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The spline-interpolation-based fast Fourier transform (FFT) algorithm, designated as the SFFT
algorithm, is proposed in the present paper to further enhance the computational speed of
simulating the multivariate stochastic processes. The proposed SFFT algorithm first introduces the
spline interpolation technique to reduce the number of the Cholesky decomposition of a spectral
density matrix and subsequently uses the FFT algorithm to further enhance the computational
speed. In order to highlight the superiority of the SFFT algorithm, the simulations of the
multivariate stationary longitudinal wind velocity fluctuations have been carried out, respectively,
with resorting to the SFFT-based and FFT-based spectral representation SR methods, taking into
consideration that the elements of cross-power spectral density matrix are the complex values. The
numerical simulation results show that though introducing the spline interpolation approximation
in decomposing the cross-power spectral density matrix, the SFFT algorithm can achieve the
results without a loss of precision with reference to the FFT algorithm. In comparison with the
FFT algorithm, the SFFT algorithm provides much higher computational efficiency. Likewise, the
superiority of the SFFT algorithm is becoming more remarkable with the dividing number of
frequency, the number of samples, and the time length of samples going up.

1. Introduction

Monte Carlo technique has widely been employed for simulating the stochastic processes
which are either one-dimensional or multidimensional, univariate or multivariate, homo-
geneous or nonhomogeneous, stationary or nonstationary, and Gaussian or non-Gaussian.
The Monte Carlo simulation methods are able to generate the sample functions that
accurately provide the probabilistic characteristics of the corresponding stochastic processes.
For the simulation of stochastic processes, the following approaches are now available: (1)
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autoregressive (AR) method, such as Mignolet and Spanos [1, 2], Iannuzzi and Spinelli
[3], Deodatis and Shinozuka [4], and Novak et al. [5]; (2) autoregressive moving average
(ARMA) method, for example, Gersch and Yonemoto [6], Kozin [7], Kareem and Li [8], and
Rossi et al. [9]; (3) spectral representation (SR)method, for instance, Shinozuka and Jan [10],
Grigoriu [11], Deodatis [12], Grigoriu [13], and Chen and Letchford [14].

It is known that among foregoing simulation methods, the SR method has very high
demands on both the computer memory and speed. Notwithstanding this, the SR does not
have the problem of model selection, as does the AR and ARMA methods. Likewise, it is
easy to implement and has high accuracy. Hence, the SR method has yet been receiving
increasing attention in simulating the multivariate stochastic processes with the target cross
power spectral density (CPSD) matrices. The primary concept of the SR method dates back
to Rice [15], Goto and Toki [16], and Borgman [17]. For the multidimensional, multivariate,
and nonstationary cases, Shinozuka [18, 19] first established the SR approach. Subsequently,
Deodatis and Shinozuka [20] extended the application of the SR method to the simulation
of stochastic waves. Li and Kareem [21] developed a hybrid discrete Fourier transform and
digital filtering approach to simulate the multivariate random process. Likewise, Grigoriu
[11] compared two different SR models. But, it is worth pointing out that the generated
sample functions with resorting to the early algorithm of the SR method by Shinozuka and
Jan [10] are not ergodic. In order to generate the ergodic sample functions, several attempts
have been made via modifying the existing algorithms. Shinozuka et al. [22] introduced
the idea of double-indexing frequencies. But, the obtained sample functions based on the
proposed formula are still not ergodic. Deodatis [12] further extended the SR method
to simulate the multivariate ergodic stochastic processes. Likewise, the capabilities and
efficiency of the proposed algorithm were demonstrated in detail using a one-dimensional
trivariate process as an example. On the other hand, the computational efficiency of the early
algorithm of the SR method is yet low. In order to cope with this issue, the fast Fourier
transform (FFT) algorithm was introduced into the SR method. Yang [23, 24] showed that
the FFT algorithm can remarkably enhance the computational efficiency of the SR method
and proposed a formula to simulate the random envelop processes. Shinozuka [25] extended
the application of the FFT algorithm to the multidimensional cases. Wittig and Sinha [26]
showed that the SRmethod combined with the FFT algorithm seems to bemore than an order
of magnitude faster than other simulation methods. Further, Li and Kareem [27] used the
FFT-based approach to simulate the multivariate nonstationary Gaussian random processes
with the prescribed evolutionary spectral description.

