
cTx +

1
N

N∑
k=1

Q
(
x, ξk

)
| Bx = b, x ≥ 0

}
, (4.8)

where

Q
(
x, ξk

)
= min

{
qTy | Ax +Wy = ξk, y ≥ 0

}
,

s.t. : inf
t>0

⎡
⎣h0
(
y
)
+

r∑
j=1

tΛj

(
t−1hj

(
y
)) − t log p

⎤
⎦ ≤ 0.

(4.9)

If we denote by

ω
(
y
)
= inf

t>0

⎡
⎣h0
(
y
)
+

r∑
j=1

tΛj

(
t−1hj

(
y
)) − t log p

⎤
⎦ (4.10)

we have that ω(yk) ≤ 0 is a convex constraints and conservative for each k = 1, 2, . . . ,N, in
the sense that if for

yk ∈
{
y ∈ R

m | Ax +Wy = ξk, y ≥ 0
}

(4.11)

it holds that ω(yk) ≤ 0, then

Pr
{
H
(
yk, ζ

) ≤ 0
} ≥ 1 − p (4.12)

or equivalently

Pr

⎧⎨
⎩h0

(
yk

)
+

r∑
j=1

ζjhj

(
yk

) ≤ 0

⎫⎬
⎭ ≥ 1 − p (4.13)

and we obtain the following deterministic problem, with nonlinear constraints:

min
x,y1,...,yN

c�x +
1
N

N∑
k=1

q�yk,

s.t. Bx = b,

Ax +Wyk = ξk, ∀k = 1, 2, . . . ,N,

ω
(
yk

) ≤ 0, ∀k = 1, 2, . . . ,N,

x ≥ 0,

yk ≥ 0, ∀k = 1, 2, . . . ,N.

(4.14)
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Remark 4.1. It was demonstrated in theoretical studies and numerical experiments that Quasi-
Monte Carlo techniques could significantly improve the accuracy of the sample average
approximation problem, for a general discussion of Quasi-Monte Carlo methods see the
works by Niederreiter in [20, 21]. Moreover, the problem (4.5) is not the only way to get to
the conservative convex approximation of the chance constrained problems, we also can use
the convex approximation obtained by Conditional Value at Risk (see [10] and the work by
Rockafellar and Uryasev [22]). However, our aim in this paper is more focused on showing
a numerical methodology to tackle this type of models.

Denote by X = {x ∈ R
n | Bx = b, x ≥ 0} and Y = {y ∈ R

m | w(y) ≤ 0, y ≥ 0}
the convex subsets of the feasible set of problem (4.14) that do not depend on the sample
generated by the random vector ξ, then the problem (4.14) can be rewritten as

min c�x +
1
N

N∑
k=1

q�yk,

s.t. Wyk = ξk −Ax, k = 1, 2, . . . ,N,

x ∈ X,

yk ∈ Y, k = 1, 2, . . . ,N

(4.15)

and then, we can take advantage of separability. If we denote

v(uk) = min
{
q�y | Wy = uk, y ∈ Y

}
, (PK)

where uk = ξk −Ax, for all k = 1, 2, . . .N, we have

v
(
ξk −Ax

)
= max

{
r(λ) − λ�

(
ξk −Ax

)
| λ ∈ R

s
}
, (4.16)

for all k = 1, 2, . . . ,N and

r(λ) = inf
{
q�y + λ�Wy | y ∈ Y

}
. (4.17)

Note that r(λ) − λ�(ξk −Ax) is the dual function corresponding to v, and the master problem

minc�x +
1
N

N∑
k=1

v
(
ξk −Ax

)
,

x ∈ X

(M.P.)

can be solved using a differentiable descent method if r(λ) = inf{(q +W�λ)�y | y ∈ Y} is
strictly concave function over the set {λ | r(λ) > −∞}. However, this last assumption is very
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restrictive, in fact, in our specific case is not satisfied because the objective function is linear,
so we would have to study under what conditions the gradient of the value function v(u),
can be explicitly calculated.

Since the master problem (M.P.) has linear constraints, this can be solved using Frank-
Wolfe method, for which only we need to know the gradient of v(ξk −Ax), but

∇xv
(
ξk −Ax

)
= −A�∇ukv(uk) = A�λ∗k (4.18)

for each k = 1, . . . ,N, where λ∗k is the Lagrangemultiplier associated to linear constraint in the
optimal solution of subproblem (PK). Therefore, our problem now is howwe find specifically
the value of this multiplier λ∗

k
.

5. Normal Distribution

In this section we investigate the case when the random vector ζ = (ζ1, ζ2, . . . , ζr)
� supported

on Θ ⊂ R
r , has all its components normally distributed.

Let us suppose that ζj ∼ N(μj, σ
2
j ), j = 1, 2, . . . , r, then the moment generating function

is defined as

Mj(t) = exp

(
μjt +

σ2
j t

2

2

)
, (5.1)

Λj(t) = logMj(t) = μjt +
σ2
j t

2

2
(5.2)

for each j = 1, 2, . . . , r.