Likewise, the multicorrelated stationary random processes, such as the wind velocity
or pressure fluctuations, on structures can be transformed into a set of subprocesses through
diagonalizing their covariance or CPSDmatrices with resorting to either the Cholesky (lower
or upper triangular) or eigenvector decomposition. The eigenvector decomposition offers
physically meaningful insight into the process as each eigenvector (eigenmode) may be
characterized on the basis of its spatial distributions. Theoretically, the eigenvector decompo-
sition is based on the Karhunen-Loeve expansion, consequently referred also to as the proper
orthogonal decomposition (POD) [28]. The POD approach has beenwidely utilized to reduce
the dimensions or variables in the large scale systems to enhance the computational speed,
such as Holmes et al. [29], Di Paola and Gullo [30], Rathinam and Petzold [31], Chen and
Kareem [32], and Solari and Carassale [33]. In [34], Carassale and Solari proposed some
strategies such as interpolation of the factorizations of the CPSDmatrix, cutoff of the spectral
representation based on POD and parallelization of the code, which provide significant
computational advantages enabling the simulation of large wind fields. Likewise, Ding et al.
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[35] also introduced interpolation approximation of the factorizations of the CPSDmatrix and
cutoff of the spectral representation based on POD to the SR algorithm for the simulation of
wind velocity fields on large scale structures. The numerical advantage of the POD technique,
akin to the modal analysis of structural dynamics, relies mainly on the reduced-order repre-
sentation via the truncation of the higher eigenmodes associated with smaller eigenvalues. Of
course, this reduced-order representation must warrant that the important characteristics of
the stochastic processes and related quantities remain unchanged, or the modification result-
ing from the approximate representation is acceptable. However, the truncation of higher
modes may not necessarily work effectively in the case of local responses, implying that there
exists a possibility of underestimating the local wind loads and corresponding effects [36]. In
the case of using the CPSD matrix-based POD technique, the similar observations made by
Chen and Kareem [37] once again underscore the foregoing phenomenon.

In order to illuminate solely the effectiveness of interpolation in fast simulation of
multivariate stochastic processes without POD technique, the spline function employing the
nature of both the smoothness and continuance is utilized to reduce the number of the
Cholesky decomposition of power spectral matrix by means of interpolation. The spline-
interpolation-based FFT algorithm, designated as the SFFT algorithm, then is proposed in
the present paper. Therefore, different from [34, 35], the main purpose of the present study
is to evaluate the computational efficiency and accuracy of the SFFT-based SR method
with reference to the FFT-based SR method through simulating the multivariate stationary
longitudinal wind velocity fluctuations with the phase angles.

2. Simulation of Multivariate Stochastic Processes

According to Deodatis [12] and Shinozuka [19], the multivariate stationary stochastic process
f0
j (t) (j = 1, 2, . . . , n) with the mean value equal to zero can be simulated by the following

series:

fj(t) = 2
√
Δω

n∑

m=1

N∑

l=1

∣∣Hjm(ωml)
∣∣ cos

[
ωmlt − ϑjm(ωml) + Φml

] (
j = 1, 2, . . . , n

)
, (2.1)

where H(ω) is the Cholesky decomposition of CPSD matrix S0(ω) (see the appendix) and
a lower triangular matrix; N is the sufficiently large dividing number of frequency; Δω =
ωup/N is the circular frequency increment; ωup refers to the upper cutoff circular frequency,
with the condition that, when ω > ωup, the value of S0(ω) is trivial and negligible; Φml is
the sequences of independent random phase angles, distributed uniformly over the interval
[0, 2π]; the double-indexing frequencyωml = lΔω−((N−m)/N)Δω = (l−1)Δω+(m/N)Δω.

It is noted that the simulated stochastic process using the SR method is asymptotically
Gaussian as N → ∞ (Deodatis [12]). Shinozuka and Deodatis [38] provided rigorous
derivations and elaborations about asymptotic Gaussian of the simulated stochastic process
according to the central limit theorem. It can be considered approximately Gaussian for most
practical applications ifN is greater than approximately 100 (Deodatis and Micaletti [39]).

In order to avoid aliasing, the time interval Δt has to obey the condition as follows:

Δt ≤ 2π
2ωup

. (2.2)
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Likewise, the entire period of the sample functions in (2.1) can be calculated as follows:

T0 =
2πn
Δω

=
2πnN
ωup

. (2.3)

It has been proved by Deodatis [12] that the obtained results based on (2.1) possesses
the ergodicity. Apparently, once the CPSD matrix is determined and the associated parame-
ters, such asN, ωup, andΔω, are properly chosen, the stationary one-dimensional multivari-
ate Gaussian stochastic process can then be simulated quite well with resorting to (2.1).

3. Spline-Interpolation-Based FFT (SFFT) Algorithm

For the simulation of the multivariate stationary stochastic processes, the spline-inter-
polation-based FFT algorithm, referred to as the SFFT algorithm, is proposed in the present
paper.

3.1. Spline Interpolation Technique

Since the Cholesky decomposition has to be conducted separately for each frequencyωml, the
number of performing the Cholesky decomposition with respect to (2.1) then is n × N. The
computational effort of the SR method is tremendous in the large scale system, though the
FFT algorithm can significantly enhance the computational speed.

For the multivariate stationary stochastic processes with the phase angles, the CPSD
matrix S0(ω) is the complex-valued matrix. Then, the element Hjm(ω) = |Hjm(ω)|eiϑjm of
the obtained lower triangular matrix H(ω) based on the Cholesky decomposition is the
complex value. It is noted that |Hjm(ω)| varies continuously with regard to the circular
frequency. Therefore, as long as |Hjm(ω)| at some appropriate circular frequency points are
calculated, |Hjm(ω)| at other circular frequency points can then be obtained by the cubic
spline interpolation. Since the spline function has the nature of both the smoothness and
continuance, it has widely been utilized to interpolate and fit data in engineering.

The circular frequency interval [0, ωu] is evenly divided into r subintervals by r − 1
frequencies ω1, ω2, . . . , ωr−1 (0 = ω0 < ω1 < ω2 < · · · < ωr−1 < ωr = ωu). The corresponding
|Hjm(ωi)| (i = 0, 1, 2, . . . , r) can then be calculated. It is assumed that H̃jm(ωi) = |Hjm(ωi)| (i =
0, 1, 2, . . . , r) and second continuous derivative H̃ ′′

jm(ωi) = Pi (i = 0, 1, 2, . . . , r), then H̃jm(ω)
at other frequency points can be obtained by the cubic spline interpolation. The flow scheme
of building spline interpolation H̃jm(ω) is shown in Figure 1.

In the circular frequency interval [ωi−1, ωi], H̃jm(ω) is expressed as cubic polynomial,
and then H̃ ′′

jm(ω) is a linear function:

H̃ ′′
jm(ω) = Pi−1

ωi −ω

ωi −ωi−1
+ Pi

ω −ωi−1
ωi −ωi−1

=
r

ωu
(Pi−1(ωi −ω) + Pi(ω −ωi−1)). (3.1)

Then, the continuous double integral of H̃ ′′
jm(ω) can be expressed as

H̃jm(ω) =
r

6ωu

[
(ωi −ω)3Pi−1 + (ω −ωi−1)3Pi

]
+Ai(ωi −ω) + Bi(ω −ωi−1), (3.2)
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♦ The circle frequency interval [0, ωu] is evenly

♦ Assuming second continuous derivative

♦ Obtaining the continuous double integral of

♦ Determining Ai and Bi according to the boundary

the derivative H ′
jm(ω)

♦ Building spline interpolation function Hjm(ω)

Ai and Bi as (3.2).

♦ Setting up (3.9) according to the continuation of

divided into r subintervals by r − 1 frequencies

the boundary conditions H ′
jm(ω0) = 0 and H ′

jm(ω0) = 0.

♦ Calculating Hjm(ωi), (i = 0, 1, 2, . . ., r).

ω1, ω2, . . ., ωr−1, (0 = ω0 < ω1 < ω2 < . . . < ωr−1 < ωr = ωu).

H”
jm(ωi) = Pi, (i = 0, 1, 2, . . ., r) and setting up a linear

function H”
jm(ω), ω ∈ [ωi−1, ωi] as (3.1).

H”
jm(ω), namely, Hjm(ω)with integral constants

conditions H”
jm(ωi−1) and Hjm(ωi).

in ω1, ω2, . . ., ωr−1.

♦ Building (3.10) and (3.11) through assuming

♦ Calculating Pi, (i = 0, 1, 2, . . ., r) from the equation system
constituted by (3.9), (3.10), and (3.11).

as (3.13).

Figure 1: Flow scheme of building spline interpolation function H̃jm(ω).

in which Ai and Bi are integral constants. According to the boundary conditions

H̃jm(ωi−1) =
ω2

u

6r2
Pi−1 +Ai

ωu

r
,

H̃jm(ωi) =
ω2

u

6r2
Pi + Bi

ωu

r
,

(3.3)

the integral constants Ai and Bi can be expressed as

Ai =

(
H̃jm(ωi−1) −

ω2
u

6r2
Pi−1

)
r

ωu
,

Bi =

(
H̃jm(ωi) −

ω2
u

6r2
Pi

)
r

ωu
.

(3.4)
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Substituting (3.4) into (3.2),

H̃jm(ω) =
r

6ωu

[
(ωi −ω)3Pi−1 + (ω −ωi−1)3Pi

]

+

(
H̃jm(ωi−1) −

ω2
u

6r2
Pi−1

)
r

ωu
(ωi −ω)

+

(
H̃jm(ωi) −

ω2
u

6r2
Pi

)
r

ωu
(ω −ωi−1) (ωi−1 ≤ ω ≤ ωi; i = 1, 2, 3, . . . , r).

(3.5)

Then, the derivative of H̃jm(ω) can be written as

H̃ ′
jm(ω) =

r

2ωu
(ω −ωi−1)2Pi − r

2ωu
(ωi −ω)2Pi−1 +

ωu

6r
(Pi−1 − Pi)

+
r

ωu

(
H̃jm(ωi) − H̃jm(ωi−1)

)
(ωi−1 ≤ ω ≤ ωi; i = 1, 2, 3, . . . , r).

(3.6)

In the interval [ωi−1, ωi],

H̃ ′
jm(ωi) =

ωu

3r
Pi +

ωu

6r
Pi−1 +

r

ωu

(
H̃jm(ωi) − H̃jm(ωi−1)

)
, (3.7)

and, in next interval [ωi,ωi+1],

H̃ ′
jm(ωi) = −ωu

3r
Pi − ωu

6r
Pi+1 +

r

ωu

(
H̃jm(ωi+1) − H̃jm(ωi)

)
. (3.8)

According to (3.7) and (3.8), we can obtain

Pi+1 + 4Pi + Pi−1 = 6
r2

ω2
u

(
H̃jm(ωi+1) − 2H̃jm(ωi) + H̃jm(ωi−1)

)
(i = 1, 2, 3, . . . , r − 1). (3.9)
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In order to determine Pi (i = 0, 1, 2, . . . , r), the boundary conditions are assumed as H̃ ′
jm(ω0) =