Proposition 5.1. The Bernstein Approximation of the chance constrained subproblems is given by

ω
(
y
)
= h0

(
y
)
+

r∑
j=1

μjhj

(
y
)
+

√√√√−2 log p
r∑

j=1

σ2
j h

2
j

(
y
)
. (5.3)

Proof. As we saw before, the Bernstein Approximation is a conservative convex approxima-
tion of the chance constraints defined as

ω
(
y
)
= inf

t>0

⎡
⎣h0
(
y
)
+

r∑
j=1

tΛj

(
t−1hj

(
y
)) − t log p

⎤
⎦ (5.4)

and substituting the expression given in (5.2) in the above relationship, we obtain

ω
(
y
)
= inf

t>0

⎧⎨
⎩h0

(
y
)
+

r∑
j=1

t

[
μj

hj

(
y
)

t
+ σ2

j

h2
j

(
y
)

2t2

]
− t log p

⎫⎬
⎭

= inf
t>0

⎧⎨
⎩h0

(
y
)
+

r∑
j=1

μjhj

(
y
)
+

1
2t

r∑
j=1

σ2
j h

2
j

(
y
) − t log p

⎫⎬
⎭

(5.5)
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and then

ω
(
y
)
= h0

(
y
)
+

r∑
j=1

μjhj

(
y
)
+ inf

t>0

⎧⎨
⎩

1
2t

r∑
j=1

σ2
j h

2
j

(
y
) − t log p

⎫⎬
⎭. (5.6)

Let us denote by f(t) = a/2t− t log p the auxiliary function, it is easy to see that the stationary

point t̂ =
√
−a/2 log p is a global minimum of the function f , therefore, of the given equation

(5.6), we can conclude, after some calculations, that

ω
(
y
)
= h0

(
y
)
+

r∑
j=1

μjhj

(
y
)
+
√
−2a log p (5.7)

and finally, substituting a =
∑r

j=1 σ
2
j h

2
j (y), we have

ω
(
y
)
= h0

(
y
)
+

r∑
j=1

μjhj

(
y
)
+

√√√√−2 log p
r∑

j=1

σ2
j h

2
j

(
y
)
. (5.8)

Proposition 5.2. Let

yk ∈ argmin
{
q�y | Wy = uk, y ≥ 0

}
(5.9)

and suppose that ω(yk) > 0. Then, there is

y∗
k ∈ argmin

{
q�y | Wy = uk, y ≥ 0, ω

(
y
) ≤ 0

}
(5.10)

such that ω(y∗
k) = 0.

Proof. The existence of y∗
k
depends only on whether the feasibility set

S =
{
y ∈ R

m | Wy = uk, y ≥ 0
} ∩ {y ∈ R

m | ω(y) ≤ 0
}

(5.11)

is not an empty set. By the other hand, ω(y) is a convex function, and then S is a convex set,
so

yk(α) = αy∗
k + (1 − α)yk ∈ S, ∀α ∈ [0, 1] (5.12)

and by continuity of ω, if ω(yk) > 0, there is α ∈ [0, 1] such that ω(yk(α)) = 0.
Denote by θ(α) = q�yk(α), then θ′(α) = q�(y∗

k − yk) ≥ 0 for all α ∈ [0, 1] because
q�y∗

k ≥ q�yk. This implies that the function θ(α) is monotone increasing in [0, 1], and therefore

θ(0) ≤ θ(α) ≤ θ(1) (5.13)
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and then we have q�yk(α) ≤ q�y∗
k and

yk(α) ∈ arg min
{
q�y | Wy = uk, y ≥ 0, ω

(
y
) ≤ 0

}
, (5.14)

where ω(yk(α)) = 0. Finally, it is enough to assign to y∗
k
= yk(α).

Now, we analyze the two possible cases for each k = 1, . . . ,N. Let

yk ∈ argmin
{
q�y | Wy = uk, y ≥ 0

}
. (5.15)

Case 1. If ω(yk) ≤ 0, then by y∗
k
= yk and λ∗

k
is the Lagrange multiplier associated to linear

constraint Wy = uk.

Case 2. Ifω(yk) > 0. Using the results of the previous proposition, we have to find the solution
to the penalized problem:

min q�y + Ckω
2(y),

s.t. Wy = uk,

y ≥ 0

(5.16)

for a penalty parameter Ck sufficiently large. To resolve this problem, we can apply again the
iterative method of Frank and Wolfe, where in each iteration, we solves a linear problem and
then, we have

y
(j+1)
k

= y
(j)
k

+ γj
(
y
(j)
k

− y
(j)
k

)
, (5.17)

where γj is chosen by the limited minimization rule or the Armijo rule,

y
(j)
k ∈ arg min

{(
q + 2Ckω

(
y
(j)
k

)
∇ω
(
y
(j)
k

))�(
y − y

(j)
k

)
| Wy = uk, y ≥ 0

}
(5.18)

and, if we denote by λ
(j)
k

the Lagrange multiplier associated to linear constraint Wy = uk

in (5.18), and let y∗
k be the accumulation point of the sequence {y(j)

k }, that is, there is a

subsequence {y(j)
k
}
j∈J that converges to y∗

k
, then we define by λ∗

k
the corresponding limit

point of subsequence {λ(j)
k
}
j∈J.

6. Conclusions

In this paper, we present a strategy or methodology to be followed to solve a two-stage
stochastic linear programs numerically, when the chance constraints are included in the
second stage. It suggests treating the two measures of probabilities involved in the problem
differently. Since themajor difficulty of the problem is in the second stage, we chose to assume
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that we had a sample of replications of random vector involved in the expected value function
in the objective function and approximate it by the average. For the case of chance constraints
defined in second stage, the main idea was to obtain a convex conservative approximation
and then get to an efficiently solvable deterministic nonlinear optimization program for
each scenario considered in the previous sample. Since the number of replicas or sample
size is generally very large, and for each one must solve a nonlinear optimization problem
because a method of decomposition of general deterministic problem were proposed, then
although the problem looks very computationally unwieldy for the special case when the
random vector of probability constraint of the second stage has all its components normally
distributed, an explicitly Bernstein approximation function was obtained and we showed
how each nonlinear optimization problem can be solved separately.
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