0 and H̃ ′
jm(ωr) = 0. Then, we can obtain the following functions:

2P0 + P1 = 6
r2

ω2
u

(
H̃jm(ω1) − H̃jm(ω0)

)
, (3.10)

2Pr + Pr−1 = 6
r2

ω2
u

(
H̃jm(ωr−1) − H̃jm(ωr)

)
. (3.11)

According to (3.9), (3.10) and (3.11), Pi (i = 0, 1, 2, . . . , r) can be determined through the
following equation system

2P0 + P1 = 6
r2

ω2
u

(
H̃jm(ω1) − H̃jm(ω0)

)
,

P2 + 4P1 + P0 = 6
r2

ω2
u

(
H̃jm(ω2) − 2H̃jm(ω1) + H̃jm(ω0)

)
,

P3 + 4P2 + P1 = 6
r2

ω2
u

(
H̃jm(ω3) − 2H̃jm(ω2) + H̃jm(ω1)

)
,

...

Pr + 4Pr−1 + Pr−2 = 6
r2

ω2
u

(
H̃jm(ωr) − 2H̃jm(ωr−1) + H̃jm(ωr−2)

)
,

2Pr + Pr−1 = 6
r2

ω2
u

(
H̃jm(ωr−1) − H̃jm(ωr)

)
.

(3.12)

Then, substituting Pi (i = 0, 1, 2, . . . , r) into (3.5), we can obtain

H̃jm(ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r

6ωu

[
(ω1 −ω)3P0 + (ω −ω0)3P1

]
+

(
H̃jm(ω0) −

ω2
u

6r2
P0

)
r

ωu
(ω1 −ω)

+

(
H̃jm(ω1) −

ω2
u

6r2
P1

)
r

ωu
(ω −ω0) (ω0 ≤ ω ≤ ω1),

r

6ωu

[
(ω2 −ω)3P1 + (ω −ω1)3P2

]
+

(
H̃jm(ω1) −

ω2
u

6r2
P1

)
r

ωu
(ω2 −ω)

+

(
H̃jm(ω2) −

ω2
u

6r2
P2

)
r

ωu
(ω −ω1) (ω1 ≤ ω ≤ ω2),

...

r

6ωu

[
(ωi −ω)3Pi−1 + (ω −ωi−1)3Pi

]
+

(
H̃jm(ωi−1) −

ω2
u

6r2
Pi−1

)
r

ωu
(ωi −ω)

+

(
H̃jm(ωi) −

ω2
u

6r2
Pi

)
r

ωu
(ω −ωi−1) (ωr−1 ≤ ω ≤ ωr).

(3.13)
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Introducing the spline interpolation into |Hjm(ω)|, (2.1) for the simulation of the
multivariate stationary stochastic processes can then be rewritten as follows:

fj(t) = 2
√
Δω

n∑

m=1

N∑

l=1

H̃jm(ωml) cos
[
ωmlt − ϑjm(ωml) + Φml

] (
j = 1, 2, . . . , n

)
. (3.14)

3.2. Fast Fourier Transform (FFT) Algorithm

Taking into account that introducing the FFT algorithm renders very high computation
efficiency in simulating the stationary processes (Li and Kareem [27]), with resorting to the
FFT algorithm, (3.14) can then be derived as follows:

fj
(
pΔt
)
= Re

{
j∑

m=1

h̃jm

(
pΔt
)
exp
[
i

(
mΔω

n

)(
pΔt
)]
}
, (3.15)

where

p = 0, 1, . . . , n ×M − 1;

M =
T0
nΔt

;

T0 =
2πn
Δω

=
2πnN
ωup

;

h̃jm

(
pΔt
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g̃jm
(
pΔt
)
, p = 0, 1, . . . ,M − 1,

g̃jm
[(
p −M

)
Δt
]
, p = M,M + 1, . . . , 2M − 1,

...
...

g̃jm
[(
p − (n − 1)M

)
Δt
]
, p = (n − 1)M, (n − 1)M + 1, . . . , nM − 1,

g̃jm
(
pΔt
)
=

M−1∑

l=1

B̃jml exp
[
ilp

2π
M

] (
p = 0, 1, . . . ,M − 1

)
,

B̃jml =

⎧
⎪⎨

⎪⎩

√
2ΔωH̃jm

(
lΔω +

mΔω

n

)
exp
[
−iϑjm

(
lΔω +

mΔω

n

)]
exp(iΦml), 0 ≤ l ≤ N,

0, N < l ≤ M − 1.

(3.16)

It is noteworthy that g̃jm(pΔt) can be obtained in terms of the inverse FFT of B̃jml.
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Figure 2: Configuration of points along a vertical line in Case 1 and Case 2.

4. Numerical Results

In the following, two cases of performing the simulation ofmultivariate stationary fluctuating
wind velocity are taken into consideration in order to demonstrate the capabilities and
computational efficiency of the proposed SFFT algorithm.

4.1. Description of Case 1

A hundred velocity points to be simulated are evenly distributed from 10m to 208m heights
along a vertical line (see Case 1 in Figure 2). The process corresponding to these hundred
components is denoted by f0

j (t) [f
0
1 (t), f

0
2 (t), . . . , f

0
100(t)]. It is assumed that the mean value

of the process is equal to zero. Then, the elements of its CPSD matrix may be given as

S0
jj(ω) = Sj(ω)

(
j = 1, 2, . . . , 100

)
, (4.1)

S0
jk(ω) = Γjk(ω)

√
Sj(ω)Sk(ω)e−iθjk(ω) (

j, k = 1, 2, . . . , 100, j /= k
)
, (4.2)

in which Sj(ω) represents the power spectral density function of f0
j (t); Γjk(ω) denotes the

coherence function between f0
j (t) and f0

k(t); θjk(ω) refers to the phase angle between Sj(ω)
and Sk(ω).

It is emphasized here that the stochastic process described by (4.1) and (4.2) is
nonhomogeneous in space, since the longitudinal velocity fluctuations f0

1 (t), f
0
2 (t), . . . , f

0
100(t)

have different frequency contents, namely, S1(ω)/=S2(ω)/= · · · /=S100(ω).
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The following expression proposed by Kaimal et al. [40] is selected to model the two-
sided power spectral density (PSD) function of the longitudinal wind velocity fluctuations at
different height:

S(z,ω) =
1
2
200
2π

u2
∗

z

U(z)
1

[1 + 50(ωz/2πU(z))]5/3
, (4.3)

where z is the elevation above the ground, in meters; ω is the circular frequency, in rad/s; u∗
is the shear velocity of the flow, in m/s; U(z) is the mean wind speed at height z, in m/s.

Taking into account the following coherence function between the velocity fluctuations
at two different heights zj and zk suggested by Davenport [41],

Γ(Δz,ω) = exp

[
− ω

2π
CzΔz

(1/2)
[
U
(
zj
)
+U(zk)

]
]

(4.4)

in which U(zj) and U(zk) are the mean wind speeds at heights zj and zk, respectively; Δz =
|zj−zk|;Cz is a constant that may be set equal to 10 for structural design purposes (Kristensen
and Jensen [42] and Simiu and Scanlan [43]).

Furthermore, the expression of the phase angle θjk(ω) is taken from Di Paola [44] and
Simiu and Scanlan [43],

θjk(ω) =
ω
(
zj − zk

)

υ
(j,k)
app

. (4.5)

In (4.2), e−iθjk(ω) is a measure of the wave passage delay due to the apparent velocity of waves
υ
(j,k)
app .

Likewise, the apparent velocity of waves can be assumed to be the following form
suggested by Simiu and Scanlan [43]:

υ
(j,k)
app =

π
[
U
(
zj
)
+U(zk)

]

Cθ
, (4.6)

in which Cθ is an appropriate coefficient that has to be determined from experimental data.
In the present paper, the expression by Peil and Telljohann [45] is taken into

consideration, which has the form υ
(j,k)
app = U[(zj + zk)/2]/5.5. The presence of the phase

angle turns into a time shift of the peak of the cross-correlation functions from the data of the
measured fluctuations at different heights.

Let it be supposed that the mean wind velocity at the first point 1 (z = 10m) isU(10) =
26m/s and that the surface rough roughness length is z0 = 0.001266m (corresponding shear
velocity of the flow u∗ = 1.76m/s). It is worthmentioning that the values z0 = 0.001266m and
u∗ = 1.76m/s are taken from Simiu and Scanlan [43]. The upper cutoff frequency is ωup =
2π rad/s. The dividing number of frequency is N = 8192. The simulation is carried out at
1×M = 1× 8192× 2 = 16384 time instants with a time stepΔt = 0.5 s, over a time length equal
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Table 1: Comparisons among several different schemes for wind velocity simulation.

Cases Algorithms Dividing number
of frequency (N)

Number of points
(n) T (sec) Elapsed time (min)

Case 1 SFFT 8192 100 8192 10.2
FFT 8192 100 8192 215.9

Case 2 SFFT 2048 50 2048 0.5
FFT 2048 50 2048 5.9

to T = 8192 s. The mean wind speeds at other points are computed in terms of the logarithmic
law (i.e., the vertical profile), which has the form as follows:

U
(
zj
)
=

ln
(
zj/z0

)

ln(zs/z0)
U(zs). (4.7)

4.2. Description of Case 2

Fifty velocity points to be simulated are evenly distributed from 10m to 255m heights along
a vertical line (see Case 2 in Figure 2). The process corresponding to these fifty components is
represented by f0

j (t) [f
0
1 (t), f

0
2 (t), . . . , f

0
50(t)]. The dividing number of frequency is N = 2048.

The numerical simulation is implemented at 1 ×M = 1 × 2048 × 2 = 4096 time instants with a
time step Δt = 0.5 s, over a time length equal to T = 2048 s. The other conditions are the same
as Case 1.

4.3. Numerical Analyses

The comparisons among several different schemes are made and listed in Table 1. The
Cholesky decomposition with the SFFT algorithm is implemented on 128 circular frequency
points. It can be seen that in Case 1, the elapsed time for the simulationwith the FFT algorithm
is 215.9min, while that for the simulation with the SFFT algorithm is only 10.2min; in the
Case 2, the elapsed time for the simulation with the FFT algorithm is 5.9min, while that
for the simulation with the SFFT algorithm is only 0.5min. Apparently, in the calculation
speed the SFFT algorithm has considerable advantage over the FFT algorithm. Likewise, the
superiority becomes more remarkable with the increasing ofN, n, and T . This is because the
number of the Cholesky decomposition with the FFT algorithm equals n×N, while that with
the SFFT algorithm keeps constant with the value equal to 128. For a determined SFFT or FFT
algorithm, however, the computational efficiency becomes lower with the increasing of the
parameters N, n, and T .

Since in Case 1 the number of the stimulated time histories is very large, without any
loss of generality, arbitrary six time histories of all are chosen to demonstrate the effort of
simulating the longitudinal wind velocity fluctuations by resorting to the proposed SFFT
algorithm. The generated samples of longitudinal wind velocity fluctuations at six points
1, 11, 26, 46, 71, and 100 (see Case 1 in Figure 2), denoted by f1(t), f11(t), f26(t), f46(t), f71(t),
and f100(t), respectively, are displayed in Figures 3(a), 3(b), 3(c), 3(d), 3(e), and 3(f) for a time
length T = 8192 s. Likewise, the parts in the first 600 s of these six time histories are further
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Figure 3: Generated sample functions for longitudinal wind velocity fluctuations at six different heights in
Case 1.

extracted out, respectively, as shown Figure 4, in order to better visualize the differences and
the similarities among these six time histories.

As far as the correlation degree among these six time histories is concerned, it is clearly
seen from Figure 4 that with the decreasing of the distance between arbitrary two points, the
loss of coherence between two samples corresponding, respectively, to these two points will
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Figure 4: Generated sample functions for longitudinal wind velocity fluctuations at six different heights,
over first 600 s of generated sample functions displayed in Figure 3.

become smaller. For example, since the distance between the points 1 and 11 is the smallest
in these six points, consequently, there is the smallest loss of coherence between f1(t) and
f11(t). On the other hand, there is the biggest loss of coherence between f1(t) and f100(t),
as the point 100 is located at 198m height from the point 1 (see Case 1 in Figure 2). This
behavior is controlled by the coherence functions (see (4.4)). Furthermore, the phase angle
can also be detected clearly at 100 s time instant between arbitrary two samples of these six
time histories. Likewise, the phase angle of these six time histories will become larger with the
increasing of the distance between arbitrary two time histories. Similarly, this phenomenon
can be controlled by the phase angle functions (see (4.5)).

The forgoing elucidations indicate that the proposed SFFT algorithm is able to simulate
the longitudinal wind velocity fluctuations that are spatially correlated according to a
prescribed coherence function and that possess the phase angles following a prescribed phase
angle function.

Plotted in Figure 5 is the temporal autocorrelation function [Rjj(τ) (j =
1, 11, 26, 46, 71, 100)] of the generated sample function shown in Figure 3, along with
the target autocorrelation function [R0

jj(τ) (j = 1, 11, 26, 46, 71, 100)]. It is worth pointing out
that the target autocorrelation function [R0

jj(τ)] is computed with resorting to the Wiener-
Khintchine transformation. As can be seen in Figure 5, the simulated autocorrelation function
[Rjj(τ)] practically coincides with the target autocorrelation function [R0

jj(τ)]. Displayed in
Figure 6 is the temporal cross-correlation function [Rjk(τ) (j = 1, k = 11, 26, 46, 71, 100)] of
the generated sample function presented in Figure 3, along with the target cross-correlation
function [R0

jk
(τ) (j = 1, k = 11, 26, 46, 71, 100)]. The same, the target cross-correlation

function [R0
jk(τ)] is calculated according to the Wiener-Khintchine transformation. As

expected, the simulated cross-correlation function [Rjk(τ) (j /= k)] practically coincides
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Figure 5: Temporal autocorrelation functions of generated sample function displayed in Figure 3 versus
corresponding targets.
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Figure 6: Temporal cross-correlation functions of generated sample functions displayed in Figure 3 versus
corresponding targets.



16 Mathematical Problems in Engineering

with the target cross-correlation function [R0
jk(τ) (j /= k)]. Apparently, the temporal auto

correlation and cross-correlation functions of any sample function [fj(t) (j = 1, 2, . . . , 100)]
are, respectively, identical to the target autocorrelation and cross-correlation functions based
on the SFFT algorithm. Moreover, Figure 6 demonstrates that the presence of the phase angle
turns into a time shift of the peak of the cross-correlation functions. Likewise, the time shift
will become larger with the increasing of the distance between arbitrary two points. It is
proved once again that the proposed SFFT algorithm can efficiently carry out the simulation
of longitudinal wind velocity fluctuations with the phase angles.

From Figure 7, it is clear that the estimated spectra derived from these sample time
histories and the target spectra are in remarkably good agreement with each other. Likewise,
it is seen from Figures 8 and 9 that the mean and variance values of these 100 time histories
generated with the SFFT algorithm approach those with the FFT algorithm, which implies
that the SFFT and FFT algorithms practically achieve the same computation accuracy. More
specifically, Figure 8 shows that the variance values of the generated time histories with
resorting to both the SFFT and FFT are identical to the target values, respectively. It is
observed in Figure 9 that the mean values of the generated time histories with resorting to
both the SFFT and FFT are not more than 0.2m/s, effectively meaning that these mean values
are considerably small with respect to the zero target value.

In order to demonstrate Gaussian of the simulated wind velocity fluctuations,
Figure 10 shows the probability density functions of generated samples displayed in Figure 3
versus corresponding target (Gaussian). It is clear that the probability density functions
estimated from these samples match closely Gaussian probability density function.

4.4. Accuracy and Time Expense of Various Interpolations

Four kinds of interpolation techniques, such as SFFT, the cubic Lagrangian interpolation
based FFT (CL-FFT), square Lagrangian interpolation based FFT (SL-FFT), and neural
network interpolation based FFT (NN-FFT), are taken into consideration to simulate thewind
velocity field for the evaluation of accuracy and time expense of various interpolations [46].
The root mean square error (RMSE) and error factor (EF) [47] are introduced to evaluate the
accuracy of these four interpolation-based FFT techniques:

RMSE =

√√√√ 1
N

N∑

i=1

(
yi − Yi

)2
,

EF = 1 −
(∑N

i=1

∣∣yi − Yi

∣∣
∑N

i=1|Yi|

)
,

(4.8)

in which, N is the total number of time points in the generated sample; Yi and yi signify
generated wind velocities at a certain instant employing the FFT and the interpolation-based
FFT, respectively. It is noted that, the interpolation based FFT is more precise if the value of
RMSE is closer to zero; the interpolation-based FFT is more precise if the value of EF is closer
to one.

The data coming from [46] are listed in Tables 2 and 3. Table 2 shows the elapsed time
in the simulation using the SL-FFT, CL-FFT, SFFT, NN-FFT, and FFT, respectively, and Table 3
records both the RMSE and EF values. It is from Table 2 seen that the efficiency of the SFFT
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Figure 7: Power spectrum of generated sample functions displayed in Figure 3 versus corresponding
targets.
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Figure 8: Variance values of sample generated by resorting to the SFFT or the FFT with respect to
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Figure 9: Mean values of sample generated with resorting to the SFFT or the FFT with reference to
corresponding targets in Case 1.

is the highest due to the minimal time expense. It is from Table 3 observed that the NN-FFT
presents the highest accuracy. Worth noting, the accuracy by the SFFT is a little lower than
that by the NN-FFT. Forasmuch, the SFFT, generally, is the best.

5. Conclusions

This study presented the SFFT algorithm to further enhance the computational efficiency of
simulating the multivariate stochastic processes. More specifically, the main purpose of the
proposed SFFT algorithm, simultaneously with resorting to the spline interpolation and FFT
algorithms, is to reduce the number of the Cholesky decomposition. The main conclusions of
the present research effort on the SFFT algorithm can be drawn as follows.

(1) The proposed SFFT algorithm is able to efficiently generate the longitudinal
wind velocity fluctuations that are spatially correlated according to a prescribed
coherence function and that possess the phase angles following a prescribed phase
angle function.
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Figure 10: Probability density functions of generated sample functions displayed in Figure 3 versus
corresponding target (Gaussian).
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Table 2: Comparison of time expense among different simulation schemes (noted that the data come from
[46]).

Different schemes
Time expense (sec)

10 location points 20 location points

SFFT 8.35 29.84
CL-FFT 12.76 47.80
SL-FFT 10.80 40.36
NN-FFT 20.24 74.98
FFT 43.03 301.55

Table 3: Comparisons of MRSE and EF among different simulation schemes (noted that the data come
from [46]).

Locatio point
MRSE EF

SFFT CL-FFT SL-FFT NN-FFT SFFT CL-FFT SL-FFT NN-FFT

1 0.1693 0.1896 0.2342 0.1655 0.9812 0.9804 0.9747 0.9818
2 0.1688 0.1791 0.2330 0.1648 0.9810 0.9802 0.9745 0.9817
3 0.1681 0.1782 0.2313 0.1643 0.9814 0.9806 0.9751 0.9821
4 0.1675 0.1774 0.2295 0.1636 0.9813 0.9805 0.9751 0.9819
5 0.1667 0.1764 0.2278 0.1633 0.9808 0.9801 0.9746 0.9815
6 0.1662 0.1758 0.2263 0.1625 0.9809 0.9802 0.9747 0.9816
7 0.1654 0.1748 0.2243 0.1621 0.9811 0.9804 0.9751 0.9817
8 0.1645 0.1737 0.2222 0.1617 0.9810 0.9803 0.9752 0.9816
9 0.1638 0.1727 0.2204 0.1607 0.9813 0.9806 0.9756 0.9819
10 0.1627 0.1713 0.2177 0.1597 0.9820 0.9813 0.9765 0.9825

(2) The proposed SFFT algorithm has considerable advantage over the FFT algorithm.
Likewise, this superiority will become more and more remarkable with the
increasing of the parameters N,n, and T .

(3) Although introducing the spline interpolation approximation in decomposing the
cross-power spectral density matrix, the SFFT and FFT algorithms practically
achieve the same computational accuracy.

(4) Employing the SFFT algorithm, the temporal autocorrelation and cross-correlation
functions of any sample function are identical to the target autocorrelation and
cross-correlation functions, respectively. Likewise, the estimated spectra derived
from these sample time histories and the target spectra are in remarkably good
agreement with each other.

(5) The SFFT, generally, is the best in many interpolation methods.

Eventually, it is worth emphasizing that since the spline interpolation is able to
significantly reduce the number of the Cholesky decomposition of time-varying power
spectral matrix, the SFFT algorithm can improve the performance of the SR method for the
simulation of the multivariate nonstationary stochastic processes. It is known that the power
spectrum of nonstationary stochastic process is time-varying; thus, meaning that the FFT
algorithm is very hard to be used in this case. Only when the time-varying power spectrum
satisfies some special conditions, the FFT can be utilized. However, it is anticipated that
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the SFFT algorithm can be used to enhance the computational efficiency of simulating the
multivariate nonstationary stochastic processes, since the spline interpolation technique is
not affected by the time-varying power spectrum.

Appendix

Cholesky Decomposition

For a given CPSD matrix with the element |S0
jk
(ω)|eiθjk (k = 1, 2, . . . , n; j = 1, 2, . . . , n), the

element of the lower triangular matrix H(ω) can be computed as follows:

H11(ω) = |H11(ω)|eiϑ11

=
[∣∣∣S0

11(ω)
∣∣∣eiθ11

]1/2

=
[∣∣∣S0

11(ω)
∣∣∣
]1/2

ei(1/2)θ11

=⇒
⎧
⎨

⎩
|H11(ω)| = [∣∣S0

11(ω)
∣∣]1/2,

ϑ11 = θ11 = 0,

Hj1(ω) =
∣∣Hj1(ω)

∣∣eiϑj1

=

∣∣∣S0
j1(ω)

∣∣∣eiθj1

|H11(ω)|eiϑ11

=

∣∣∣S0
j1(ω)

∣∣∣

|H11(ω)|e
iθj1

(
j = 2, 3, . . . , n

)

=⇒

⎧
⎪⎪⎨

⎪⎪⎩

∣∣Hj1(ω)
∣∣ =

∣∣∣S0
jk(ω)

∣∣∣

|H11(ω)|
(
j = 2, 3, . . . , n

)
,

ϑj1 = θj1
(
j = 2, 3, . . . , n

)
,

Hkk(ω) = |Hkk(ω)|eiϑkk

=

[∣∣∣S0
kk(ω)

∣∣∣eiθkk −
k−1∑

r=1

|Hkr(ω)|eiϑkr |Hrk(ω)|e−iϑkr

]1/2

=

[∣∣∣S0
kk(ω)

∣∣∣ −
k−1∑

r=1

|Hkr(ω)| · |Hrk(ω)|
]1/2

ei(1/2)θkk (k = 2, 3, . . . , n)

=⇒

⎧
⎪⎪⎨

⎪⎪⎩

|Hkk(ω)| =
[
∣∣S0

kk(ω)
∣∣ −

k−1∑

r=1

|Hkr(ω)| · |Hrk(ω)|
]1/2

(k = 2, 3, . . . , n),

ϑkk = θkk = 0 (k = 2, 3, . . . , n),
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Hjk(ω) =
∣∣Hjk(ω)

∣∣eiϑjk

=

∣∣∣S0
jk(ω)

∣∣∣eiθjk −∑k−1
r=1

∣∣Hjr(ω)
∣∣eiϑjr |Hrk(ω)|e−iϑkr

|Hkk(ω)|eiθkk

=

∣∣∣S0
jk(ω)

∣∣∣eiθjk −∑k−1
r=1

∣∣Hjr(ω)
∣∣ · |Hrk(ω)|ei(ϑjr−ϑkr)

|Hkk(ω)|eiθkk

=

∣∣∣S0
jk(ω)

∣∣∣eiθjk −∑k−1
r=1

∣∣Hjr(ω)
∣∣ · |Hrk(ω)|eiϑjk

|Hkk(ω)|eiθkk

=

∣∣∣S0
jk(ω)

∣∣∣ −∑k−1
r=1

∣∣Hjr(ω)
∣∣ · |Hrk(ω)|

|Hkk(ω)| eiθjk
(
k = 2, 3, . . . , n; j = k + 1, k + 2, . . . , n

)

=⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∣∣Hjk(ω)
∣∣ =

∣∣∣S0
jk(ω)

∣∣∣ −∑k−1
r=1

∣∣Hjr(ω)
∣∣ · |Hrk(ω)|

|Hkk(ω)|(
k = 1, 2, . . . , n; j = k + 1, k + 2, . . . , n

)
,

ϑjk = θjk
(
k = 1, 2, . . . , n; j = k + 1, k + 2, . . . , n

)
.

(A.1)

Subsequently, |Hjk(ω)| (k = 1, 2, . . . , n; j = k, k + 1, k + 2, . . . , n)s can be obtained
by resorting to the Cholesky decomposition of a real matrix which consists of the element
|S0

jk
(ω)| (k = 1, 2, . . . , n; j = 1, 2, . . . , n). Likewise, the phase angle contents with the

relationship ϑjk = θjk (k = 1, 2, . . . , n; j = 1, 2, . . . , n).
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